5679 lines
99 KiB
Plaintext
5679 lines
99 KiB
Plaintext
#LyX 2.2 created this file. For more info see http://www.lyx.org/
|
||
\lyxformat 508
|
||
\begin_document
|
||
\begin_header
|
||
\save_transient_properties true
|
||
\origin unavailable
|
||
\textclass article
|
||
\use_default_options true
|
||
\begin_modules
|
||
algorithm2e
|
||
theorems-ams
|
||
theorems-ams-extended
|
||
\end_modules
|
||
\maintain_unincluded_children false
|
||
\language danish
|
||
\language_package default
|
||
\inputencoding auto
|
||
\fontencoding global
|
||
\font_roman "palatino" "default"
|
||
\font_sans "biolinum" "default"
|
||
\font_typewriter "default" "default"
|
||
\font_math "eulervm" "auto"
|
||
\font_default_family default
|
||
\use_non_tex_fonts false
|
||
\font_sc false
|
||
\font_osf false
|
||
\font_sf_scale 100 100
|
||
\font_tt_scale 100 100
|
||
\graphics default
|
||
\default_output_format default
|
||
\output_sync 0
|
||
\bibtex_command default
|
||
\index_command default
|
||
\paperfontsize default
|
||
\spacing single
|
||
\use_hyperref false
|
||
\papersize default
|
||
\use_geometry false
|
||
\use_package amsmath 1
|
||
\use_package amssymb 1
|
||
\use_package cancel 1
|
||
\use_package esint 1
|
||
\use_package mathdots 1
|
||
\use_package mathtools 1
|
||
\use_package mhchem 1
|
||
\use_package stackrel 1
|
||
\use_package stmaryrd 1
|
||
\use_package undertilde 1
|
||
\cite_engine basic
|
||
\cite_engine_type default
|
||
\biblio_style plain
|
||
\use_bibtopic false
|
||
\use_indices false
|
||
\paperorientation portrait
|
||
\suppress_date false
|
||
\justification true
|
||
\use_refstyle 1
|
||
\index Index
|
||
\shortcut idx
|
||
\color #008000
|
||
\end_index
|
||
\secnumdepth 3
|
||
\tocdepth 3
|
||
\paragraph_separation skip
|
||
\defskip medskip
|
||
\quotes_language danish
|
||
\papercolumns 1
|
||
\papersides 1
|
||
\paperpagestyle default
|
||
\tracking_changes false
|
||
\output_changes false
|
||
\html_math_output 0
|
||
\html_css_as_file 0
|
||
\html_be_strict false
|
||
\end_header
|
||
|
||
\begin_body
|
||
|
||
\begin_layout Section
|
||
Løsninger og mindste kvadraters løsninger til lineære ligningssystemer
|
||
\end_layout
|
||
|
||
\begin_layout Subsection
|
||
Lemma 1.5 (Hovedsætning)
|
||
\end_layout
|
||
|
||
\begin_layout Standard
|
||
Et lineært ligningssystem
|
||
\begin_inset Formula $L^{\prime}$
|
||
\end_inset
|
||
|
||
fremkommer fra et andet ligningssystem
|
||
\begin_inset Formula $L$
|
||
\end_inset
|
||
|
||
ved brug af ERO, er de to ligningssystemer ækvivalente.
|
||
\end_layout
|
||
|
||
\begin_layout Standard
|
||
Beviset for dette er for én elementær rækkeoperation.
|
||
Dette er tilstrækkeligt da beviset kan anvendes gentagne gange ved udførslen
|
||
af flere ERO'er.
|
||
\end_layout
|
||
|
||
\begin_layout Paragraph
|
||
Bevis
|
||
\end_layout
|
||
|
||
\begin_layout Standard
|
||
Det bemærkes at en løsning til
|
||
\begin_inset Formula $L$
|
||
\end_inset
|
||
|
||
også vil være en løsning til
|
||
\begin_inset Formula
|
||
\[
|
||
\alpha\cdot l_{i}
|
||
\]
|
||
|
||
\end_inset
|
||
|
||
og
|
||
\begin_inset Formula
|
||
\[
|
||
l_{i}+\alpha\cdot l_{j}.
|
||
\]
|
||
|
||
\end_inset
|
||
|
||
Løsningsmængden for
|
||
\begin_inset Formula $L$
|
||
\end_inset
|
||
|
||
vil være en delmængde af løsningsmængden for
|
||
\begin_inset Formula $L^{\prime}$
|
||
\end_inset
|
||
|
||
.
|
||
Et symmetrisk argument gælder for
|
||
\begin_inset Formula $L^{\prime}$
|
||
\end_inset
|
||
|
||
til
|
||
\begin_inset Formula $L$
|
||
\end_inset
|
||
|
||
.
|
||
Derfor må løsningsmængderne være ens.
|
||
\end_layout
|
||
|
||
\begin_layout Subsection
|
||
Proposition 1.14 –
|
||
\begin_inset Quotes ald
|
||
\end_inset
|
||
|
||
Et vigtigt resultat
|
||
\begin_inset Quotes ard
|
||
\end_inset
|
||
|
||
|
||
\end_layout
|
||
|
||
\begin_layout Standard
|
||
Et homogent lineært ligningssystem med flere ubekendte end ligninger (dvs.
|
||
på matrixform: flere søjler end rækker) har en løsning forskellig fra
|
||
\begin_inset Formula $\boldsymbol{0}$
|
||
\end_inset
|
||
|
||
.
|
||
\end_layout
|
||
|
||
\begin_layout Paragraph
|
||
Bevis
|
||
\end_layout
|
||
|
||
\begin_layout Standard
|
||
Hvis der anvendes Gauss-elimination kan det antages at de homogene lineære
|
||
ligningssystem er
|
||
\emph on
|
||
reduceret
|
||
\emph default
|
||
.
|
||
Da antallet af
|
||
\emph on
|
||
ledende ubekendte
|
||
\emph default
|
||
er mindre end eller lig antallet af ligninger
|
||
\begin_inset Formula $m$
|
||
\end_inset
|
||
|
||
, vil der være mindst
|
||
\begin_inset Formula $n-m$
|
||
\end_inset
|
||
|
||
frie ubekendte.
|
||
Da det er antaget at
|
||
\begin_inset Formula $m<n$
|
||
\end_inset
|
||
|
||
vil antallet af frie ubekendte være mindst én.
|
||
Proposition 1.9 fortæller at der eksisterer løsninger til ligningssystemer,
|
||
der antager arbitrære værdier for de frie ubekendte.
|
||
Således eksisterer der helt sikkert en løsning forskellig fra
|
||
\begin_inset Formula $\boldsymbol{0}$
|
||
\end_inset
|
||
|
||
.
|
||
\end_layout
|
||
|
||
\begin_layout Subsection
|
||
Proposition 3.11 (Hovedsætning for
|
||
\emph on
|
||
løsninger til lineære ligningssystemer
|
||
\emph default
|
||
)
|
||
\end_layout
|
||
|
||
\begin_layout Standard
|
||
Det antages at en vektor
|
||
\begin_inset Formula $\boldsymbol{z}_{0}\in\mathbb{F}^{n}$
|
||
\end_inset
|
||
|
||
er en løsning til det lineære ligningssystem
|
||
\begin_inset Formula $A\cdot\boldsymbol{x}=\boldsymbol{b}$
|
||
\end_inset
|
||
|
||
og at
|
||
\begin_inset Formula $\boldsymbol{z}\in\mathbb{F}^{n}$
|
||
\end_inset
|
||
|
||
er en løsning til det tilsvarende homogene ligningssystem
|
||
\begin_inset Formula $A\cdot\boldsymbol{x}=\boldsymbol{0}$
|
||
\end_inset
|
||
|
||
.
|
||
Løsningsmængden til ligningssystemet vil da bestå af alle elementer på
|
||
formen
|
||
\begin_inset Formula
|
||
\[
|
||
\boldsymbol{z}+\boldsymbol{z_{0}}\in\mathbb{F}^{n},
|
||
\]
|
||
|
||
\end_inset
|
||
|
||
for
|
||
\begin_inset Formula $A\in{\rm Mat}_{m,n}(\mathbb{F})$
|
||
\end_inset
|
||
|
||
og
|
||
\begin_inset Formula $\boldsymbol{b}\in\mathbb{F}^{n}$
|
||
\end_inset
|
||
|
||
.
|
||
\end_layout
|
||
|
||
\begin_layout Paragraph
|
||
Bevis
|
||
\end_layout
|
||
|
||
\begin_layout Standard
|
||
Beviset deles op i to tilfælde:
|
||
\end_layout
|
||
|
||
\begin_layout Enumerate
|
||
\begin_inset Formula $\boldsymbol{z}+\boldsymbol{z_{0}}\in\mathbb{F}^{n}$
|
||
\end_inset
|
||
|
||
er en løsning til det lineære ligningssystem
|
||
\end_layout
|
||
|
||
\begin_layout Enumerate
|
||
Enhver løsning
|
||
\begin_inset Formula $\boldsymbol{z}^{\prime}$
|
||
\end_inset
|
||
|
||
vil kunne opskrives på formen
|
||
\begin_inset Formula $\boldsymbol{z}+\boldsymbol{z_{0}}$
|
||
\end_inset
|
||
|
||
|
||
\end_layout
|
||
|
||
\begin_layout Standard
|
||
(1) Det ses at
|
||
\begin_inset Formula
|
||
\begin{align*}
|
||
A\cdot(\boldsymbol{z}+\boldsymbol{z_{0}}) & =A\cdot\boldsymbol{z}+A\cdot\boldsymbol{z_{0}}\\
|
||
& =\boldsymbol{0}+\boldsymbol{b}\\
|
||
& =\boldsymbol{b}
|
||
\end{align*}
|
||
|
||
\end_inset
|
||
|
||
|
||
\end_layout
|
||
|
||
\begin_layout Standard
|
||
(2) En løsning
|
||
\begin_inset Formula $\boldsymbol{z}^{\prime}$
|
||
\end_inset
|
||
|
||
til
|
||
\begin_inset Formula $A\cdot\boldsymbol{x}=\boldsymbol{b}$
|
||
\end_inset
|
||
|
||
opfylder
|
||
\begin_inset Formula
|
||
\begin{align*}
|
||
A\cdot(\boldsymbol{z}^{\prime}-\boldsymbol{z}_{0}) & =A\cdot\boldsymbol{z}^{\prime}-A\cdot\boldsymbol{z_{0}}\\
|
||
& =\boldsymbol{b}-\boldsymbol{b}\\
|
||
& =\boldsymbol{0}
|
||
\end{align*}
|
||
|
||
\end_inset
|
||
|
||
Derfor må
|
||
\begin_inset Formula $\boldsymbol{z}^{\prime}-\boldsymbol{z}_{0}$
|
||
\end_inset
|
||
|
||
være en løsning til det homogene lineære ligningssystem
|
||
\begin_inset Formula $A\cdot\boldsymbol{x}=\boldsymbol{0}$
|
||
\end_inset
|
||
|
||
.
|
||
Det vil sige at
|
||
\begin_inset Formula $\boldsymbol{z}^{\prime}-\boldsymbol{z}_{0}=\boldsymbol{z}$
|
||
\end_inset
|
||
|
||
, og
|
||
\begin_inset Formula $\boldsymbol{z}^{\prime}$
|
||
\end_inset
|
||
|
||
har den ønskede form.
|
||
\end_layout
|
||
|
||
\begin_layout Subsection
|
||
Proposition 10.33 (Hovedsætning for
|
||
\emph on
|
||
mindste kvadraters løsninger
|
||
\emph default
|
||
)
|
||
\end_layout
|
||
|
||
\begin_layout Standard
|
||
Ethvert lineært ligningssystem har
|
||
\emph on
|
||
mindst én
|
||
\emph default
|
||
|
||
\emph on
|
||
mindste kvadraters løsning
|
||
\emph default
|
||
.
|
||
Mindste kvadraters løsninger til
|
||
\begin_inset Formula $A\cdot\boldsymbol{x}=\boldsymbol{b}$
|
||
\end_inset
|
||
|
||
bestemmes som løsningsmængden til det lineære ligningssystem
|
||
\begin_inset Formula
|
||
\[
|
||
A\cdot\boldsymbol{x}=\boldsymbol{p}
|
||
\]
|
||
|
||
\end_inset
|
||
|
||
hvor
|
||
\begin_inset Formula $\boldsymbol{p}$
|
||
\end_inset
|
||
|
||
betegner den ortogonale projektion af
|
||
\begin_inset Formula $\boldsymbol{b}$
|
||
\end_inset
|
||
|
||
på søjlerummet
|
||
\begin_inset Formula $R(A)$
|
||
\end_inset
|
||
|
||
, det vil sige at
|
||
\begin_inset Formula $\boldsymbol{p}\in R(A)$
|
||
\end_inset
|
||
|
||
, mens
|
||
\begin_inset Formula $\boldsymbol{b}\not\in R(A)$
|
||
\end_inset
|
||
|
||
.
|
||
Ligningssystemet har altså
|
||
\emph on
|
||
ikke
|
||
\emph default
|
||
en
|
||
\begin_inset Quotes ald
|
||
\end_inset
|
||
|
||
ordinær
|
||
\begin_inset Quotes ard
|
||
\end_inset
|
||
|
||
løsning.
|
||
\end_layout
|
||
|
||
\begin_layout Paragraph
|
||
Bevis
|
||
\end_layout
|
||
|
||
\begin_layout Standard
|
||
\begin_inset Formula $\boldsymbol{p}$
|
||
\end_inset
|
||
|
||
er pr.
|
||
definition indeholdt i
|
||
\begin_inset Formula $R(A)$
|
||
\end_inset
|
||
|
||
.
|
||
Det gælder jf.
|
||
Proposition 10.32 for alle andre
|
||
\begin_inset Formula $A\cdot\boldsymbol{z}\in R(A)$
|
||
\end_inset
|
||
|
||
at
|
||
\begin_inset Formula
|
||
\[
|
||
\left\Vert \boldsymbol{b}-A\cdot\boldsymbol{z}\right\Vert \geq\left\Vert \boldsymbol{b}-\boldsymbol{p}\right\Vert
|
||
\]
|
||
|
||
\end_inset
|
||
|
||
med lighedstegn netop når
|
||
\begin_inset Formula $A\cdot\boldsymbol{z}=\boldsymbol{p}$
|
||
\end_inset
|
||
|
||
.
|
||
Dette viser at mindste kvadraters løsninger til
|
||
\begin_inset Formula $A\cdot\boldsymbol{x}=\boldsymbol{b}$
|
||
\end_inset
|
||
|
||
bestemmes som løsningerne til
|
||
\begin_inset Formula $A\cdot\boldsymbol{x}=\boldsymbol{p}$
|
||
\end_inset
|
||
|
||
.
|
||
\end_layout
|
||
|
||
\begin_layout Subsubsection
|
||
Hjælpesætning - Proposition 10.32
|
||
\end_layout
|
||
|
||
\begin_layout Standard
|
||
\begin_inset Formula $W$
|
||
\end_inset
|
||
|
||
er et underrum af et indre produkt rum
|
||
\begin_inset Formula $V$
|
||
\end_inset
|
||
|
||
.
|
||
|
||
\begin_inset Formula $\boldsymbol{v}\in V$
|
||
\end_inset
|
||
|
||
,
|
||
\begin_inset Formula $\boldsymbol{p}=W$
|
||
\end_inset
|
||
|
||
,
|
||
\begin_inset Formula $\boldsymbol{h}=W^{\perp}$
|
||
\end_inset
|
||
|
||
.
|
||
Det gælder da at
|
||
\begin_inset Formula
|
||
\[
|
||
\boldsymbol{v}=\boldsymbol{p}+\boldsymbol{h}
|
||
\]
|
||
|
||
\end_inset
|
||
|
||
og
|
||
\begin_inset Formula
|
||
\[
|
||
\left\Vert \boldsymbol{v}-\boldsymbol{p}\right\Vert <\left\Vert \boldsymbol{v}-\boldsymbol{w}\right\Vert
|
||
\]
|
||
|
||
\end_inset
|
||
|
||
for alle
|
||
\begin_inset Formula $\boldsymbol{w}\in W\setminus\{\boldsymbol{p}\}$
|
||
\end_inset
|
||
|
||
.
|
||
\end_layout
|
||
|
||
\begin_layout Subsection
|
||
Noter
|
||
\end_layout
|
||
|
||
\begin_layout Standard
|
||
Proposition 10.36 er også nævnt i dispositionerne.
|
||
Der er dog nok ikke tid til også at gennemgå denne til eksamen.
|
||
Studerende til eksamen: Hvor meget tid har de? Har de tid? Lad os finde
|
||
ud af det! Skal den med? IDK!
|
||
\end_layout
|
||
|
||
\begin_layout Standard
|
||
\begin_inset Newpage newpage
|
||
\end_inset
|
||
|
||
|
||
\end_layout
|
||
|
||
\begin_layout Section
|
||
Invertible matricer
|
||
\end_layout
|
||
|
||
\begin_layout Subsection
|
||
Lemma 4.3 (Målsætning uden bevis)
|
||
\end_layout
|
||
|
||
\begin_layout Standard
|
||
Antag at
|
||
\begin_inset Formula $A\in{\rm Mat}_{n}(\mathbb{F})$
|
||
\end_inset
|
||
|
||
er en invertibel matrix og
|
||
\begin_inset Formula $\boldsymbol{b}\in\mathbb{F}^{n}$
|
||
\end_inset
|
||
|
||
.
|
||
\end_layout
|
||
|
||
\begin_layout Standard
|
||
Da vil ligningssystemet
|
||
\begin_inset Formula $A\cdot\boldsymbol{x}=\boldsymbol{b}$
|
||
\end_inset
|
||
|
||
have præcis én løsning.
|
||
Denne vil være lig
|
||
\begin_inset Formula $A^{-1}\cdot\boldsymbol{b}$
|
||
\end_inset
|
||
|
||
.
|
||
\end_layout
|
||
|
||
\begin_layout Subsection
|
||
Lemma 4.4 (Hovedsætning)
|
||
\end_layout
|
||
|
||
\begin_layout Standard
|
||
Antag
|
||
\begin_inset Formula $A\in{\rm Mat}_{n}(\mathbb{F})$
|
||
\end_inset
|
||
|
||
(OBS!
|
||
\begin_inset Formula $A$
|
||
\end_inset
|
||
|
||
er kvadratisk!) og lad
|
||
\begin_inset Formula $H$
|
||
\end_inset
|
||
|
||
bestemme en matrix på
|
||
\begin_inset Formula $RREF$
|
||
\end_inset
|
||
|
||
, der er rækkeækvivalent med
|
||
\begin_inset Formula $A$
|
||
\end_inset
|
||
|
||
.
|
||
Følgende udsagn er da ækvivalente
|
||
\end_layout
|
||
|
||
\begin_layout Enumerate
|
||
For enhver vektor
|
||
\begin_inset Formula $\boldsymbol{b}\in\mathbb{F}^{n}$
|
||
\end_inset
|
||
|
||
vil det lineære ligningssystem
|
||
\begin_inset Formula $A\cdot\boldsymbol{x}=\boldsymbol{b}$
|
||
\end_inset
|
||
|
||
udelukkende have præcis én løsning.
|
||
\end_layout
|
||
|
||
\begin_layout Enumerate
|
||
Det homogene lineære liningssystem
|
||
\begin_inset Formula $A\cdot\boldsymbol{x}=\boldsymbol{0}$
|
||
\end_inset
|
||
|
||
har kun nulvektoren
|
||
\begin_inset Formula $\boldsymbol{0}$
|
||
\end_inset
|
||
|
||
som løsning.
|
||
\end_layout
|
||
|
||
\begin_layout Enumerate
|
||
Det homogene (fuldstændigt) reducerede ligningssystem
|
||
\begin_inset Formula $H\cdot\boldsymbol{x}=\boldsymbol{0}$
|
||
\end_inset
|
||
|
||
har
|
||
\emph on
|
||
ingen frie ubekendte.
|
||
\end_layout
|
||
|
||
\begin_layout Enumerate
|
||
Matricen
|
||
\begin_inset Formula $H$
|
||
\end_inset
|
||
|
||
er lig identitetsmatricen
|
||
\begin_inset Formula ${\rm I}_{n}$
|
||
\end_inset
|
||
|
||
.
|
||
\end_layout
|
||
|
||
\begin_layout Paragraph
|
||
Bevis
|
||
\end_layout
|
||
|
||
\begin_layout Standard
|
||
\begin_inset Formula $(1)\Rightarrow(2)$
|
||
\end_inset
|
||
|
||
: Oplagt, da nulvektoren
|
||
\begin_inset Formula $\boldsymbol{0}$
|
||
\end_inset
|
||
|
||
er en løsning til ethvert homogent ligningssystem.
|
||
(1) giver da at dette må være den éneste løsning.
|
||
\end_layout
|
||
|
||
\begin_layout Standard
|
||
\begin_inset Formula $(2)\Rightarrow(3)$
|
||
\end_inset
|
||
|
||
: Da de to ligningssystemer
|
||
\begin_inset Formula $A\cdot\boldsymbol{x}=\boldsymbol{0}$
|
||
\end_inset
|
||
|
||
og
|
||
\begin_inset Formula $H\cdot\boldsymbol{x}=\boldsymbol{0}$
|
||
\end_inset
|
||
|
||
er ækvivalente har de samme løsningsmængde.
|
||
Hvis
|
||
\begin_inset Formula $(2)$
|
||
\end_inset
|
||
|
||
er opfyldt har
|
||
\begin_inset Formula $H\cdot\boldsymbol{x}=\boldsymbol{0}$
|
||
\end_inset
|
||
|
||
præcis én løsning, hvilket giver at der ikke er frie variable i ligningssysteme
|
||
t.
|
||
Dette opfylder jf.
|
||
Proposition 1.9 (ingen frie variable ved antal pivoter svarende til antal
|
||
ligninger (RREF i matrix-speak)) (3) ud fra (2).
|
||
\end_layout
|
||
|
||
\begin_layout Standard
|
||
\begin_inset Formula $(3)\Rightarrow(4)$
|
||
\end_inset
|
||
|
||
: Da
|
||
\begin_inset Formula $H$
|
||
\end_inset
|
||
|
||
er på RREF, så må der eksistere en følge af naturlige tal
|
||
\begin_inset Formula
|
||
\[
|
||
1\leq d_{1}<d_{2}<\cdots<d_{r}\leq n,
|
||
\]
|
||
|
||
\end_inset
|
||
|
||
hvor
|
||
\begin_inset Formula $r$
|
||
\end_inset
|
||
|
||
er antallet af pivoter, såleds at de krævede egenskaber for RREF er opfyldt.
|
||
Den
|
||
\begin_inset Formula $(i,j)$
|
||
\end_inset
|
||
|
||
'te indgang i
|
||
\begin_inset Formula $H$
|
||
\end_inset
|
||
|
||
betegns med
|
||
\begin_inset Formula $h_{i,j}$
|
||
\end_inset
|
||
|
||
.
|
||
Da har vi specielt, at
|
||
\begin_inset Formula
|
||
\[
|
||
h_{i,d_{j}=}\begin{cases}
|
||
1 & {\rm hvis}\quad i=j,j\leq r\\
|
||
0 & {\rm hvis}\quad i\neq j,j\leq r
|
||
\end{cases}.
|
||
\]
|
||
|
||
\end_inset
|
||
|
||
(
|
||
\emph on
|
||
Nævn eventuelt Kroeneckers delta i relation til dette)
|
||
\end_layout
|
||
|
||
\begin_layout Standard
|
||
Det er givet at
|
||
\begin_inset Formula $x_{d_{1}},x_{d_{2}},\dots,x_{d_{r}}$
|
||
\end_inset
|
||
|
||
er de ledende ubekendte for det lineære ligningssystem
|
||
\begin_inset Formula $H\cdot\boldsymbol{x}=\boldsymbol{0}$
|
||
\end_inset
|
||
|
||
.
|
||
Da der ikke er frie ubekendte for
|
||
\begin_inset Formula $H\cdot\boldsymbol{x}=\boldsymbol{0}$
|
||
\end_inset
|
||
|
||
jf.
|
||
(3), så må
|
||
\begin_inset Formula $r=n$
|
||
\end_inset
|
||
|
||
og
|
||
\begin_inset Formula $d_{i}=i$
|
||
\end_inset
|
||
|
||
for
|
||
\begin_inset Formula $i=1,2,\dots,n$
|
||
\end_inset
|
||
|
||
.
|
||
Dermed giver ovenstående at
|
||
\begin_inset Formula $H$
|
||
\end_inset
|
||
|
||
er identitetsmatricen
|
||
\begin_inset Formula ${\rm I}_{n}$
|
||
\end_inset
|
||
|
||
.
|
||
\end_layout
|
||
|
||
\begin_layout Standard
|
||
\begin_inset Formula $(4)\Rightarrow(1)$
|
||
\end_inset
|
||
|
||
: Hvis (4) er opfyldt vil totalmatricen
|
||
\begin_inset Formula $(A\mid\boldsymbol{b})$
|
||
\end_inset
|
||
|
||
(dvs.
|
||
for systemet
|
||
\begin_inset Formula $A\cdot\boldsymbol{x}=\boldsymbol{b}$
|
||
\end_inset
|
||
|
||
) være rækkeækvivalent med
|
||
\begin_inset Formula $({\rm I}_{n}\mid\boldsymbol{c})$
|
||
\end_inset
|
||
|
||
for en passende vektor
|
||
\begin_inset Formula $\boldsymbol{c}\in\mathbb{F}^{n}$
|
||
\end_inset
|
||
|
||
.
|
||
Særligt vil løsningsmængderne for
|
||
\begin_inset Formula $A\cdot\boldsymbol{x}=\boldsymbol{b}$
|
||
\end_inset
|
||
|
||
og
|
||
\begin_inset Formula $I_{n}\cdot\boldsymbol{x}=\boldsymbol{c}$
|
||
\end_inset
|
||
|
||
være identiske.
|
||
|
||
\begin_inset Formula ${\rm I}_{n}\cdot\boldsymbol{x}=\boldsymbol{c}$
|
||
\end_inset
|
||
|
||
har imidlertid kun løsningen
|
||
\begin_inset Formula $\boldsymbol{c}$
|
||
\end_inset
|
||
|
||
, hvilket opfylder (1) (præcis én løsning).
|
||
\end_layout
|
||
|
||
\begin_layout Subsection
|
||
Lemma 4.5 (Leder op til 4.6, perspektiv uden bevis)
|
||
\end_layout
|
||
|
||
\begin_layout Standard
|
||
For en kvadratisk matrix
|
||
\begin_inset Formula $A$
|
||
\end_inset
|
||
|
||
, der opfylder et af de fire udsagn i Lemma 4.4, vil der eksistere en kvadratisk
|
||
matrix
|
||
\begin_inset Formula $B$
|
||
\end_inset
|
||
|
||
af samme størrelse som
|
||
\begin_inset Formula $A$
|
||
\end_inset
|
||
|
||
, således at
|
||
\begin_inset Formula $A\cdot B={\rm I}_{n}$
|
||
\end_inset
|
||
|
||
.
|
||
\end_layout
|
||
|
||
\begin_layout Subsection
|
||
Lemma 4.6 (Vigtig konklusion)
|
||
\end_layout
|
||
|
||
\begin_layout Standard
|
||
En kvadratisk matrix
|
||
\begin_inset Formula $A$
|
||
\end_inset
|
||
|
||
er invertibel hvis og kun hvis
|
||
\begin_inset Formula $A$
|
||
\end_inset
|
||
|
||
opfylder de ækvivalente udsagn i Lemma 4.4.
|
||
\end_layout
|
||
|
||
\begin_layout Paragraph
|
||
Bevis
|
||
\end_layout
|
||
|
||
\begin_layout Standard
|
||
Først vises at en invertibel matrix opfylder udsagnene i Lemma 4.4: Lemma
|
||
4.3 giver at en invertibel matrix vil opfylde udsagn (1) i Lemma 4.4.
|
||
\end_layout
|
||
|
||
\begin_layout Standard
|
||
Det ønskes nu at vise at en matrix, der opfylder udsagnene i Lemma 4.4 er
|
||
invertibel: Det antages, at
|
||
\begin_inset Formula $A$
|
||
\end_inset
|
||
|
||
opfylder udsagnene i Lemma 4.4.
|
||
Ifølge Lemma 4.5 eksisterer der dermed en kvadratisk matrix af samme størrelse
|
||
|
||
\begin_inset Formula $B$
|
||
\end_inset
|
||
|
||
, så
|
||
\begin_inset Formula $A\cdot B={\rm I}_{n}$
|
||
\end_inset
|
||
|
||
.
|
||
Det påstås at
|
||
\begin_inset Formula $B$
|
||
\end_inset
|
||
|
||
opfylder udsagn
|
||
\begin_inset Formula $(2)$
|
||
\end_inset
|
||
|
||
i Lemma
|
||
\begin_inset Formula $4.4$
|
||
\end_inset
|
||
|
||
.
|
||
Lad en vektor
|
||
\begin_inset Formula $\boldsymbol{v}$
|
||
\end_inset
|
||
|
||
med
|
||
\begin_inset Formula $n$
|
||
\end_inset
|
||
|
||
indgange være en løsning til det homogene ligningssystem
|
||
\begin_inset Formula $B\cdot\boldsymbol{x}=\boldsymbol{0}$
|
||
\end_inset
|
||
|
||
.
|
||
Da vil
|
||
\begin_inset Formula
|
||
\begin{align*}
|
||
\boldsymbol{v} & ={\rm I}_{n}\cdot\boldsymbol{v}\\
|
||
& =(A\cdot B)\cdot\boldsymbol{v}\\
|
||
& =A\cdot(B\cdot\boldsymbol{v})\\
|
||
& =A\cdot\boldsymbol{0}\\
|
||
& =\boldsymbol{0}.
|
||
\end{align*}
|
||
|
||
\end_inset
|
||
|
||
Nu kan vi anvende Lemma 4.5 på
|
||
\begin_inset Formula $B$
|
||
\end_inset
|
||
|
||
og konkludere, at der eksisterer endnu en kvadratisk matrix af samme størrelse
|
||
|
||
\begin_inset Formula $C$
|
||
\end_inset
|
||
|
||
, så
|
||
\begin_inset Formula $B\cdot C={\rm I}_{n}$
|
||
\end_inset
|
||
|
||
.
|
||
\end_layout
|
||
|
||
\begin_layout Standard
|
||
Det ønskes nu at vise at
|
||
\begin_inset Formula $C=A$
|
||
\end_inset
|
||
|
||
, hvilket giver at
|
||
\begin_inset Formula $B$
|
||
\end_inset
|
||
|
||
er en invers til
|
||
\begin_inset Formula $A$
|
||
\end_inset
|
||
|
||
.
|
||
Dette vises ved
|
||
\begin_inset Formula
|
||
\begin{align*}
|
||
A & =A\cdot{\rm I}_{n}\\
|
||
& =A\cdot(B\cdot C)\\
|
||
& =(A\cdot B)\cdot C\\
|
||
& ={\rm I}_{n}\cdot C\\
|
||
& =C.
|
||
\end{align*}
|
||
|
||
\end_inset
|
||
|
||
|
||
\end_layout
|
||
|
||
\begin_layout Standard
|
||
Beviset er nu afsluttet.
|
||
\end_layout
|
||
|
||
\begin_layout Standard
|
||
\begin_inset Newpage newpage
|
||
\end_inset
|
||
|
||
|
||
\end_layout
|
||
|
||
\begin_layout Section
|
||
Vektorrum, underrum og dimension
|
||
\end_layout
|
||
|
||
\begin_layout Subsection
|
||
Definition 5.1 (Vektorrum)
|
||
\end_layout
|
||
|
||
\begin_layout Standard
|
||
En mængde
|
||
\begin_inset Formula $V$
|
||
\end_inset
|
||
|
||
samt to afbildninger
|
||
\begin_inset Formula $\mathcal{A}$
|
||
\end_inset
|
||
|
||
og
|
||
\begin_inset Formula $\mathcal{S}$
|
||
\end_inset
|
||
|
||
, der opfylder identiteterne
|
||
\end_layout
|
||
|
||
\begin_layout Enumerate
|
||
Den
|
||
\emph on
|
||
kommutative
|
||
\emph default
|
||
lov
|
||
\end_layout
|
||
|
||
\begin_layout Enumerate
|
||
Den
|
||
\emph on
|
||
associative
|
||
\emph default
|
||
lov
|
||
\end_layout
|
||
|
||
\begin_layout Enumerate
|
||
Eksistens af
|
||
\emph on
|
||
neutralelement
|
||
\end_layout
|
||
|
||
\begin_layout Enumerate
|
||
Eksistens af
|
||
\emph on
|
||
inverse
|
||
\emph default
|
||
elementer
|
||
\end_layout
|
||
|
||
\begin_layout Enumerate
|
||
Distributiv lov 1
|
||
\end_layout
|
||
|
||
\begin_layout Enumerate
|
||
Distributiv lov 2
|
||
\end_layout
|
||
|
||
\begin_layout Enumerate
|
||
Associativitet for skalarmultiplikation (
|
||
\begin_inset Formula $\alpha\cdot(\beta\cdot\boldsymbol{u})=(\alpha\beta)\cdot\boldsymbol{u}$
|
||
\end_inset
|
||
|
||
)
|
||
\end_layout
|
||
|
||
\begin_layout Subsection
|
||
Definition 5.7 (Underrum)
|
||
\end_layout
|
||
|
||
\begin_layout Standard
|
||
Et underrum af et vektorrum
|
||
\begin_inset Formula $V$
|
||
\end_inset
|
||
|
||
er
|
||
\emph on
|
||
en delmængde
|
||
\emph default
|
||
|
||
\begin_inset Formula $S$
|
||
\end_inset
|
||
|
||
af vektorrummet
|
||
\begin_inset Formula $V$
|
||
\end_inset
|
||
|
||
, der opfylder følgende betingelser:
|
||
\end_layout
|
||
|
||
\begin_layout Enumerate
|
||
\begin_inset Formula $\boldsymbol{0}\in S$
|
||
\end_inset
|
||
|
||
|
||
\end_layout
|
||
|
||
\begin_layout Enumerate
|
||
\begin_inset Formula $\forall\boldsymbol{u},\boldsymbol{v}\in S:\quad\boldsymbol{u}+\boldsymbol{v}\in S$
|
||
\end_inset
|
||
|
||
|
||
\end_layout
|
||
|
||
\begin_layout Enumerate
|
||
\begin_inset Formula $\forall\boldsymbol{u}\in S,\:\alpha\in\mathbb{F}:\quad\alpha\cdot\boldsymbol{u}\in S$
|
||
\end_inset
|
||
|
||
|
||
\end_layout
|
||
|
||
\begin_layout Standard
|
||
Punkt 2 og 3 kaldes
|
||
\emph on
|
||
stabilitet overfor addition
|
||
\emph default
|
||
hhv.
|
||
|
||
\emph on
|
||
multiplikation
|
||
\emph default
|
||
|
||
\end_layout
|
||
|
||
\begin_layout Subsection
|
||
Definition 5.9 (Linearkombination)
|
||
\end_layout
|
||
|
||
\begin_layout Standard
|
||
En vektor
|
||
\begin_inset Formula $\boldsymbol{v}$
|
||
\end_inset
|
||
|
||
i vektorrummet
|
||
\begin_inset Formula $V$
|
||
\end_inset
|
||
|
||
kaldes en
|
||
\emph on
|
||
linearkombination
|
||
\emph default
|
||
af
|
||
\begin_inset Formula $\boldsymbol{v}_{1},\boldsymbol{v}_{2},\dots,\boldsymbol{v}_{n}$
|
||
\end_inset
|
||
|
||
, hvis der eksisterer skalarer
|
||
\begin_inset Formula $\alpha_{1},\alpha_{2},\dots,\alpha_{n}\in\mathbb{F}$
|
||
\end_inset
|
||
|
||
, så
|
||
\begin_inset Formula
|
||
\[
|
||
\boldsymbol{v}=\alpha_{1}\cdot\boldsymbol{v}_{1}+\alpha_{2}\cdot\boldsymbol{v}_{2}+\cdots+\alpha_{n}\cdot\boldsymbol{v}_{n}
|
||
\]
|
||
|
||
\end_inset
|
||
|
||
og
|
||
\begin_inset Formula $\boldsymbol{v}\in V$
|
||
\end_inset
|
||
|
||
.
|
||
Dette kan oplagt også noteres som
|
||
\begin_inset Formula $\boldsymbol{v=\sum_{i=1}^{n}}\alpha_{i}\cdot\boldsymbol{v}_{i}$
|
||
\end_inset
|
||
|
||
.
|
||
\end_layout
|
||
|
||
\begin_layout Subsection
|
||
Definition 5.11 (Span)
|
||
\end_layout
|
||
|
||
\begin_layout Standard
|
||
Mængden af alle linearkombination af
|
||
\begin_inset Formula $\boldsymbol{v}_{1},\boldsymbol{v}_{2},\dots,\boldsymbol{v}_{n}$
|
||
\end_inset
|
||
|
||
kaldes for
|
||
\emph on
|
||
spannet
|
||
\emph default
|
||
af elementerne
|
||
\begin_inset Formula $\boldsymbol{v}_{1},\boldsymbol{v}_{2},\dots,\boldsymbol{v}_{n}$
|
||
\end_inset
|
||
|
||
og betegnes med
|
||
\begin_inset Formula
|
||
\[
|
||
{\rm Span}(\boldsymbol{v}_{1},\boldsymbol{v}_{2},\dots,\boldsymbol{v}_{n})
|
||
\]
|
||
|
||
\end_inset
|
||
|
||
Se også Lemma 5.12 for et interessant resultat.
|
||
\end_layout
|
||
|
||
\begin_layout Subsection
|
||
Definition 5.14 (Dimension)
|
||
\end_layout
|
||
|
||
\begin_layout Standard
|
||
\begin_inset Formula $V$
|
||
\end_inset
|
||
|
||
er et
|
||
\begin_inset Formula $\mathbb{F}$
|
||
\end_inset
|
||
|
||
-vektorrum.
|
||
Vi definerer da:
|
||
\end_layout
|
||
|
||
\begin_layout Itemize
|
||
Hvis
|
||
\begin_inset Formula $V=\{\boldsymbol{0}\}$
|
||
\end_inset
|
||
|
||
har
|
||
\begin_inset Formula $V$
|
||
\end_inset
|
||
|
||
dimension
|
||
\begin_inset Formula $0$
|
||
\end_inset
|
||
|
||
|
||
\end_layout
|
||
|
||
\begin_layout Itemize
|
||
Hvis
|
||
\begin_inset Formula $V$
|
||
\end_inset
|
||
|
||
er forskellig fra
|
||
\begin_inset Formula $\{\boldsymbol{0}\}$
|
||
\end_inset
|
||
|
||
og kan udspændes af
|
||
\begin_inset Formula $n$
|
||
\end_inset
|
||
|
||
elementer, men ikke af færre end
|
||
\begin_inset Formula $n$
|
||
\end_inset
|
||
|
||
elementer, så siger vi, at dimensionen af
|
||
\begin_inset Formula $V$
|
||
\end_inset
|
||
|
||
er lig
|
||
\begin_inset Formula $n$
|
||
\end_inset
|
||
|
||
.
|
||
\end_layout
|
||
|
||
\begin_layout Itemize
|
||
Hivs
|
||
\begin_inset Formula $V$
|
||
\end_inset
|
||
|
||
ikke kan udspændes af en endelig mængde, så siges
|
||
\begin_inset Formula $V$
|
||
\end_inset
|
||
|
||
at have uendelig dimension.
|
||
\end_layout
|
||
|
||
\begin_layout Standard
|
||
Dimensionen af
|
||
\begin_inset Formula $V$
|
||
\end_inset
|
||
|
||
betegnes med
|
||
\begin_inset Formula $\dim(V)$
|
||
\end_inset
|
||
|
||
.
|
||
Uendelig dimension beskrives ved
|
||
\begin_inset Formula $\dim(V)=\infty$
|
||
\end_inset
|
||
|
||
.
|
||
\end_layout
|
||
|
||
\begin_layout Subsection
|
||
Formel 5.25 (Matrixprodukter og linearkombinationer)
|
||
\end_layout
|
||
|
||
\begin_layout Standard
|
||
\begin_inset Quotes ald
|
||
\end_inset
|
||
|
||
Ekstrem vigtig sammenhæng
|
||
\begin_inset Quotes ard
|
||
\end_inset
|
||
|
||
mellem linearkombinationer og matrixproduktet.
|
||
\end_layout
|
||
|
||
\begin_layout Standard
|
||
\begin_inset Formula $A=(a_{ij})\in{\rm Mat}_{m,n}(\mathbb{F})$
|
||
\end_inset
|
||
|
||
.
|
||
Da vil
|
||
\begin_inset Formula
|
||
\begin{align*}
|
||
A\cdot\begin{pmatrix}\alpha_{1}\\
|
||
\alpha_{2}\\
|
||
\vdots\\
|
||
\alpha_{n}
|
||
\end{pmatrix} & =\begin{pmatrix}a_{11}\alpha_{1}+a_{12}\alpha_{2}+\cdots+a_{1n}\alpha_{n}\\
|
||
a_{21}\alpha_{1}+a_{22}\alpha_{2}+\cdots+a_{2n}\alpha_{n}\\
|
||
\vdots\\
|
||
a_{m1}\alpha_{1}+a_{m2}\alpha_{2}+\cdots+a_{mn}\alpha_{n}
|
||
\end{pmatrix}\\
|
||
& =\alpha_{1}\begin{pmatrix}a_{11}\\
|
||
a_{21}\\
|
||
\vdots\\
|
||
a_{m1}
|
||
\end{pmatrix}+\alpha_{2}\begin{pmatrix}a_{12}\\
|
||
a_{22}\\
|
||
\vdots\\
|
||
a_{m2}
|
||
\end{pmatrix}+\cdots+\alpha_{n}\begin{pmatrix}a_{1n}\\
|
||
a_{2n}\\
|
||
\vdots\\
|
||
a_{mn}
|
||
\end{pmatrix}\\
|
||
& =\alpha_{1}\cdot\boldsymbol{a}_{1}+\alpha_{2}\cdot\boldsymbol{a}_{2}+\cdots+\alpha_{n}\cdot\boldsymbol{a}_{n}
|
||
\end{align*}
|
||
|
||
\end_inset
|
||
|
||
Dette giver også at
|
||
\begin_inset Formula
|
||
\[
|
||
{\rm Span}(\boldsymbol{a_{1},a_{2},\dots,a_{n}})=\{A\cdot\boldsymbol{v}\mid\boldsymbol{v}\in\mathbb{F}^{n}\}.
|
||
\]
|
||
|
||
\end_inset
|
||
|
||
|
||
\end_layout
|
||
|
||
\begin_layout Subsection
|
||
Proposition 5.17 (Vektorrum)
|
||
\end_layout
|
||
|
||
\begin_layout Standard
|
||
Dimensionen af
|
||
\begin_inset Formula $\mathbb{F}^{n}$
|
||
\end_inset
|
||
|
||
er
|
||
\begin_inset Formula $n$
|
||
\end_inset
|
||
|
||
|
||
\end_layout
|
||
|
||
\begin_layout Paragraph
|
||
Bevis
|
||
\end_layout
|
||
|
||
\begin_layout Standard
|
||
Det er allerede bemærket at
|
||
\begin_inset Formula $\mathbb{F}^{n}$
|
||
\end_inset
|
||
|
||
kan udspændes af
|
||
\begin_inset Formula $n$
|
||
\end_inset
|
||
|
||
elementer
|
||
\begin_inset Formula $(\boldsymbol{e}_{1},\boldsymbol{e}_{2},\dots,\boldsymbol{e}_{n})$
|
||
\end_inset
|
||
|
||
.
|
||
Det ønskes derfor kun vist at
|
||
\begin_inset Formula $\mathbb{F}^{n}$
|
||
\end_inset
|
||
|
||
ikke kan udspændes af
|
||
\emph on
|
||
færre end
|
||
\begin_inset Formula $n$
|
||
\end_inset
|
||
|
||
elementer.
|
||
\end_layout
|
||
|
||
\begin_layout Standard
|
||
Det antages at
|
||
\begin_inset Formula $\mathbb{F}^{n}$
|
||
\end_inset
|
||
|
||
udspændes af
|
||
\begin_inset Formula $m$
|
||
\end_inset
|
||
|
||
elementer
|
||
\begin_inset Formula $\boldsymbol{a_{1},a_{2},\dots,a_{m}}\in\mathbb{F}^{n}$
|
||
\end_inset
|
||
|
||
, dvs.
|
||
\begin_inset Formula
|
||
\[
|
||
{\rm Span}(\boldsymbol{a_{1},a_{2},\dots,a_{m}})=\mathbb{F}^{n}
|
||
\]
|
||
|
||
\end_inset
|
||
|
||
|
||
\end_layout
|
||
|
||
\begin_layout Standard
|
||
Lad nu
|
||
\begin_inset Formula $A\in{\rm Mat}_{n,m}(\mathbb{F})$
|
||
\end_inset
|
||
|
||
beskrive matricen, hvis
|
||
\begin_inset Formula $i$
|
||
\end_inset
|
||
|
||
'te søjle er givet ved
|
||
\begin_inset Formula $\boldsymbol{a}_{i}$
|
||
\end_inset
|
||
|
||
.
|
||
Da vil ligningssystemet
|
||
\begin_inset Formula $A\cdot\boldsymbol{x}=\boldsymbol{b}$
|
||
\end_inset
|
||
|
||
have en løsning for ethvert
|
||
\begin_inset Formula $\boldsymbol{b}\in\mathbb{F}^{n}$
|
||
\end_inset
|
||
|
||
, grundet Lemma 5.16 samholdt med ovenstående.
|
||
\end_layout
|
||
|
||
\begin_layout Standard
|
||
Vi lader nu
|
||
\begin_inset Formula $\boldsymbol{e}_{i}\in\mathbb{F}^{n}$
|
||
\end_inset
|
||
|
||
betegne den
|
||
\begin_inset Formula $i$
|
||
\end_inset
|
||
|
||
'te søjle i
|
||
\begin_inset Formula $I_{n}$
|
||
\end_inset
|
||
|
||
og
|
||
\begin_inset Formula $\boldsymbol{b}_{i}\in\mathbb{F}^{m}$
|
||
\end_inset
|
||
|
||
for
|
||
\begin_inset Formula $i=[1,n]$
|
||
\end_inset
|
||
|
||
være en løsning til ligningssystemet
|
||
\begin_inset Formula $A\cdot\boldsymbol{x}=\boldsymbol{e}_{i}$
|
||
\end_inset
|
||
|
||
.
|
||
Lad endvidere
|
||
\begin_inset Formula $B\in{\rm Mat}_{m,n}(\mathbb{F})$
|
||
\end_inset
|
||
|
||
betegne matricen hvis
|
||
\begin_inset Formula $i$
|
||
\end_inset
|
||
|
||
'te søjle er
|
||
\begin_inset Formula $\boldsymbol{b}_{i}$
|
||
\end_inset
|
||
|
||
for
|
||
\begin_inset Formula $i=[1,n]$
|
||
\end_inset
|
||
|
||
.
|
||
Da gælder der at
|
||
\begin_inset Formula
|
||
\begin{align*}
|
||
A\cdot B & =\left(A\cdot\boldsymbol{b}_{1}\mid A\cdot\boldsymbol{b}_{2}\mid\cdots\mid A\cdot\boldsymbol{b}_{n}\right)\\
|
||
& =\left(\boldsymbol{e}_{1}\mid\boldsymbol{e}_{2}\mid\cdots\mid\boldsymbol{e}_{n}\right)\\
|
||
& =I_{n}.
|
||
\end{align*}
|
||
|
||
\end_inset
|
||
|
||
|
||
\end_layout
|
||
|
||
\begin_layout Standard
|
||
Det homogene ligningssystem
|
||
\begin_inset Formula $B\cdot\boldsymbol{x}=\boldsymbol{0}$
|
||
\end_inset
|
||
|
||
har kun har nulvektoren som løsning, da
|
||
\begin_inset Formula $B$
|
||
\end_inset
|
||
|
||
er invertibel samholdt med Lemma 4.4 og 4.6.
|
||
Proposition 1.14 implicerer da at
|
||
\begin_inset Formula $m\geq n$
|
||
\end_inset
|
||
|
||
, hvilket fuldender beviset.
|
||
\end_layout
|
||
|
||
\begin_layout Subsubsection
|
||
Hjælpesætning - Lemma 5.16
|
||
\end_layout
|
||
|
||
\begin_layout Standard
|
||
Et lineært ligningssystem
|
||
\begin_inset Formula $A\cdot\boldsymbol{x}=\boldsymbol{b}$
|
||
\end_inset
|
||
|
||
har en løsning hvis og kun hvis
|
||
\begin_inset Formula $\boldsymbol{b}\in R(A)$
|
||
\end_inset
|
||
|
||
|
||
\end_layout
|
||
|
||
\begin_layout Paragraph
|
||
Bevis
|
||
\end_layout
|
||
|
||
\begin_layout Standard
|
||
Det at
|
||
\begin_inset Formula $\boldsymbol{b}$
|
||
\end_inset
|
||
|
||
er i søjlerummet for
|
||
\begin_inset Formula $A$
|
||
\end_inset
|
||
|
||
betyder at
|
||
\begin_inset Formula $\boldsymbol{b}$
|
||
\end_inset
|
||
|
||
er på formen
|
||
\begin_inset Formula $A\cdot\boldsymbol{v}$
|
||
\end_inset
|
||
|
||
for et passende
|
||
\begin_inset Formula $\boldsymbol{v}\in\mathbb{F}^{n}$
|
||
\end_inset
|
||
|
||
.
|
||
Dette er netop betingelsen for at
|
||
\begin_inset Formula $A\cdot\boldsymbol{x}=\boldsymbol{b}$
|
||
\end_inset
|
||
|
||
har en løsning.
|
||
\end_layout
|
||
|
||
\begin_layout Subsection
|
||
Lemma 5.12 (Hvis tid?)
|
||
\end_layout
|
||
|
||
\begin_layout Standard
|
||
Mængden
|
||
\begin_inset Formula ${\rm Span}(\boldsymbol{v}_{1},\boldsymbol{v}_{2},\dots,\boldsymbol{v}_{n})$
|
||
\end_inset
|
||
|
||
udgør et underrum i
|
||
\begin_inset Formula $V$
|
||
\end_inset
|
||
|
||
indeholdende alle elementerne
|
||
\begin_inset Formula $\boldsymbol{v}_{1},\boldsymbol{v}_{2},\dots,\boldsymbol{v}_{n}$
|
||
\end_inset
|
||
|
||
.
|
||
Ethvert underrum af
|
||
\begin_inset Formula $V$
|
||
\end_inset
|
||
|
||
indeholdende
|
||
\begin_inset Formula $\boldsymbol{v}_{1},\boldsymbol{v}_{2},\dots,\boldsymbol{v}_{n}$
|
||
\end_inset
|
||
|
||
vil indeholde
|
||
\begin_inset Formula ${\rm Span}(\boldsymbol{v}_{1},\boldsymbol{v}_{2},\dots,\boldsymbol{v}_{n})$
|
||
\end_inset
|
||
|
||
som delmængde.
|
||
\end_layout
|
||
|
||
\begin_layout Paragraph
|
||
Meget uformel begrundelse
|
||
\end_layout
|
||
|
||
\begin_layout Standard
|
||
Dette er på grund af spannets og underrummets definition.
|
||
Underrum er stabile overfor netop addition og skalarmultiplikation, hvilket
|
||
er det linearkombinationer benytter sig af.
|
||
\end_layout
|
||
|
||
\begin_layout Subsection
|
||
Noter
|
||
\end_layout
|
||
|
||
\begin_layout Standard
|
||
Skriv måske mere til Lemma 5.12
|
||
\end_layout
|
||
|
||
\begin_layout Standard
|
||
\begin_inset Newpage newpage
|
||
\end_inset
|
||
|
||
|
||
\end_layout
|
||
|
||
\begin_layout Section
|
||
Basis for vektorrum
|
||
\end_layout
|
||
|
||
\begin_layout Subsection
|
||
Definition 7.1 (
|
||
\emph on
|
||
Udspænde
|
||
\emph default
|
||
,
|
||
\emph on
|
||
lineær
|
||
\emph default
|
||
|
||
\emph on
|
||
uafhængighed
|
||
\emph default
|
||
og
|
||
\emph on
|
||
basis
|
||
\emph default
|
||
)
|
||
\end_layout
|
||
|
||
\begin_layout Standard
|
||
For en samling af elementer
|
||
\begin_inset Formula $\mathcal{V}=(\boldsymbol{v}_{1},\boldsymbol{v}_{2},\dots,\boldsymbol{v}_{n})$
|
||
\end_inset
|
||
|
||
i et
|
||
\begin_inset Formula $\mathbb{F}$
|
||
\end_inset
|
||
|
||
-vektorrum
|
||
\begin_inset Formula $V$
|
||
\end_inset
|
||
|
||
defineres:
|
||
\end_layout
|
||
|
||
\begin_layout Itemize
|
||
Udspænding af
|
||
\begin_inset Formula $V$
|
||
\end_inset
|
||
|
||
:
|
||
\begin_inset Formula ${\rm Span}(\boldsymbol{v}_{1},\boldsymbol{v}_{2},\dots,\boldsymbol{v}_{n})=V$
|
||
\end_inset
|
||
|
||
|
||
\end_layout
|
||
|
||
\begin_layout Itemize
|
||
Lineær uafhængighed:
|
||
\begin_inset Formula $\begin{pmatrix}\alpha_{1}\\
|
||
\alpha_{2}\\
|
||
\vdots\\
|
||
\alpha_{n}
|
||
\end{pmatrix}\cdot\begin{pmatrix}\vdots & \vdots & & \vdots\\
|
||
\boldsymbol{v}_{1} & \boldsymbol{v}_{2} & \cdots & \boldsymbol{v}_{n}\\
|
||
\vdots & \vdots & & \vdots
|
||
\end{pmatrix}=\boldsymbol{0}\iff\alpha_{i}=0\:{\rm for}\:i=1,2,\dots,n$
|
||
\end_inset
|
||
|
||
|
||
\end_layout
|
||
|
||
\begin_layout Itemize
|
||
Basis for
|
||
\begin_inset Formula $V$
|
||
\end_inset
|
||
|
||
såfremt
|
||
\begin_inset Formula $\mathcal{V}$
|
||
\end_inset
|
||
|
||
udspænder
|
||
\begin_inset Formula $V$
|
||
\end_inset
|
||
|
||
samt er lineært uafhængig.
|
||
\end_layout
|
||
|
||
\begin_layout Subsection
|
||
Lemma 7.2 (Relation af samlinger til afbildningsbegreber)
|
||
\end_layout
|
||
|
||
\begin_layout Standard
|
||
For en samling af elementer
|
||
\begin_inset Formula $\mathcal{V}=(\boldsymbol{v}_{1},\boldsymbol{v}_{2},\dots,\boldsymbol{v}_{n})$
|
||
\end_inset
|
||
|
||
i et
|
||
\begin_inset Formula $\mathbb{F}$
|
||
\end_inset
|
||
|
||
-vektorrum
|
||
\begin_inset Formula $V$
|
||
\end_inset
|
||
|
||
gælder det at
|
||
\end_layout
|
||
|
||
\begin_layout Enumerate
|
||
\begin_inset Formula $\mathcal{V}$
|
||
\end_inset
|
||
|
||
udspænder
|
||
\begin_inset Formula $V$
|
||
\end_inset
|
||
|
||
hvis og kun hvis
|
||
\begin_inset Formula $L_{\mathcal{V}}$
|
||
\end_inset
|
||
|
||
er surjektiv
|
||
\end_layout
|
||
|
||
\begin_layout Enumerate
|
||
\begin_inset Formula $\mathcal{V}$
|
||
\end_inset
|
||
|
||
er lineært uafhængig hvis og kun hvis
|
||
\begin_inset Formula $L_{\mathcal{V}}$
|
||
\end_inset
|
||
|
||
er injektiv
|
||
\end_layout
|
||
|
||
\begin_layout Enumerate
|
||
\begin_inset Formula $\mathcal{V}$
|
||
\end_inset
|
||
|
||
er en basis for
|
||
\begin_inset Formula $V$
|
||
\end_inset
|
||
|
||
hvis og kun hvis
|
||
\begin_inset Formula $L_{\mathcal{V}}$
|
||
\end_inset
|
||
|
||
er en isomorfi
|
||
\end_layout
|
||
|
||
\begin_layout Standard
|
||
Dette giver endvidere at
|
||
\begin_inset Formula $\mathcal{V}$
|
||
\end_inset
|
||
|
||
er en basis for
|
||
\begin_inset Formula $V$
|
||
\end_inset
|
||
|
||
netop når ethvert element i
|
||
\begin_inset Formula $V$
|
||
\end_inset
|
||
|
||
|
||
\emph on
|
||
på entydig vis
|
||
\emph default
|
||
er en linearkombination af vektorerne i
|
||
\begin_inset Formula $\mathcal{V}$
|
||
\end_inset
|
||
|
||
.
|
||
\end_layout
|
||
|
||
\begin_layout Paragraph
|
||
Bevis
|
||
\end_layout
|
||
|
||
\begin_layout Standard
|
||
(1): Billedet af
|
||
\begin_inset Formula $L_{\mathcal{V}}$
|
||
\end_inset
|
||
|
||
er lig
|
||
\begin_inset Formula ${\rm Span}(\mathcal{V})$
|
||
\end_inset
|
||
|
||
.
|
||
|
||
\begin_inset Formula $L_{\mathcal{V}}$
|
||
\end_inset
|
||
|
||
er surjektiv hvis og kun hvis
|
||
\begin_inset Formula ${\rm Span}(\mathcal{V})=V$
|
||
\end_inset
|
||
|
||
.
|
||
\end_layout
|
||
|
||
\begin_layout Standard
|
||
(2):
|
||
\begin_inset Formula $L_{\mathcal{V}}$
|
||
\end_inset
|
||
|
||
er injektiv hvis og kun hvis at kernen for
|
||
\begin_inset Formula $L_{\mathcal{V}}$
|
||
\end_inset
|
||
|
||
er lig
|
||
\begin_inset Formula $\{\boldsymbol{0}\}$
|
||
\end_inset
|
||
|
||
jf.
|
||
Sætning 6.14.
|
||
Vektoren
|
||
\begin_inset Formula $(\alpha_{1},\alpha_{2},\dots,\alpha_{n})^{T}$
|
||
\end_inset
|
||
|
||
er et element i kernen for
|
||
\begin_inset Formula $L_{\mathcal{V}}$
|
||
\end_inset
|
||
|
||
hvis og kun hvis identiteten
|
||
\begin_inset Formula $\alpha_{1}\cdot\boldsymbol{v}_{1}+\alpha_{2}\cdot\boldsymbol{v}_{2}+\cdots+\alpha_{n}\cdot\boldsymbol{v}_{n}=0$
|
||
\end_inset
|
||
|
||
er opfyldt.
|
||
\end_layout
|
||
|
||
\begin_layout Standard
|
||
For at
|
||
\begin_inset Formula $L_{\mathcal{V}}$
|
||
\end_inset
|
||
|
||
kan være injektiv må identiteten kun være opfyldt hvis alle
|
||
\begin_inset Formula $\alpha_{i}=0$
|
||
\end_inset
|
||
|
||
, hvilket netop er definitionen på, at
|
||
\begin_inset Formula $\mathcal{V}$
|
||
\end_inset
|
||
|
||
er lineært uafhængig.
|
||
\end_layout
|
||
|
||
\begin_layout Standard
|
||
(3): Følger af (1) og (2), da isomorfi kræver samtidig surjektivitet og
|
||
injektivitet ligesom basis kræver samtidig udspænding (surjektivitet) og
|
||
lineær uafhængighed (injektivitet).
|
||
\end_layout
|
||
|
||
\begin_layout Subsection
|
||
Sætning 7.12 (
|
||
\emph on
|
||
Udtynding
|
||
\emph default
|
||
og
|
||
\emph on
|
||
udvidelse
|
||
\emph default
|
||
)
|
||
\end_layout
|
||
|
||
\begin_layout Standard
|
||
\begin_inset Formula $V$
|
||
\end_inset
|
||
|
||
er et vektorrum af endelig dimension
|
||
\begin_inset Formula $n>0$
|
||
\end_inset
|
||
|
||
og
|
||
\begin_inset Formula $\mathcal{W}=(\boldsymbol{v}_{1},\boldsymbol{v}_{2},\dots,\boldsymbol{v}_{m})$
|
||
\end_inset
|
||
|
||
er en samling af
|
||
\begin_inset Formula $m$
|
||
\end_inset
|
||
|
||
elementer i vektorrummet
|
||
\begin_inset Formula $V$
|
||
\end_inset
|
||
|
||
.
|
||
Da er to ting mulige:
|
||
\end_layout
|
||
|
||
\begin_layout Enumerate
|
||
Hvis
|
||
\begin_inset Formula $\mathcal{W}$
|
||
\end_inset
|
||
|
||
udspænder
|
||
\begin_inset Formula $V$
|
||
\end_inset
|
||
|
||
, så er
|
||
\begin_inset Formula $n\leq m$
|
||
\end_inset
|
||
|
||
og
|
||
\begin_inset Formula $\mathcal{W}$
|
||
\end_inset
|
||
|
||
kan
|
||
\emph on
|
||
udtyndes
|
||
\emph default
|
||
til en basis for
|
||
\begin_inset Formula $V$
|
||
\end_inset
|
||
|
||
.
|
||
Det vil sige at nogle af vektorerne i
|
||
\begin_inset Formula $\mathcal{W}$
|
||
\end_inset
|
||
|
||
kan
|
||
\emph on
|
||
fjernes
|
||
\emph default
|
||
for at gøre
|
||
\begin_inset Formula $\mathcal{W}$
|
||
\end_inset
|
||
|
||
til en basis for
|
||
\begin_inset Formula $V$
|
||
\end_inset
|
||
|
||
.
|
||
\end_layout
|
||
|
||
\begin_layout Enumerate
|
||
Hvis
|
||
\begin_inset Formula $\mathcal{W}$
|
||
\end_inset
|
||
|
||
er lineært uafhængig, så er
|
||
\begin_inset Formula $m\leq n$
|
||
\end_inset
|
||
|
||
og
|
||
\begin_inset Formula $\mathcal{W}$
|
||
\end_inset
|
||
|
||
kan
|
||
\emph on
|
||
ud
|
||
\emph default
|
||
koordinattransformationsmatricer
|
||
\emph on
|
||
vides
|
||
\emph default
|
||
til en basis for
|
||
\begin_inset Formula $V$
|
||
\end_inset
|
||
|
||
.
|
||
Det vil sige at der kan
|
||
\emph on
|
||
tilføjes
|
||
\emph default
|
||
vektorerne fra
|
||
\begin_inset Formula $V$
|
||
\end_inset
|
||
|
||
til
|
||
\begin_inset Formula $\mathcal{W}$
|
||
\end_inset
|
||
|
||
for at gøre
|
||
\begin_inset Formula $\mathcal{W}$
|
||
\end_inset
|
||
|
||
til en basis for
|
||
\begin_inset Formula $V$
|
||
\end_inset
|
||
|
||
.
|
||
\end_layout
|
||
|
||
\begin_layout Paragraph
|
||
Bevis
|
||
\end_layout
|
||
|
||
\begin_layout Standard
|
||
Beviset foregår i to dele.
|
||
Først vises udtynding og derefter udvidelse.
|
||
\end_layout
|
||
|
||
\begin_layout Subparagraph
|
||
(1)
|
||
\end_layout
|
||
|
||
\begin_layout Standard
|
||
Der argumenteres genmem induktion i
|
||
\begin_inset Formula $m>0$
|
||
\end_inset
|
||
|
||
.
|
||
Hvis
|
||
\begin_inset Formula $m=1$
|
||
\end_inset
|
||
|
||
, så vil
|
||
\begin_inset Formula $\mathcal{W}=(\boldsymbol{v}_{1})$
|
||
\end_inset
|
||
|
||
pr.
|
||
antagelse udspænde
|
||
\begin_inset Formula $V,$
|
||
\end_inset
|
||
|
||
og da
|
||
\begin_inset Formula $V$
|
||
\end_inset
|
||
|
||
ikke er nulrummet (da
|
||
\begin_inset Formula $n>0$
|
||
\end_inset
|
||
|
||
) vil
|
||
\begin_inset Formula $\mathcal{W}$
|
||
\end_inset
|
||
|
||
være lineært uafhængig (jf.
|
||
Eks 7.6(A)).
|
||
Derfor vil
|
||
\begin_inset Formula $\mathcal{W}$
|
||
\end_inset
|
||
|
||
i dette tilfælde være en basis for
|
||
\begin_inset Formula $V$
|
||
\end_inset
|
||
|
||
.
|
||
Proposition
|
||
\begin_inset Formula $7.8$
|
||
\end_inset
|
||
|
||
giver at
|
||
\begin_inset Formula $n$
|
||
\end_inset
|
||
|
||
derved er lig
|
||
\begin_inset Formula $1$
|
||
\end_inset
|
||
|
||
.
|
||
Derfor kan det anvendes at
|
||
\begin_inset Formula $\mathcal{V}=\mathcal{W}$
|
||
\end_inset
|
||
|
||
.
|
||
\end_layout
|
||
|
||
\begin_layout Standard
|
||
Det antages nu at
|
||
\begin_inset Formula $m>1$
|
||
\end_inset
|
||
|
||
og at udsagnet er vist i tilfældet
|
||
\begin_inset Formula $m-1$
|
||
\end_inset
|
||
|
||
.
|
||
\end_layout
|
||
|
||
\begin_layout Standard
|
||
Hvis
|
||
\begin_inset Formula $\mathcal{W}$
|
||
\end_inset
|
||
|
||
er lineært
|
||
\emph on
|
||
uafhængig
|
||
\emph default
|
||
, så er
|
||
\begin_inset Formula $W$
|
||
\end_inset
|
||
|
||
en basis og dermed er
|
||
\begin_inset Formula $n=m$
|
||
\end_inset
|
||
|
||
ifølge Proposition
|
||
\begin_inset Formula $7.8$
|
||
\end_inset
|
||
|
||
.
|
||
\end_layout
|
||
|
||
\begin_layout Standard
|
||
Hvis
|
||
\begin_inset Formula $\mathcal{W}$
|
||
\end_inset
|
||
|
||
er lineært
|
||
\emph on
|
||
afhængig
|
||
\emph default
|
||
, så eksisterer der jf.
|
||
Lemma 7.7(1) et
|
||
\begin_inset Formula $i$
|
||
\end_inset
|
||
|
||
,
|
||
\begin_inset Formula $1\leq i\leq m$
|
||
\end_inset
|
||
|
||
, så kan en ny samling
|
||
\begin_inset Formula $\mathcal{W}^{\prime}$
|
||
\end_inset
|
||
|
||
skabes ud fra
|
||
\begin_inset Formula $\mathcal{W}$
|
||
\end_inset
|
||
|
||
ved fjernelse af vektoren
|
||
\begin_inset Formula $\boldsymbol{v}_{i}$
|
||
\end_inset
|
||
|
||
ift.
|
||
|
||
\begin_inset Formula $\mathcal{W}$
|
||
\end_inset
|
||
|
||
således at
|
||
\begin_inset Formula $\mathcal{W}^{\prime}$
|
||
\end_inset
|
||
|
||
udspænder
|
||
\begin_inset Formula $V$
|
||
\end_inset
|
||
|
||
.
|
||
\end_layout
|
||
|
||
\begin_layout Standard
|
||
Pr.
|
||
induktion kan det nye
|
||
\begin_inset Formula $\mathcal{W}^{\prime}$
|
||
\end_inset
|
||
|
||
udtyndes til en basis for
|
||
\begin_inset Formula $V$
|
||
\end_inset
|
||
|
||
, og denne basis vil også være en udtynding af
|
||
\begin_inset Formula $\mathcal{W}$
|
||
\end_inset
|
||
|
||
.
|
||
\end_layout
|
||
|
||
\begin_layout Subparagraph
|
||
(2)
|
||
\end_layout
|
||
|
||
\begin_layout Standard
|
||
At
|
||
\begin_inset Formula $m\leq n$
|
||
\end_inset
|
||
|
||
følger af Lemma 7.10.
|
||
\end_layout
|
||
|
||
\begin_layout Standard
|
||
Der argumenteres ved induktion i tallet
|
||
\begin_inset Formula $n-m\geq0$
|
||
\end_inset
|
||
|
||
.
|
||
\end_layout
|
||
|
||
\begin_layout Standard
|
||
Hvis
|
||
\begin_inset Formula $n-m=0$
|
||
\end_inset
|
||
|
||
, så er
|
||
\begin_inset Formula $\mathcal{W}$
|
||
\end_inset
|
||
|
||
en basis for
|
||
\begin_inset Formula $V$
|
||
\end_inset
|
||
|
||
jf.
|
||
Proposition 7.11.
|
||
\end_layout
|
||
|
||
\begin_layout Standard
|
||
Det antages nu at
|
||
\begin_inset Formula $n-m>0$
|
||
\end_inset
|
||
|
||
og at udsagnet er vist i tilfældet
|
||
\begin_inset Formula $(n-m)-1$
|
||
\end_inset
|
||
|
||
.
|
||
\end_layout
|
||
|
||
\begin_layout Standard
|
||
Da
|
||
\begin_inset Formula $m\neq n$
|
||
\end_inset
|
||
|
||
er
|
||
\begin_inset Formula $\mathcal{W}$
|
||
\end_inset
|
||
|
||
ikke en basis for
|
||
\begin_inset Formula $V$
|
||
\end_inset
|
||
|
||
jf.
|
||
Proposition
|
||
\begin_inset Formula $7.8$
|
||
\end_inset
|
||
|
||
(størrelse af basis skal være lig dimension af rum).
|
||
|
||
\begin_inset Formula $\mathcal{W}$
|
||
\end_inset
|
||
|
||
kan da ikke udspænde
|
||
\begin_inset Formula $V$
|
||
\end_inset
|
||
|
||
.
|
||
Det må derfor være muligt at vælge et element
|
||
\begin_inset Formula $\boldsymbol{v}^{\prime}$
|
||
\end_inset
|
||
|
||
i
|
||
\begin_inset Formula $V$
|
||
\end_inset
|
||
|
||
som ikke er indeholdet i
|
||
\begin_inset Formula ${\rm Span}(\mathcal{W})$
|
||
\end_inset
|
||
|
||
.
|
||
Pr.
|
||
Lemma 7.7(2) vil
|
||
\begin_inset Formula $\mathcal{W}^{\prime}=\mathcal{W}+\boldsymbol{v}^{\prime}$
|
||
\end_inset
|
||
|
||
være lineært uafhængig.
|
||
\end_layout
|
||
|
||
\begin_layout Standard
|
||
Pr.
|
||
induktion så kan
|
||
\begin_inset Formula $\mathcal{W}^{\prime}$
|
||
\end_inset
|
||
|
||
nu udvides til en basis for
|
||
\begin_inset Formula $V$
|
||
\end_inset
|
||
|
||
.
|
||
En sådan udvidelse vil samtidig være en udvidelse af det oprindelige
|
||
\begin_inset Formula $\mathcal{W}$
|
||
\end_inset
|
||
|
||
|
||
\end_layout
|
||
|
||
\begin_layout Subsection
|
||
Noter
|
||
\end_layout
|
||
|
||
\begin_layout Standard
|
||
Overvej at droppe Lemma 7.2 fra dispositionen.
|
||
\end_layout
|
||
|
||
\begin_layout Standard
|
||
\begin_inset Newpage newpage
|
||
\end_inset
|
||
|
||
|
||
\end_layout
|
||
|
||
\begin_layout Section
|
||
Matrixrepræsentationer
|
||
\end_layout
|
||
|
||
\begin_layout Subsection
|
||
Definition 8.3 (
|
||
\emph on
|
||
Koordinatvektor
|
||
\emph default
|
||
)
|
||
\end_layout
|
||
|
||
\begin_layout Standard
|
||
\begin_inset Formula $\mathcal{V}=(\boldsymbol{v}_{1},\boldsymbol{v}_{2},\dots,\boldsymbol{v}_{n})$
|
||
\end_inset
|
||
|
||
er en basis for et
|
||
\begin_inset Formula $\mathbb{F}$
|
||
\end_inset
|
||
|
||
-vektorrum
|
||
\begin_inset Formula $V$
|
||
\end_inset
|
||
|
||
.
|
||
|
||
\emph on
|
||
Koordinatvektoren
|
||
\emph default
|
||
for et element
|
||
\begin_inset Formula $\boldsymbol{v}\in V$
|
||
\end_inset
|
||
|
||
mht.
|
||
basen
|
||
\begin_inset Formula $\mathcal{V}$
|
||
\end_inset
|
||
|
||
menes elementet
|
||
\begin_inset Formula $L_{\mathcal{V}}^{-1}(\boldsymbol{v})\in\mathbb{F}^{n}$
|
||
\end_inset
|
||
|
||
.
|
||
Koordinatvektoren kan også betegnes med
|
||
\begin_inset Formula $\left[\boldsymbol{v}\right]_{\mathcal{V}}$
|
||
\end_inset
|
||
|
||
|
||
\end_layout
|
||
|
||
\begin_layout Standard
|
||
Koordinatvektoren er den vektor
|
||
\begin_inset Formula
|
||
\[
|
||
\begin{pmatrix}\alpha_{1}\\
|
||
\alpha_{2}\\
|
||
\vdots\\
|
||
\alpha_{n}
|
||
\end{pmatrix}\in\mathbb{F}^{n}
|
||
\]
|
||
|
||
\end_inset
|
||
|
||
som opfylder relationen
|
||
\begin_inset Formula
|
||
\[
|
||
\boldsymbol{v}=\alpha_{1}\cdot\boldsymbol{v}_{1}+\alpha_{2}\cdot\boldsymbol{v}_{2}+\cdots+\alpha_{n}\cdot\boldsymbol{v}_{n}.
|
||
\]
|
||
|
||
\end_inset
|
||
|
||
|
||
\end_layout
|
||
|
||
\begin_layout Subsection
|
||
Definition 8.6 (
|
||
\emph on
|
||
Koordinattransformationsmatricen
|
||
\emph default
|
||
)
|
||
\end_layout
|
||
|
||
\begin_layout Standard
|
||
Lad
|
||
\begin_inset Formula $\mathcal{V}=(\boldsymbol{v}_{1},\boldsymbol{v}_{2},\dots,\boldsymbol{v}_{n})$
|
||
\end_inset
|
||
|
||
og
|
||
\begin_inset Formula $\mathcal{W}=(\boldsymbol{w}_{1},\boldsymbol{w}_{2},\dots,\boldsymbol{w}_{n})$
|
||
\end_inset
|
||
|
||
være baser for det samme
|
||
\begin_inset Formula $\mathbb{F}$
|
||
\end_inset
|
||
|
||
-vektorrum
|
||
\begin_inset Formula $V$
|
||
\end_inset
|
||
|
||
.
|
||
|
||
\emph on
|
||
Koordinattransformationsmatricen for overgangen fra
|
||
\begin_inset Formula $\mathcal{W}$
|
||
\end_inset
|
||
|
||
-basen til
|
||
\begin_inset Formula $\mathcal{V}$
|
||
\end_inset
|
||
|
||
-basen defineres som matricen
|
||
\begin_inset Formula
|
||
\[
|
||
_{\underset{til}{\underbrace{\mathcal{V}}}}\left[\boxempty\right]_{\underset{fra}{\underbrace{\mathcal{W}}}}=\begin{pmatrix}\vline & \vline & & \vline\\
|
||
\left[\boldsymbol{w}_{1}\right]_{\mathcal{V}} & \left[\boldsymbol{w}_{2}\right]_{\mathcal{V}} & \cdots & \left[\boldsymbol{w}_{n}\right]_{\mathcal{V}}\\
|
||
\vline & \vline & & \vline
|
||
\end{pmatrix}\in{\rm Mat_{n}(\mathbb{F})}
|
||
\]
|
||
|
||
\end_inset
|
||
|
||
|
||
\end_layout
|
||
|
||
\begin_layout Subsection
|
||
Definition 8.9 (
|
||
\emph on
|
||
Matrixrepræsentation
|
||
\emph default
|
||
)
|
||
\end_layout
|
||
|
||
\begin_layout Standard
|
||
Lad
|
||
\begin_inset Formula $L:\:W\rightarrow V$
|
||
\end_inset
|
||
|
||
betegne en lineær afbildning mellem
|
||
\begin_inset Formula $\mathbb{F}$
|
||
\end_inset
|
||
|
||
-vektorrum
|
||
\begin_inset Formula $W$
|
||
\end_inset
|
||
|
||
og
|
||
\begin_inset Formula $V$
|
||
\end_inset
|
||
|
||
med baser hhv.
|
||
|
||
\begin_inset Formula $\mathcal{W}=(\boldsymbol{w}_{1},\boldsymbol{w}_{2},\dots,\boldsymbol{w}_{n})$
|
||
\end_inset
|
||
|
||
og
|
||
\begin_inset Formula $\mathcal{V}=(\boldsymbol{v}_{1},\boldsymbol{v}_{2},\dots,\boldsymbol{v}_{n})$
|
||
\end_inset
|
||
|
||
.
|
||
|
||
\emph on
|
||
Matrixrepræsentationen
|
||
\emph default
|
||
for
|
||
\begin_inset Formula $L$
|
||
\end_inset
|
||
|
||
mht.
|
||
til baserne
|
||
\begin_inset Formula $\mathcal{W}$
|
||
\end_inset
|
||
|
||
og
|
||
\begin_inset Formula $\mathcal{V}$
|
||
\end_inset
|
||
|
||
defineres da som matricen
|
||
\end_layout
|
||
|
||
\begin_layout Standard
|
||
|
||
\emph on
|
||
\begin_inset Formula
|
||
\[
|
||
_{\underset{til}{\underbrace{\mathcal{V}}}}\left[L\right]_{\underset{fra}{\underbrace{\mathcal{W}}}}=\begin{pmatrix}\vline & \vline & & \vline\\
|
||
\left[L(\boldsymbol{w}_{1})\right]_{\mathcal{V}} & \left[L(\boldsymbol{w}_{2})\right]_{\mathcal{V}} & \cdots & \left[(\boldsymbol{w}_{n})\right]_{\mathcal{V}}\\
|
||
\vline & \vline & & \vline
|
||
\end{pmatrix}\in{\rm Mat_{n}(\mathbb{F})}
|
||
\]
|
||
|
||
\end_inset
|
||
|
||
|
||
\end_layout
|
||
|
||
\begin_layout Subsection
|
||
Proposition 8.10(1) (Matrixrepræsentationer og koordinatvektorer)
|
||
\end_layout
|
||
|
||
\begin_layout Standard
|
||
Lad
|
||
\begin_inset Formula $L:\:V\rightarrow W$
|
||
\end_inset
|
||
|
||
betegne en lineær afbildning mellem
|
||
\begin_inset Formula $\mathbb{F}-vektorrum$
|
||
\end_inset
|
||
|
||
|
||
\begin_inset Formula $V$
|
||
\end_inset
|
||
|
||
og
|
||
\begin_inset Formula $W$
|
||
\end_inset
|
||
|
||
med baser hhv.
|
||
|
||
\begin_inset Formula $\mathcal{V}$
|
||
\end_inset
|
||
|
||
og
|
||
\begin_inset Formula $\mathcal{W}$
|
||
\end_inset
|
||
|
||
, så gælder:
|
||
\end_layout
|
||
|
||
\begin_layout Standard
|
||
(1)
|
||
\begin_inset Formula
|
||
\[
|
||
\left[L(\boldsymbol{v})\right]_{\mathcal{W}}={}_{\mathcal{W}}\left[L\right]_{\mathcal{V}}\cdot\left[\boldsymbol{v}\right]_{\mathcal{V}}.
|
||
\]
|
||
|
||
\end_inset
|
||
|
||
|
||
\end_layout
|
||
|
||
\begin_layout Standard
|
||
(2) Hvis
|
||
\begin_inset Formula $A\,\in\text{Mat}_{m,n}(\mathbb{F})$
|
||
\end_inset
|
||
|
||
opfylder relationen
|
||
\begin_inset Formula $\left[L(\boldsymbol{v})\right]_{\mathcal{W}}=A\cdot\left[\boldsymbol{v}\right]_{\mathcal{V}}$
|
||
\end_inset
|
||
|
||
for alle
|
||
\begin_inset Formula $\boldsymbol{v}\,\in V$
|
||
\end_inset
|
||
|
||
, så er
|
||
\begin_inset Formula $A=_{\mathcal{W}}\left[L\right]_{\mathcal{V}}$
|
||
\end_inset
|
||
|
||
|
||
\end_layout
|
||
|
||
\begin_layout Standard
|
||
|
||
\series bold
|
||
Bevis:
|
||
\end_layout
|
||
|
||
\begin_layout Standard
|
||
(1)
|
||
\end_layout
|
||
|
||
\begin_layout Standard
|
||
Lad
|
||
\begin_inset Formula $\mathcal{V}$
|
||
\end_inset
|
||
|
||
og
|
||
\begin_inset Formula $\mathcal{W}$
|
||
\end_inset
|
||
|
||
være givet ved hhv.
|
||
|
||
\begin_inset Formula $\mathcal{V}=(\boldsymbol{v_{1}},\boldsymbol{v_{2},\dots,v}_{n})$
|
||
\end_inset
|
||
|
||
og
|
||
\begin_inset Formula $\mathcal{W}=(\boldsymbol{w_{1}},\boldsymbol{w_{2},\dots,w}_{n})$
|
||
\end_inset
|
||
|
||
.
|
||
Eftersom
|
||
\begin_inset Formula $\mathcal{V}$
|
||
\end_inset
|
||
|
||
er en basis for
|
||
\begin_inset Formula $V$
|
||
\end_inset
|
||
|
||
så kan alle elementer
|
||
\begin_inset Formula $\boldsymbol{v}\,\in V$
|
||
\end_inset
|
||
|
||
beskrives som en linearkombination af basen
|
||
\begin_inset Formula $\mathcal{V}$
|
||
\end_inset
|
||
|
||
:
|
||
\begin_inset Formula
|
||
\[
|
||
\boldsymbol{v}=\alpha_{1}\cdot\boldsymbol{v}_{1}+\alpha_{2}\cdot\boldsymbol{v}_{2}+\cdots+\alpha_{n}\cdot\boldsymbol{v}_{n}
|
||
\]
|
||
|
||
\end_inset
|
||
|
||
|
||
\end_layout
|
||
|
||
\begin_layout Standard
|
||
og specielt vil
|
||
\begin_inset Formula
|
||
\[
|
||
L(\boldsymbol{v})=\alpha_{1}\cdot L(\boldsymbol{v})_{1}+\alpha_{2}\cdot L(\boldsymbol{v})_{2}+\cdots+\alpha_{n}\cdot L(\boldsymbol{v})_{n}
|
||
\]
|
||
|
||
\end_inset
|
||
|
||
|
||
\end_layout
|
||
|
||
\begin_layout Standard
|
||
grundet
|
||
\series bold
|
||
Definition 6.1(b)
|
||
\series default
|
||
.
|
||
Ligeledes, grundet egenskaberne ved koordinatvektorer beskrevet i prop
|
||
8.4, så kan følgende konkluderes:
|
||
\end_layout
|
||
|
||
\begin_layout Standard
|
||
\begin_inset Formula
|
||
\[
|
||
[L(\boldsymbol{v})]_{\mathcal{W}}=\alpha_{1}\cdot[L(\boldsymbol{v})_{1}]_{\mathcal{W}}+\alpha_{2}\cdot[L(\boldsymbol{v})_{2}]_{\mathcal{W}}+\cdots+\alpha_{n}\cdot[L(\boldsymbol{v})_{n}]_{\mathcal{W}}
|
||
\]
|
||
|
||
\end_inset
|
||
|
||
|
||
\end_layout
|
||
|
||
\begin_layout Standard
|
||
Hvilket kan opskrives som et produkt jf.
|
||
med formel 5.25
|
||
\begin_inset Formula
|
||
\[
|
||
_{\mathcal{W}}\left[L\right]_{\mathcal{V}}\cdot\begin{pmatrix}\alpha_{1}\\
|
||
\alpha_{2}\\
|
||
\vdots\\
|
||
\alpha_{n}
|
||
\end{pmatrix}={}_{\mathcal{W}}\left[L\right]_{\mathcal{V}}\cdot\left[\boldsymbol{v}\right]_{\mathcal{V}}
|
||
\]
|
||
|
||
\end_inset
|
||
|
||
|
||
\end_layout
|
||
|
||
\begin_layout Standard
|
||
Hvilket viser udsagn (1).
|
||
\end_layout
|
||
|
||
\begin_layout Standard
|
||
(2)
|
||
\end_layout
|
||
|
||
\begin_layout Standard
|
||
Antag at en matrix
|
||
\begin_inset Formula $A\in{\rm Mat}_{m,n}(\mathbb{F})$
|
||
\end_inset
|
||
|
||
opfylder egenskaben beskrevet i (2), så vil der gælde:
|
||
\end_layout
|
||
|
||
\begin_layout Standard
|
||
\begin_inset Formula
|
||
\[
|
||
[L(\boldsymbol{v}_{i})]_{\mathcal{W}}=A\cdot[\boldsymbol{v}_{i}]_{\mathcal{V}}=A\cdot\boldsymbol{e}_{i}\,\,\,\,for\,\,ethvert\,i=1,2,\dots,n
|
||
\]
|
||
|
||
\end_inset
|
||
|
||
|
||
\end_layout
|
||
|
||
\begin_layout Standard
|
||
Hvori højresiden er må være lig den i'te søjle i
|
||
\begin_inset Formula $A$
|
||
\end_inset
|
||
|
||
, men venstresiden er lig den i'te søjle i
|
||
\begin_inset Formula $_{\mathcal{W}}\left[L\right]_{\mathcal{V}}$
|
||
\end_inset
|
||
|
||
og altså må de to være ens, som påstået i udsagn (2).
|
||
\end_layout
|
||
|
||
\begin_layout Subsection
|
||
Lemma 8.19
|
||
\end_layout
|
||
|
||
\begin_layout Standard
|
||
Lad
|
||
\begin_inset Formula $L:\:V\rightarrow W$
|
||
\end_inset
|
||
|
||
betegne en lineær afbildning, og lad
|
||
\begin_inset Formula $\mathcal{V}$
|
||
\end_inset
|
||
|
||
og
|
||
\begin_inset Formula $\mathcal{W}$
|
||
\end_inset
|
||
|
||
betegne baser for hhv.
|
||
|
||
\begin_inset Formula $V$
|
||
\end_inset
|
||
|
||
og
|
||
\begin_inset Formula $W$
|
||
\end_inset
|
||
|
||
.
|
||
Så gælder:
|
||
\end_layout
|
||
|
||
\begin_layout Standard
|
||
(1) Et element
|
||
\begin_inset Formula $\boldsymbol{v}\in V$
|
||
\end_inset
|
||
|
||
tilhører kernen ker(
|
||
\begin_inset Formula $L$
|
||
\end_inset
|
||
|
||
) for
|
||
\begin_inset Formula $L$
|
||
\end_inset
|
||
|
||
hvis og kun hvis den tilsvarende koordinatvektor
|
||
\begin_inset Formula $[\boldsymbol{v}]_{\mathcal{V}}$
|
||
\end_inset
|
||
|
||
er et element i nulrummet
|
||
\begin_inset Formula $N(_{\mathcal{W}}\left[L\right]_{\mathcal{V}})$
|
||
\end_inset
|
||
|
||
for matrixrepræsentationen
|
||
\begin_inset Formula $_{\mathcal{W}}\left[L\right]_{\mathcal{V}}$
|
||
\end_inset
|
||
|
||
.
|
||
|
||
\end_layout
|
||
|
||
\begin_layout Standard
|
||
(2) Et element
|
||
\begin_inset Formula $\boldsymbol{w\in}W$
|
||
\end_inset
|
||
|
||
tilhører billedet af
|
||
\begin_inset Formula $L$
|
||
\end_inset
|
||
|
||
hvis og kun hvis den tilsvarende koordinatvektor
|
||
\begin_inset Formula $[\boldsymbol{w}]_{\mathcal{W}}$
|
||
\end_inset
|
||
|
||
er et element i søjlerummet
|
||
\begin_inset Formula $R(_{\mathcal{W}}\left[L\right]_{\mathcal{V}})$
|
||
\end_inset
|
||
|
||
til matrixrepræsentation
|
||
\begin_inset Formula $_{\mathcal{W}}\left[L\right]_{\mathcal{V}}$
|
||
\end_inset
|
||
|
||
|
||
\end_layout
|
||
|
||
\begin_layout Standard
|
||
|
||
\series bold
|
||
Bevis
|
||
\end_layout
|
||
|
||
\begin_layout Standard
|
||
(1)
|
||
\end_layout
|
||
|
||
\begin_layout Standard
|
||
Idet
|
||
\begin_inset Formula $L_{\mathcal{W}}$
|
||
\end_inset
|
||
|
||
er en isomorfi (der findes en invers funktion, matrixrepræsentationens
|
||
inverse), så er
|
||
\begin_inset Formula $\boldsymbol{v}\in V$
|
||
\end_inset
|
||
|
||
et element i ker(
|
||
\begin_inset Formula $L$
|
||
\end_inset
|
||
|
||
) hvis og kun hvis
|
||
\end_layout
|
||
|
||
\begin_layout Standard
|
||
\begin_inset Formula
|
||
\[
|
||
L_{\mathcal{W}}^{-1}(L(\boldsymbol{v}))=0
|
||
\]
|
||
|
||
\end_inset
|
||
|
||
Venstresiden af dette er dog lig
|
||
\begin_inset Formula $[L(\boldsymbol{v})]_{\mathcal{W}}$
|
||
\end_inset
|
||
|
||
hvilket kan skrives som:
|
||
\end_layout
|
||
|
||
\begin_layout Standard
|
||
\begin_inset Formula
|
||
\[
|
||
[L(\boldsymbol{v})]_{\mathcal{W}}={}_{\mathcal{W}}\left[L\right]_{\mathcal{V}}\cdot\left[\boldsymbol{v}\right]_{\mathcal{V}}
|
||
\]
|
||
|
||
\end_inset
|
||
|
||
|
||
\end_layout
|
||
|
||
\begin_layout Standard
|
||
hvoraf det er oplagt at koordinatvektoren
|
||
\begin_inset Formula $[\boldsymbol{v}]_{\mathcal{V}}$
|
||
\end_inset
|
||
|
||
skal være i nulrummet.
|
||
\end_layout
|
||
|
||
\begin_layout Standard
|
||
(2)
|
||
\end_layout
|
||
|
||
\begin_layout Standard
|
||
Lad nu
|
||
\begin_inset Formula $\boldsymbol{w}\in W$
|
||
\end_inset
|
||
|
||
.
|
||
Hvis
|
||
\begin_inset Formula $\boldsymbol{w}$
|
||
\end_inset
|
||
|
||
er i billedet
|
||
\begin_inset Formula $L(V)$
|
||
\end_inset
|
||
|
||
så eksisterer der et
|
||
\begin_inset Formula $\boldsymbol{v}\in V$
|
||
\end_inset
|
||
|
||
, således at
|
||
\begin_inset Formula $\boldsymbol{w}=L(\boldsymbol{v}).$
|
||
\end_inset
|
||
|
||
Dette leder til følgende sammenhæng:
|
||
\end_layout
|
||
|
||
\begin_layout Standard
|
||
\begin_inset Formula
|
||
\[
|
||
[\boldsymbol{w}]_{\mathcal{W}}=[L(\boldsymbol{v})]_{\mathcal{W}}={}_{\mathcal{W}}\left[L\right]_{\mathcal{V}}\cdot\left[\boldsymbol{v}\right]_{\mathcal{V}}
|
||
\]
|
||
|
||
\end_inset
|
||
|
||
|
||
\end_layout
|
||
|
||
\begin_layout Standard
|
||
Hvilket betyder at
|
||
\begin_inset Formula $[\boldsymbol{w}]_{\mathcal{W}}$
|
||
\end_inset
|
||
|
||
må være et element i søjlerummet til
|
||
\begin_inset Formula $_{\mathcal{W}}\left[L\right]_{\mathcal{V}}$
|
||
\end_inset
|
||
|
||
.
|
||
Hvis omvendt
|
||
\begin_inset Formula $[\boldsymbol{w}]_{\mathcal{W}}$
|
||
\end_inset
|
||
|
||
er et element i søjlerummet til
|
||
\begin_inset Formula $_{\mathcal{W}}\left[L\right]_{\mathcal{V}}$
|
||
\end_inset
|
||
|
||
, så må der findes en vektor
|
||
\begin_inset Formula $\boldsymbol{a}\in\mathbb{F}^{n}$
|
||
\end_inset
|
||
|
||
hvor
|
||
\begin_inset Formula $n$
|
||
\end_inset
|
||
|
||
beskriver dimensionen af
|
||
\begin_inset Formula $V$
|
||
\end_inset
|
||
|
||
, så:
|
||
\end_layout
|
||
|
||
\begin_layout Standard
|
||
\begin_inset Formula
|
||
\[
|
||
[\boldsymbol{w}]_{\mathcal{W}}={}_{\mathcal{W}}\left[L\right]_{\mathcal{V}}\cdot\boldsymbol{a}
|
||
\]
|
||
|
||
\end_inset
|
||
|
||
|
||
\end_layout
|
||
|
||
\begin_layout Standard
|
||
Hvis
|
||
\begin_inset Formula $\boldsymbol{v}=L_{\mathcal{V}}(\boldsymbol{a})$
|
||
\end_inset
|
||
|
||
så:
|
||
\end_layout
|
||
|
||
\begin_layout Standard
|
||
\begin_inset Formula
|
||
\begin{align*}
|
||
[L(\boldsymbol{v})]_{\mathcal{W}} & =_{\mathcal{W}}\left[L\right]_{\mathcal{V}}\cdot\left[\boldsymbol{v}\right]_{\mathcal{V}}\\
|
||
& =_{\mathcal{W}}\left[L\right]_{\mathcal{V}}\cdot\boldsymbol{a}\\
|
||
& =[\boldsymbol{w}]_{\mathcal{W}}
|
||
\end{align*}
|
||
|
||
\end_inset
|
||
|
||
|
||
\end_layout
|
||
|
||
\begin_layout Standard
|
||
Idet
|
||
\begin_inset Formula $L_{\mathcal{W}}$
|
||
\end_inset
|
||
|
||
er en isomorfi, så følger det at
|
||
\begin_inset Formula $\boldsymbol{w}=L(\boldsymbol{v})$
|
||
\end_inset
|
||
|
||
og
|
||
\begin_inset Formula $\boldsymbol{w}$
|
||
\end_inset
|
||
|
||
er derfor et element i billedet af
|
||
\begin_inset Formula $L$
|
||
\end_inset
|
||
|
||
.
|
||
\end_layout
|
||
|
||
\begin_layout Subsection
|
||
Lemma 8.20
|
||
\end_layout
|
||
|
||
\begin_layout Standard
|
||
Lad
|
||
\begin_inset Formula $L\,:\,V\rightarrow W$
|
||
\end_inset
|
||
|
||
betegne en lineær afbildning og lad
|
||
\begin_inset Formula $\mathcal{V}$
|
||
\end_inset
|
||
|
||
og
|
||
\begin_inset Formula $\mathcal{W}$
|
||
\end_inset
|
||
|
||
betegne baser for hhv.
|
||
|
||
\begin_inset Formula $V$
|
||
\end_inset
|
||
|
||
og
|
||
\begin_inset Formula $W$
|
||
\end_inset
|
||
|
||
.
|
||
Lad
|
||
\begin_inset Formula $r$
|
||
\end_inset
|
||
|
||
betegne rangen af matrixrepræsentationen
|
||
\begin_inset Formula $_{\mathcal{W}}\left[L\right]_{\mathcal{V}}$
|
||
\end_inset
|
||
|
||
.
|
||
Så gælder:
|
||
\end_layout
|
||
|
||
\begin_layout Standard
|
||
(1) Billedet af
|
||
\begin_inset Formula $L_{\mathcal{V}}(N({}_{\mathcal{W}}\left[L\right]_{\mathcal{V}}))$
|
||
\end_inset
|
||
|
||
af nulrummet til
|
||
\begin_inset Formula $_{\mathcal{W}}\left[L\right]_{\mathcal{V}}$
|
||
\end_inset
|
||
|
||
under isormorfien
|
||
\begin_inset Formula $L_{\mathcal{V}}$
|
||
\end_inset
|
||
|
||
er lig kernen ker
|
||
\begin_inset Formula $(L)$
|
||
\end_inset
|
||
|
||
.
|
||
Specielt inducerer
|
||
\begin_inset Formula $L_{\mathcal{V}}$
|
||
\end_inset
|
||
|
||
en isomorfi:
|
||
\end_layout
|
||
|
||
\begin_layout Standard
|
||
\begin_inset Formula
|
||
\begin{align*}
|
||
N(_{\mathcal{W}}\left[L\right]_{\mathcal{V}}) & \rightarrow ker\,L\\
|
||
& \boldsymbol{a\mapsto}L_{\mathcal{V}}(\boldsymbol{a})
|
||
\end{align*}
|
||
|
||
\end_inset
|
||
|
||
|
||
\end_layout
|
||
|
||
\begin_layout Standard
|
||
Og vi har derfor: dim(ker(
|
||
\begin_inset Formula $L$
|
||
\end_inset
|
||
|
||
))
|
||
\begin_inset Formula $=\text{dim}(V)-r$
|
||
\end_inset
|
||
|
||
.
|
||
\end_layout
|
||
|
||
\begin_layout Standard
|
||
(2) Billedet
|
||
\begin_inset Formula $L_{\mathcal{W}}(R(_{W}[L]_{\mathcal{V}}))$
|
||
\end_inset
|
||
|
||
af søjlerummet til
|
||
\begin_inset Formula $_{\mathcal{W}}[L]_{\mathcal{V}}$
|
||
\end_inset
|
||
|
||
under
|
||
\begin_inset Formula $L_{\mathcal{W}}$
|
||
\end_inset
|
||
|
||
er lig billedet
|
||
\begin_inset Formula $L(V)$
|
||
\end_inset
|
||
|
||
.
|
||
Specielt inducerer
|
||
\begin_inset Formula $L_{\mathcal{W}}$
|
||
\end_inset
|
||
|
||
en isomorfi
|
||
\end_layout
|
||
|
||
\begin_layout Standard
|
||
\begin_inset Formula
|
||
\begin{align*}
|
||
R(_{\mathcal{W}}[L]_{\mathcal{V}}) & \rightarrow L(V),\\
|
||
& \boldsymbol{b}\mapsto L_{\mathcal{W}}(\boldsymbol{b})
|
||
\end{align*}
|
||
|
||
\end_inset
|
||
|
||
|
||
\end_layout
|
||
|
||
\begin_layout Standard
|
||
Og derfor har vi:
|
||
\begin_inset Formula $\text{dim}(L(V))=r$
|
||
\end_inset
|
||
|
||
|
||
\end_layout
|
||
|
||
\begin_layout Standard
|
||
\begin_inset Newpage newpage
|
||
\end_inset
|
||
|
||
|
||
\end_layout
|
||
|
||
\begin_layout Section
|
||
Indre produkt
|
||
\end_layout
|
||
|
||
\begin_layout Subsection
|
||
Definition 9.1
|
||
\end_layout
|
||
|
||
\begin_layout Standard
|
||
Afbildningen
|
||
\begin_inset Formula
|
||
\[
|
||
\left\langle \cdot,\cdot\right\rangle :V\times V\rightarrow\mathbb{K}
|
||
\]
|
||
|
||
\end_inset
|
||
|
||
benævnes som det
|
||
\emph on
|
||
indre produkt
|
||
\emph default
|
||
hvis der for alle
|
||
\begin_inset Formula $\boldsymbol{u},\boldsymbol{v},\boldsymbol{w}\in V$
|
||
\end_inset
|
||
|
||
og skalarer
|
||
\begin_inset Formula $\alpha,\beta\in\mathbb{K}$
|
||
\end_inset
|
||
|
||
gælder at:
|
||
\end_layout
|
||
|
||
\begin_layout Enumerate
|
||
Skalaren
|
||
\begin_inset Formula $\left\langle \boldsymbol{v},\boldsymbol{v}\right\rangle $
|
||
\end_inset
|
||
|
||
er et reelt tal, der er større end eller lig med nul.
|
||
\end_layout
|
||
|
||
\begin_layout Enumerate
|
||
\begin_inset Formula $\left\langle \boldsymbol{v},\boldsymbol{v}\right\rangle =0\implies\boldsymbol{v}=\boldsymbol{0}$
|
||
\end_inset
|
||
|
||
|
||
\end_layout
|
||
|
||
\begin_layout Enumerate
|
||
\begin_inset Formula $\left\langle \boldsymbol{v},\boldsymbol{w}\right\rangle =\overline{\left\langle \boldsymbol{w},\boldsymbol{v}\right\rangle }$
|
||
\end_inset
|
||
|
||
|
||
\end_layout
|
||
|
||
\begin_layout Enumerate
|
||
\begin_inset Formula $\left\langle \alpha\cdot\boldsymbol{u}+\beta\cdot\boldsymbol{v},\boldsymbol{w}\right\rangle =\alpha\cdot\left\langle \boldsymbol{u},\boldsymbol{w}\right\rangle +\beta\cdot\left\langle \boldsymbol{v},\boldsymbol{w}\right\rangle $
|
||
\end_inset
|
||
|
||
|
||
\end_layout
|
||
|
||
\begin_layout Subsection
|
||
Bemærkning 9.4 (Naiv definition af komplekst skalarprodukt)
|
||
\end_layout
|
||
|
||
\begin_layout Subsection
|
||
Definition 9.5 (Norm)
|
||
\end_layout
|
||
|
||
\begin_layout Standard
|
||
|
||
\emph on
|
||
Normen
|
||
\emph default
|
||
af et element
|
||
\begin_inset Formula $\boldsymbol{v}$
|
||
\end_inset
|
||
|
||
i et indre produkt rum
|
||
\begin_inset Formula $V$
|
||
\end_inset
|
||
|
||
defineres som
|
||
\begin_inset Formula
|
||
\[
|
||
\left\Vert \boldsymbol{v}\right\Vert =\sqrt{\left\langle \boldsymbol{v},\boldsymbol{v}\right\rangle }\in\mathbb{R}_{\geq0}
|
||
\]
|
||
|
||
\end_inset
|
||
|
||
|
||
\end_layout
|
||
|
||
\begin_layout Subsection
|
||
Definition 9.7 (Ortogonalitet)
|
||
\end_layout
|
||
|
||
\begin_layout Standard
|
||
To elementer
|
||
\begin_inset Formula $\boldsymbol{v}$
|
||
\end_inset
|
||
|
||
og
|
||
\begin_inset Formula $\boldsymbol{w}$
|
||
\end_inset
|
||
|
||
i et indre produkt rum kaldes
|
||
\emph on
|
||
ortogonale
|
||
\emph default
|
||
hvis
|
||
\begin_inset Formula
|
||
\[
|
||
\left\langle \boldsymbol{v},\boldsymbol{w}\right\rangle =0
|
||
\]
|
||
|
||
\end_inset
|
||
|
||
dette skrives også som
|
||
\begin_inset Formula
|
||
\[
|
||
\boldsymbol{v}\perp\boldsymbol{w}.
|
||
\]
|
||
|
||
\end_inset
|
||
|
||
Denne betingelse er oplagt symmetrisk (betingelse 3 (c) i definitionen af
|
||
indre produkt) således at
|
||
\begin_inset Formula
|
||
\[
|
||
\boldsymbol{v}\perp\boldsymbol{w}\iff\boldsymbol{w}\perp\boldsymbol{v}
|
||
\]
|
||
|
||
\end_inset
|
||
|
||
|
||
\end_layout
|
||
|
||
\begin_layout Subsection
|
||
Lemma 9.11
|
||
\end_layout
|
||
|
||
\begin_layout Standard
|
||
Lad
|
||
\begin_inset Formula $\boldsymbol{v}$
|
||
\end_inset
|
||
|
||
og
|
||
\begin_inset Formula $\boldsymbol{w}$
|
||
\end_inset
|
||
|
||
hvor
|
||
\begin_inset Formula $w\neq0$
|
||
\end_inset
|
||
|
||
betegne elementer i et indre produkt rum
|
||
\begin_inset Formula $V$
|
||
\end_inset
|
||
|
||
.
|
||
Der kan da findes en ortogonal projektion
|
||
\begin_inset Formula $\boldsymbol{p}$
|
||
\end_inset
|
||
|
||
af
|
||
\begin_inset Formula $\boldsymbol{v}$
|
||
\end_inset
|
||
|
||
på
|
||
\begin_inset Formula $\boldsymbol{w}$
|
||
\end_inset
|
||
|
||
, hvilken er givet ved
|
||
\end_layout
|
||
|
||
\begin_layout Standard
|
||
\begin_inset Formula
|
||
\[
|
||
\boldsymbol{p}=\frac{\left\langle \boldsymbol{v},\boldsymbol{w}\right\rangle }{\left\langle \boldsymbol{w},\boldsymbol{w}\right\rangle }\boldsymbol{w}
|
||
\]
|
||
|
||
\end_inset
|
||
|
||
|
||
\end_layout
|
||
|
||
\begin_layout Standard
|
||
|
||
\series bold
|
||
Bevis
|
||
\end_layout
|
||
|
||
\begin_layout Standard
|
||
Eftersom
|
||
\begin_inset Formula $\alpha\cdot\boldsymbol{w}$
|
||
\end_inset
|
||
|
||
per definition vil være en ortogonal projektion af
|
||
\begin_inset Formula $\boldsymbol{v}$
|
||
\end_inset
|
||
|
||
på
|
||
\begin_inset Formula $\boldsymbol{w}$
|
||
\end_inset
|
||
|
||
, såfremt
|
||
\begin_inset Formula
|
||
\[
|
||
\left\langle \boldsymbol{v}-\alpha\cdot\boldsymbol{w},\boldsymbol{w}\right\rangle =\left\langle \boldsymbol{v},\boldsymbol{w}\right\rangle -\alpha\cdot\left\langle \boldsymbol{w},\boldsymbol{w}\right\rangle =0
|
||
\]
|
||
|
||
\end_inset
|
||
|
||
|
||
\end_layout
|
||
|
||
\begin_layout Standard
|
||
hvilket netop vil gælde når
|
||
\begin_inset Formula
|
||
\[
|
||
\alpha=\frac{\left\langle \boldsymbol{v},\boldsymbol{w}\right\rangle }{\left\langle \boldsymbol{w},\boldsymbol{w}\right\rangle }
|
||
\]
|
||
|
||
\end_inset
|
||
|
||
|
||
\end_layout
|
||
|
||
\begin_layout Standard
|
||
Hvilket afslutter beviset, da den ortogonale projektion udregnes ved at
|
||
sige
|
||
\begin_inset Formula $v-(\alpha\cdot\boldsymbol{w})$
|
||
\end_inset
|
||
|
||
, så det ekstra
|
||
\begin_inset Formula $\boldsymbol{w}$
|
||
\end_inset
|
||
|
||
i udregningen for
|
||
\begin_inset Formula $\boldsymbol{p}$
|
||
\end_inset
|
||
|
||
, kommer derfra.
|
||
\end_layout
|
||
|
||
\begin_layout Subsection
|
||
Proposition 9.12 (Cauchy-Schwarz' ulighed)
|
||
\end_layout
|
||
|
||
\begin_layout Standard
|
||
For vektorer
|
||
\begin_inset Formula $\boldsymbol{v}$
|
||
\end_inset
|
||
|
||
og
|
||
\begin_inset Formula $\boldsymbol{w}$
|
||
\end_inset
|
||
|
||
i et indre produkt rum
|
||
\begin_inset Formula $V$
|
||
\end_inset
|
||
|
||
gælder der uligheden
|
||
\begin_inset Formula
|
||
\[
|
||
|\left\langle \boldsymbol{v},\boldsymbol{w}\right\rangle |\leq\left\Vert \boldsymbol{v}\right\Vert \cdot\left\Vert \boldsymbol{w}\right\Vert
|
||
\]
|
||
|
||
\end_inset
|
||
|
||
|
||
\end_layout
|
||
|
||
\begin_layout Standard
|
||
hvor venstresiden betegner den absolutte værdi af skalaren
|
||
\begin_inset Formula $\left\langle \boldsymbol{v},\boldsymbol{w}\right\rangle $
|
||
\end_inset
|
||
|
||
|
||
\end_layout
|
||
|
||
\begin_layout Standard
|
||
|
||
\series bold
|
||
Bevis
|
||
\end_layout
|
||
|
||
\begin_layout Standard
|
||
Uligheden er allerede opfyldt, hvis
|
||
\begin_inset Formula $\boldsymbol{w}=\boldsymbol{0}$
|
||
\end_inset
|
||
|
||
, jf.
|
||
Lemma 9.6(3), dvs skalarproduktet af noget med nulvektoren, vil altid give
|
||
0 og ligeså vil længden af nulvektoren være 0.
|
||
\end_layout
|
||
|
||
\begin_layout Standard
|
||
Antag derfor at
|
||
\begin_inset Formula $\boldsymbol{w}\neq0$
|
||
\end_inset
|
||
|
||
og lad
|
||
\begin_inset Formula $\boldsymbol{p}$
|
||
\end_inset
|
||
|
||
betegne den ortogonale projektion af
|
||
\begin_inset Formula $\boldsymbol{v}$
|
||
\end_inset
|
||
|
||
på
|
||
\begin_inset Formula $\boldsymbol{w}$
|
||
\end_inset
|
||
|
||
, så er
|
||
\begin_inset Formula
|
||
\[
|
||
\boldsymbol{v}=\boldsymbol{p}+(\boldsymbol{v}-\boldsymbol{p})
|
||
\]
|
||
|
||
\end_inset
|
||
|
||
|
||
\end_layout
|
||
|
||
\begin_layout Standard
|
||
og
|
||
\begin_inset Formula $\boldsymbol{p}$
|
||
\end_inset
|
||
|
||
og
|
||
\begin_inset Formula $\boldsymbol{v}-\boldsymbol{p}$
|
||
\end_inset
|
||
|
||
er heri ortogonale (Tænk over det,
|
||
\begin_inset Formula $\boldsymbol{v}-\boldsymbol{p}$
|
||
\end_inset
|
||
|
||
, er vektoren der står vinkelret på
|
||
\begin_inset Formula $\boldsymbol{p}$
|
||
\end_inset
|
||
|
||
og når til 'enden' af
|
||
\begin_inset Formula $\boldsymbol{v}$
|
||
\end_inset
|
||
|
||
).
|
||
Denne opspaltning er halvvejs en god ide, men definitionen på v kommer
|
||
først senere i bogen under et andet kapitel.
|
||
Det svarer til
|
||
\begin_inset Formula $\boldsymbol{v}=\boldsymbol{p}+\boldsymbol{h}$
|
||
\end_inset
|
||
|
||
i den senere definition.
|
||
\end_layout
|
||
|
||
\begin_layout Standard
|
||
Vi får den gode ide, at det ligner en trekant (hvis man tegner de forskellige
|
||
vektorer), og kan derfor bruge Pythagoras sætning til at finde længden
|
||
af
|
||
\begin_inset Formula $\boldsymbol{v}.$
|
||
\end_inset
|
||
|
||
Ifølge Pythagoras sætning, prop 9.9, så kan normen af vektoren
|
||
\begin_inset Formula $\boldsymbol{v}$
|
||
\end_inset
|
||
|
||
, så findes ved
|
||
\begin_inset Formula
|
||
\[
|
||
\left\Vert \boldsymbol{v}\right\Vert ^{2}=\left\Vert \boldsymbol{p}\right\Vert ^{2}+\left\Vert \boldsymbol{v}-\boldsymbol{p}\right\Vert ^{2}\ge\left\Vert \boldsymbol{p}\right\Vert ^{2}
|
||
\]
|
||
|
||
\end_inset
|
||
|
||
hvilket betyder at
|
||
\begin_inset Formula $\left\Vert \boldsymbol{v}\right\Vert \ge\left\Vert \boldsymbol{p}\right\Vert $
|
||
\end_inset
|
||
|
||
.
|
||
Dette kan via definition på en ortogonal projektion og Lemma 9.6(2) (
|
||
\begin_inset Formula $\left\Vert \alpha\boldsymbol{v}\right\Vert =|\alpha|\cdot\left\Vert \boldsymbol{v}\right\Vert $
|
||
\end_inset
|
||
|
||
) lede til udledningen
|
||
\end_layout
|
||
|
||
\begin_layout Standard
|
||
\begin_inset Formula
|
||
\[
|
||
\left\Vert \boldsymbol{p}\right\Vert =\frac{|\left\langle \boldsymbol{v},\boldsymbol{w}\right\rangle |}{\left\Vert \boldsymbol{w}\right\Vert ^{2}}\cdot\left\Vert \boldsymbol{w}\right\Vert =\frac{|\left\langle \boldsymbol{v},\boldsymbol{w}\right\rangle |}{\left\Vert \boldsymbol{w}\right\Vert }
|
||
\]
|
||
|
||
\end_inset
|
||
|
||
|
||
\end_layout
|
||
|
||
\begin_layout Standard
|
||
Hvilket betyder
|
||
\begin_inset Formula
|
||
\[
|
||
\left\Vert \boldsymbol{v}\right\Vert \ge\frac{|\left\langle \boldsymbol{v},\boldsymbol{w}\right\rangle |}{\left\Vert \boldsymbol{w}\right\Vert }
|
||
\]
|
||
|
||
\end_inset
|
||
|
||
|
||
\end_layout
|
||
|
||
\begin_layout Standard
|
||
hvilket er ækvivalent med den oprindelige ulighed.
|
||
|
||
\end_layout
|
||
|
||
\begin_layout Section
|
||
Ortogonale og Ortonormale baser
|
||
\end_layout
|
||
|
||
\begin_layout Subsection
|
||
Definition 10.1 (Ortogonale og ortonormale mængder)
|
||
\end_layout
|
||
|
||
\begin_layout Standard
|
||
En samling af elementer
|
||
\begin_inset Formula $\boldsymbol{v_{1}},\boldsymbol{v}_{2},\dots,\boldsymbol{v}_{n}\in V$
|
||
\end_inset
|
||
|
||
kaldes en ortogonal mængde, såfremt følgende betingelser er opfyldt.
|
||
\end_layout
|
||
|
||
\begin_layout Standard
|
||
(a)
|
||
\begin_inset Formula $\boldsymbol{v}_{i}\ne\boldsymbol{0}$
|
||
\end_inset
|
||
|
||
for
|
||
\begin_inset Formula $i=1,2,\dots,n$
|
||
\end_inset
|
||
|
||
|
||
\end_layout
|
||
|
||
\begin_layout Standard
|
||
(b)
|
||
\begin_inset Formula $\boldsymbol{v}_{i}\perp\boldsymbol{v}_{j}$
|
||
\end_inset
|
||
|
||
når
|
||
\begin_inset Formula $i\ne j$
|
||
\end_inset
|
||
|
||
|
||
\end_layout
|
||
|
||
\begin_layout Standard
|
||
(c)
|
||
\begin_inset Formula $\left\Vert \boldsymbol{v}_{i}\right\Vert =1$
|
||
\end_inset
|
||
|
||
for
|
||
\begin_inset Formula $i=1,2,\dots,n$
|
||
\end_inset
|
||
|
||
|
||
\end_layout
|
||
|
||
\begin_layout Standard
|
||
Såfremt (c) også opfyldes, så er det en ortoNORMAL mængde, da alle vektorer
|
||
er normaliserede.
|
||
Man kan nemt komme fra en ortogonal mængde til en ortonormal mængde, ved
|
||
blot at normalisere hver vektor i den ortogonale mængde:
|
||
\begin_inset Formula
|
||
\[
|
||
\frac{1}{\left\Vert \boldsymbol{v}_{i}\right\Vert }\boldsymbol{v}_{i}
|
||
\]
|
||
|
||
\end_inset
|
||
|
||
|
||
\end_layout
|
||
|
||
\begin_layout Subsection
|
||
Lemma 10.22 (Gram-Schmidt)
|
||
\end_layout
|
||
|
||
\begin_layout Standard
|
||
Gram-Schmidt processen bruges til at tage en normal basis, først ændre den
|
||
til en ortogonal base og derefter normalisere den, så man får en ortonormal
|
||
basis.
|
||
\end_layout
|
||
|
||
\begin_layout Standard
|
||
Lad
|
||
\begin_inset Formula $V$
|
||
\end_inset
|
||
|
||
betegne et indre produkt rum med basis
|
||
\begin_inset Formula $\mathcal{V}=(\boldsymbol{v}_{1},\boldsymbol{v}_{2},\dots,\boldsymbol{v}_{n})$
|
||
\end_inset
|
||
|
||
.
|
||
Lad
|
||
\begin_inset Formula $\boldsymbol{p}_{k}$
|
||
\end_inset
|
||
|
||
for
|
||
\begin_inset Formula $k=1,2,\dots,n-1$
|
||
\end_inset
|
||
|
||
betegne den ortogonale projektion af
|
||
\begin_inset Formula $\boldsymbol{v}_{k+1}$
|
||
\end_inset
|
||
|
||
på underrummet
|
||
\begin_inset Formula $\text{Span}(\boldsymbol{v}_{1},\boldsymbol{v}_{2},\dots,\boldsymbol{v}_{k})$
|
||
\end_inset
|
||
|
||
, så er
|
||
\end_layout
|
||
|
||
\begin_layout Standard
|
||
\begin_inset Formula
|
||
\[
|
||
\mathcal{W}=(\boldsymbol{v}_{1},\boldsymbol{v}_{2}-\boldsymbol{p}_{1},\boldsymbol{v}_{3}-\boldsymbol{p}_{2},\dots,\boldsymbol{v}_{n}-\boldsymbol{p}_{n-1})
|
||
\]
|
||
|
||
\end_inset
|
||
|
||
|
||
\end_layout
|
||
|
||
\begin_layout Standard
|
||
også en basis for
|
||
\begin_inset Formula $V$
|
||
\end_inset
|
||
|
||
.
|
||
|
||
\end_layout
|
||
|
||
\begin_layout Standard
|
||
|
||
\series bold
|
||
Bevis
|
||
\end_layout
|
||
|
||
\begin_layout Standard
|
||
Start med at sætte
|
||
\begin_inset Formula $\boldsymbol{w}_{1}=\boldsymbol{v}_{1}$
|
||
\end_inset
|
||
|
||
og
|
||
\begin_inset Formula $\boldsymbol{w}_{k}=\boldsymbol{v}_{k}-\boldsymbol{p}_{k-1}$
|
||
\end_inset
|
||
|
||
for
|
||
\begin_inset Formula $k=1,2,\dots n$
|
||
\end_inset
|
||
|
||
.
|
||
Jf.
|
||
prop 10.4 (der siger at en ortogonale mængde er lineært uafhængig) og prop
|
||
7.11 (der siger at for en mængde af elementer i vektorrummmet
|
||
\begin_inset Formula $V_{n},$
|
||
\end_inset
|
||
|
||
gælder, at hvis mængden er af størrelse n, så er tre udsagn ækvivalente,
|
||
heriblandt lineært uafhængighed og værende en basis, så mængden udspænder
|
||
også
|
||
\begin_inset Formula $V$
|
||
\end_inset
|
||
|
||
), er det tilstrækkeligt at vise at
|
||
\begin_inset Formula $(\boldsymbol{w}_{1},\boldsymbol{w}_{2},\dots,\boldsymbol{w}_{n})$
|
||
\end_inset
|
||
|
||
er en ortogonal mængde.
|
||
|
||
\end_layout
|
||
|
||
\begin_layout Standard
|
||
Lad
|
||
\begin_inset Formula $V_{k}$
|
||
\end_inset
|
||
|
||
, for
|
||
\begin_inset Formula $k=1,2,\dots,n$
|
||
\end_inset
|
||
|
||
betegne underrummet
|
||
\begin_inset Formula $\text{Span}(\boldsymbol{v}_{1},\boldsymbol{v}_{2},\dots,\boldsymbol{v}_{k})$
|
||
\end_inset
|
||
|
||
.
|
||
Der påstås så
|
||
\begin_inset Formula
|
||
\[
|
||
\boldsymbol{w}_{k+1}\in V_{k}^{\perp}\cap V_{k+1}
|
||
\]
|
||
|
||
\end_inset
|
||
|
||
|
||
\end_layout
|
||
|
||
\begin_layout Standard
|
||
for
|
||
\begin_inset Formula $k=1,2,\dots,n-1$
|
||
\end_inset
|
||
|
||
.
|
||
Hvilket kan forstås som at elementet
|
||
\begin_inset Formula $\boldsymbol{w}_{k+1}$
|
||
\end_inset
|
||
|
||
både er ortogonal på mængden af
|
||
\begin_inset Formula $V_{k}$
|
||
\end_inset
|
||
|
||
, men den også er i mængden af
|
||
\begin_inset Formula $V_{k+1}$
|
||
\end_inset
|
||
|
||
.
|
||
I første omgang
|
||
\begin_inset Formula $\boldsymbol{p}_{k}$
|
||
\end_inset
|
||
|
||
, for
|
||
\begin_inset Formula $k=1,2,\dots,n-1$
|
||
\end_inset
|
||
|
||
, den ortogonale projektion af
|
||
\begin_inset Formula $\boldsymbol{v}_{k+1}$
|
||
\end_inset
|
||
|
||
på
|
||
\begin_inset Formula $V_{k}$
|
||
\end_inset
|
||
|
||
, hvilket derfor implicerer at
|
||
\begin_inset Formula $\boldsymbol{w}_{k+1}=\boldsymbol{v}_{k+1}-\boldsymbol{p}_{k}\in V_{k}^{\perp}$
|
||
\end_inset
|
||
|
||
, per definition 10.11 (Definitionen for ortogonal projektion).
|
||
Desuden er
|
||
\begin_inset Formula $\boldsymbol{w}_{k+1}=\boldsymbol{v}_{k+1}-\boldsymbol{p}_{k}$
|
||
\end_inset
|
||
|
||
en differens mellem to elementer i
|
||
\begin_inset Formula $V_{k+1}$
|
||
\end_inset
|
||
|
||
(da
|
||
\begin_inset Formula $\boldsymbol{p}_{k}$
|
||
\end_inset
|
||
|
||
er en projektion og dermed i rummet), hvilket betyder at
|
||
\begin_inset Formula $\boldsymbol{w}_{k+1}$
|
||
\end_inset
|
||
|
||
selv er et element i
|
||
\begin_inset Formula $V_{k+1}$
|
||
\end_inset
|
||
|
||
.
|
||
|
||
\end_layout
|
||
|
||
\begin_layout Standard
|
||
Der ønskes så at vise at
|
||
\begin_inset Formula $\boldsymbol{w}_{i}$
|
||
\end_inset
|
||
|
||
og
|
||
\begin_inset Formula $\boldsymbol{w}_{j}$
|
||
\end_inset
|
||
|
||
med
|
||
\begin_inset space ~
|
||
\end_inset
|
||
|
||
i < j er ortogonale.
|
||
j må være større end 1 og ovenstående formel implicerer derfor
|
||
\end_layout
|
||
|
||
\begin_layout Standard
|
||
\begin_inset Formula
|
||
\[
|
||
\boldsymbol{w}_{j}\in V_{j-1}^{\perp}
|
||
\]
|
||
|
||
\end_inset
|
||
|
||
|
||
\end_layout
|
||
|
||
\begin_layout Standard
|
||
hvilket må betyde at
|
||
\begin_inset Formula $\boldsymbol{w}_{j}$
|
||
\end_inset
|
||
|
||
er ortogonal på
|
||
\begin_inset Formula $\boldsymbol{w}_{i},$
|
||
\end_inset
|
||
|
||
idet
|
||
\begin_inset Formula
|
||
\[
|
||
\boldsymbol{w}_{i}\in V_{i}\subseteq V_{j-1}
|
||
\]
|
||
|
||
\end_inset
|
||
|
||
|
||
\end_layout
|
||
|
||
\begin_layout Standard
|
||
og antagelsen at
|
||
\begin_inset Formula $i<j$
|
||
\end_inset
|
||
|
||
.
|
||
Dette er oplagt, da
|
||
\begin_inset Formula $\boldsymbol{w}_{i}\in V_{j-1}$
|
||
\end_inset
|
||
|
||
og
|
||
\begin_inset Formula $\boldsymbol{w}_{j}\in V_{j-1}^{\perp},$
|
||
\end_inset
|
||
|
||
så
|
||
\begin_inset Formula $\boldsymbol{w}_{j}$
|
||
\end_inset
|
||
|
||
er i det ortogonale komplement til den mængde
|
||
\begin_inset Formula $\boldsymbol{w}_{i}$
|
||
\end_inset
|
||
|
||
er i.
|
||
Nu ønskes der blot at vise at
|
||
\begin_inset Formula $(\boldsymbol{w}_{1},\boldsymbol{w}_{2},\dots,\boldsymbol{w}_{n})$
|
||
\end_inset
|
||
|
||
er forskellige fra
|
||
\begin_inset Formula $\boldsymbol{0}$
|
||
\end_inset
|
||
|
||
.
|
||
Først er
|
||
\begin_inset Formula $\boldsymbol{w}_{1}=\boldsymbol{v}_{1}$
|
||
\end_inset
|
||
|
||
forskellig fra
|
||
\begin_inset Formula $\boldsymbol{0},$
|
||
\end_inset
|
||
|
||
da
|
||
\begin_inset Formula $\boldsymbol{v}_{1}$
|
||
\end_inset
|
||
|
||
er en del af basen
|
||
\begin_inset Formula $\mathcal{V}$
|
||
\end_inset
|
||
|
||
for
|
||
\begin_inset Formula $V.$
|
||
\end_inset
|
||
|
||
Dernæst betragtes
|
||
\begin_inset Formula $\boldsymbol{w}_{k}$
|
||
\end_inset
|
||
|
||
for
|
||
\begin_inset Formula $k>1$
|
||
\end_inset
|
||
|
||
.
|
||
Såfremt
|
||
\begin_inset Formula $\boldsymbol{w}_{k}=0,$
|
||
\end_inset
|
||
|
||
så vil
|
||
\begin_inset Formula $\boldsymbol{v}_{k}=\boldsymbol{p}_{k-1}$
|
||
\end_inset
|
||
|
||
være et element i
|
||
\begin_inset Formula $V_{k-1}$
|
||
\end_inset
|
||
|
||
, men det ville betyde at
|
||
\begin_inset Formula $(\boldsymbol{v}_{1},\boldsymbol{v}_{2},\dots,\boldsymbol{v}_{k})$
|
||
\end_inset
|
||
|
||
er lineært afhængig, da elementet
|
||
\begin_inset Formula $\boldsymbol{v}_{k}\in V_{k-1}$
|
||
\end_inset
|
||
|
||
, jf.
|
||
Lemma 7.7(2), hvilket er i modstrid med antagelsen.
|
||
\end_layout
|
||
|
||
\begin_layout Subsection
|
||
Lemma 10.23
|
||
\end_layout
|
||
|
||
\begin_layout Standard
|
||
Lad
|
||
\begin_inset Formula $V$
|
||
\end_inset
|
||
|
||
betegne et indre produkt rum med basis
|
||
\begin_inset Formula $\mathcal{V}=(\boldsymbol{v}_{1},\boldsymbol{v}_{2},\dots,\boldsymbol{v}_{n})$
|
||
\end_inset
|
||
|
||
og lad
|
||
\begin_inset Formula $\mathcal{W}=(\boldsymbol{w}_{1},\boldsymbol{w}_{2},\dots,\boldsymbol{w}_{n})$
|
||
\end_inset
|
||
|
||
betegne den ortogonale basis for
|
||
\begin_inset Formula $V$
|
||
\end_inset
|
||
|
||
bestemt ud fra
|
||
\begin_inset Formula $\mathcal{W}$
|
||
\end_inset
|
||
|
||
.
|
||
Lemma 10.23 omhandler at tage en basis og så gå fra den basis direkte til
|
||
den ortonormale basis.
|
||
Dog kan man blot bruge lemma 10.22 og så derefter normalisere vektorerne
|
||
i
|
||
\begin_inset Formula $\mathcal{W},$
|
||
\end_inset
|
||
|
||
hvilket er grunden til det lige nævnes nu.
|
||
\end_layout
|
||
|
||
\begin_layout Standard
|
||
\begin_inset Formula
|
||
\[
|
||
\boldsymbol{u}_{i}=\frac{1}{\left\Vert \boldsymbol{w}_{i}\right\Vert }\boldsymbol{w}_{i}\quad for\,i=1,2,\dots,n
|
||
\]
|
||
|
||
\end_inset
|
||
|
||
Hvis man ønsker at gå direkte, så defineres det første element
|
||
\begin_inset Formula $\boldsymbol{u}_{1}$
|
||
\end_inset
|
||
|
||
da til:
|
||
\begin_inset Formula
|
||
\[
|
||
\boldsymbol{u}_{1}=\frac{1}{\left\Vert v_{1}\right\Vert }\boldsymbol{v}_{1}
|
||
\]
|
||
|
||
\end_inset
|
||
|
||
jf.
|
||
med definitionen af
|
||
\begin_inset Formula $\boldsymbol{w}_{1}$
|
||
\end_inset
|
||
|
||
i Lemma 10.22, hvor de resterende elementer defineres:
|
||
\begin_inset Formula
|
||
\[
|
||
\boldsymbol{u}_{k+1}=\frac{1}{\left\Vert \boldsymbol{v}_{k+1}-\boldsymbol{p}_{k}\right\Vert }(\boldsymbol{v}_{k+1}-\boldsymbol{p}_{k})\qquad for\,k=1,2,\dots,n-1
|
||
\]
|
||
|
||
\end_inset
|
||
|
||
|
||
\end_layout
|
||
|
||
\begin_layout Standard
|
||
Hvor
|
||
\begin_inset Formula
|
||
\[
|
||
\boldsymbol{p}_{k}=\left\langle \boldsymbol{v}_{k+1},\boldsymbol{u}_{1}\right\rangle \boldsymbol{u}_{1}+\left\langle \boldsymbol{v}_{k+1},\boldsymbol{u}_{2}\right\rangle \boldsymbol{u}_{2}+\dots+\left\langle \boldsymbol{v}_{k+1},\boldsymbol{u}_{k}\right\rangle \boldsymbol{u}_{k}
|
||
\]
|
||
|
||
\end_inset
|
||
|
||
|
||
\end_layout
|
||
|
||
\begin_layout Standard
|
||
Dette vil ikke bevises, men er her blot for at illustrere hvad Lemma 10.22
|
||
bruges til.
|
||
\end_layout
|
||
|
||
\begin_layout Standard
|
||
\begin_inset Newpage pagebreak
|
||
\end_inset
|
||
|
||
|
||
\end_layout
|
||
|
||
\begin_layout Section
|
||
Determinanter
|
||
\end_layout
|
||
|
||
\begin_layout Subsection
|
||
Noget med definitionen på en determinant
|
||
\end_layout
|
||
|
||
\begin_layout Subsection
|
||
Sætning 11.18
|
||
\end_layout
|
||
|
||
\begin_layout Standard
|
||
Lad
|
||
\begin_inset Formula $A,\,B\in\text{Mat}_{n}(\mathbb{F})$
|
||
\end_inset
|
||
|
||
, så er
|
||
\begin_inset Formula
|
||
\[
|
||
\text{Det}(A\cdot B)=\text{Det}(A)\cdot\text{Det}(B)
|
||
\]
|
||
|
||
\end_inset
|
||
|
||
|
||
\end_layout
|
||
|
||
\begin_layout Standard
|
||
|
||
\series bold
|
||
Bevis
|
||
\end_layout
|
||
|
||
\begin_layout Standard
|
||
Antag at
|
||
\begin_inset Formula $A$
|
||
\end_inset
|
||
|
||
er singulær, altså den har ingen invers.
|
||
Der påstås at dette betyder at
|
||
\begin_inset Formula $A\cdot B$
|
||
\end_inset
|
||
|
||
er singulær, da
|
||
\begin_inset Formula $B\cdot(A\cdot B)^{-1}$
|
||
\end_inset
|
||
|
||
ellers ville være en invers til
|
||
\begin_inset Formula $A$
|
||
\end_inset
|
||
|
||
, eftersom
|
||
\end_layout
|
||
|
||
\begin_layout Standard
|
||
\begin_inset Formula
|
||
\[
|
||
A\cdot(B\cdot(A\cdot B)^{-1})=(A\cdot B)\cdot(A\cdot B)^{-1}={\rm {\rm I}}
|
||
\]
|
||
|
||
\end_inset
|
||
|
||
|
||
\end_layout
|
||
|
||
\begin_layout Standard
|
||
Hvilket er umuligt, da
|
||
\begin_inset Formula $A$
|
||
\end_inset
|
||
|
||
per antagelse er singulær.
|
||
Eftersom
|
||
\begin_inset Formula $A$
|
||
\end_inset
|
||
|
||
er singulær, må
|
||
\begin_inset Formula $\text{Det}(A)=0$
|
||
\end_inset
|
||
|
||
, da dette, jf.
|
||
prop 11.17, betyder at
|
||
\begin_inset Formula $A$
|
||
\end_inset
|
||
|
||
ikke er invertibel.
|
||
Derfor gælder følgende:
|
||
\end_layout
|
||
|
||
\begin_layout Standard
|
||
\begin_inset Formula
|
||
\[
|
||
\text{Det}(A\cdot B)=\text{Det}(A)=\boldsymbol{0}
|
||
\]
|
||
|
||
\end_inset
|
||
|
||
|
||
\end_layout
|
||
|
||
\begin_layout Standard
|
||
Hvilket opfylder det oprindelige, da alt ganget med 0, vil give 0 og det
|
||
derfor ikke gør nogen forskel, hvad B er.
|
||
Desuden er produktet af
|
||
\begin_inset Formula $A\cdot B$
|
||
\end_inset
|
||
|
||
også en singulær kvadratisk matrice og dermed er
|
||
\begin_inset Formula $\text{Det}(A\cdot B)=0$
|
||
\end_inset
|
||
|
||
.
|
||
\end_layout
|
||
|
||
\begin_layout Standard
|
||
Antag så at
|
||
\begin_inset Formula $A$
|
||
\end_inset
|
||
|
||
er invertibel og dermed rækkeækvivalent med identitetsmatricen.
|
||
Dette betyder at den opdelte matrix
|
||
\begin_inset Formula $(A\,\vline\,A\cdot B)$
|
||
\end_inset
|
||
|
||
er rækkeækvivalent med
|
||
\begin_inset Formula $({\rm I}\,\vline\,C)$
|
||
\end_inset
|
||
|
||
jf.
|
||
prop 4.6, for en passende matric
|
||
\begin_inset Formula $C$
|
||
\end_inset
|
||
|
||
, i dette tilfælde noget der er rækkeækvivalent med
|
||
\begin_inset Formula $A\cdot B$
|
||
\end_inset
|
||
|
||
.
|
||
|
||
\end_layout
|
||
|
||
\begin_layout Standard
|
||
Dette resultat betyder, at der jf.
|
||
Lemma 11.16 eksisterer en skalar
|
||
\begin_inset Formula $\alpha\in\mathbb{F}$
|
||
\end_inset
|
||
|
||
, så
|
||
\begin_inset Formula
|
||
\[
|
||
\text{Det}(A)=\alpha\cdot\text{Det}({\rm I})
|
||
\]
|
||
|
||
\end_inset
|
||
|
||
|
||
\end_layout
|
||
|
||
\begin_layout Standard
|
||
og dermed også
|
||
\begin_inset Formula
|
||
\[
|
||
\text{Det}(A\cdot B)=\alpha\cdot\text{Det}(C)
|
||
\]
|
||
|
||
\end_inset
|
||
|
||
|
||
\end_layout
|
||
|
||
\begin_layout Standard
|
||
Men jf.
|
||
prop 11.17, så implicerer ovenstående at
|
||
\begin_inset Formula $\text{Det}(A)=\alpha$
|
||
\end_inset
|
||
|
||
og hvis dette indsættes i sidstnævnte formel, så opnås følgende:
|
||
\end_layout
|
||
|
||
\begin_layout Standard
|
||
\begin_inset Formula
|
||
\[
|
||
\text{Det}(A\cdot B)=\text{Det}(A)\cdot\text{Det}(C)
|
||
\]
|
||
|
||
\end_inset
|
||
|
||
|
||
\end_layout
|
||
|
||
\begin_layout Standard
|
||
Hvori C er lig
|
||
\begin_inset Formula
|
||
\[
|
||
C=A^{-1}\cdot(A\cdot B)=B
|
||
\]
|
||
|
||
\end_inset
|
||
|
||
|
||
\end_layout
|
||
|
||
\begin_layout Standard
|
||
jf.
|
||
prop 4.12, der siger at da
|
||
\begin_inset Formula $A\cdot B$
|
||
\end_inset
|
||
|
||
er rækkeækvivalent med
|
||
\begin_inset Formula $C$
|
||
\end_inset
|
||
|
||
, så gælder ovenstående formel.
|
||
\end_layout
|
||
|
||
\begin_layout Subsection
|
||
Proposition 11.30
|
||
\end_layout
|
||
|
||
\begin_layout Standard
|
||
Lad
|
||
\begin_inset Formula $A\in\text{Mat}_{n}(\mathbb{F})$
|
||
\end_inset
|
||
|
||
.
|
||
Så er
|
||
\begin_inset Formula
|
||
\[
|
||
\text{adj}(A)\cdot A=\text{Det}(A)\cdot{\rm I}=A\cdot\text{adj}(A)
|
||
\]
|
||
|
||
\end_inset
|
||
|
||
|
||
\end_layout
|
||
|
||
\begin_layout Standard
|
||
hvori
|
||
\begin_inset Formula ${\rm I}\in\text{Mat}_{n}(\mathbb{F})$
|
||
\end_inset
|
||
|
||
betegner identitetsmatricen.
|
||
\end_layout
|
||
|
||
\begin_layout Standard
|
||
|
||
\series bold
|
||
Bevis
|
||
\end_layout
|
||
|
||
\begin_layout Standard
|
||
Jf.
|
||
deinitionen på matrixproduktet, så kan den
|
||
\begin_inset Formula $(i,j)$
|
||
\end_inset
|
||
|
||
'te indgang i produktet
|
||
\begin_inset Formula $A\cdot\text{adj}(A)$
|
||
\end_inset
|
||
|
||
beskrives som
|
||
\begin_inset Formula
|
||
\[
|
||
\sum_{r=1}^{n}a_{i,r}A_{j,r}
|
||
\]
|
||
|
||
\end_inset
|
||
|
||
|
||
\end_layout
|
||
|
||
\begin_layout Standard
|
||
Husk at hver indgang
|
||
\begin_inset Formula $(i,j)$
|
||
\end_inset
|
||
|
||
i
|
||
\begin_inset Formula $\text{adj}(A)$
|
||
\end_inset
|
||
|
||
består af kofaktorer og derfor er
|
||
\begin_inset Formula $A_{i,j}$
|
||
\end_inset
|
||
|
||
et tal og ikke en matrice.
|
||
Ovenstående formel beskriver jf.
|
||
Proposition 11.26 også determinaten af matricen, der kan fremkomme ved at
|
||
udskifte den
|
||
\begin_inset Formula $j$
|
||
\end_inset
|
||
|
||
'te række i
|
||
\begin_inset Formula $A$
|
||
\end_inset
|
||
|
||
med den
|
||
\begin_inset Formula $i$
|
||
\end_inset
|
||
|
||
'te række i
|
||
\begin_inset Formula $A$
|
||
\end_inset
|
||
|
||
.
|
||
Såfremt
|
||
\begin_inset Formula $i\neq j$
|
||
\end_inset
|
||
|
||
, så er determinanten lig 0, jf.
|
||
Lemma 11.13, da der isåfald vil være to ens rækker, men hvis
|
||
\begin_inset Formula $i=j$
|
||
\end_inset
|
||
|
||
, så er determinanten lig
|
||
\begin_inset Formula $\text{Det}(A)$
|
||
\end_inset
|
||
|
||
.
|
||
Derfor gælder identiteten
|
||
\begin_inset Formula
|
||
\[
|
||
\text{Det}(A)\cdot{\rm I}=A\cdot\text{adj}(A)
|
||
\]
|
||
|
||
\end_inset
|
||
|
||
|
||
\end_layout
|
||
|
||
\begin_layout Standard
|
||
Den resterende del af den oprindelige proposition, følger ved at anvende
|
||
ovenstående på matricen
|
||
\begin_inset Formula $A^{T}$
|
||
\end_inset
|
||
|
||
:
|
||
\end_layout
|
||
|
||
\begin_layout Standard
|
||
\begin_inset Formula
|
||
\[
|
||
\text{Det}(A^{T})\cdot{\rm I}=A^{T}\cdot\text{adj}(A^{T})=A^{T}\cdot\text{adj}(A)^{T}
|
||
\]
|
||
|
||
\end_inset
|
||
|
||
|
||
\end_layout
|
||
|
||
\begin_layout Standard
|
||
Hvor det sidste lighedstegn følger af Lemma 11.29.
|
||
Dermed jf.
|
||
Lemma 11.20, vil:
|
||
\end_layout
|
||
|
||
\begin_layout Standard
|
||
\begin_inset Formula
|
||
\[
|
||
\text{Det}(A)\cdot{\rm I}=A^{T}\cdot\text{adj}(A)^{T}
|
||
\]
|
||
|
||
\end_inset
|
||
|
||
|
||
\end_layout
|
||
|
||
\begin_layout Standard
|
||
hvilket implicerer
|
||
\begin_inset Formula
|
||
\[
|
||
\text{adj}(A)\cdot A=(A^{T}\cdot\text{adj}(A)^{T})^{T}=(\text{Det}(A)\cdot{\rm I)^{T}=\text{Det}(A)\cdot{\rm I}}
|
||
\]
|
||
|
||
\end_inset
|
||
|
||
|
||
\end_layout
|
||
|
||
\begin_layout Standard
|
||
hvori det sidste lighedstegn følger, da
|
||
\begin_inset Formula $\text{Det}(A)\cdot{\rm I}$
|
||
\end_inset
|
||
|
||
er diagonal.
|
||
Hermed er beviset afsluttet.
|
||
\end_layout
|
||
|
||
\begin_layout Subsection
|
||
Korollar 13.32
|
||
\end_layout
|
||
|
||
\begin_layout Standard
|
||
Lad
|
||
\begin_inset Formula $A\in\text{Mat}_{n}(\mathbb{F})$
|
||
\end_inset
|
||
|
||
med
|
||
\begin_inset Formula $n>1$
|
||
\end_inset
|
||
|
||
.
|
||
For
|
||
\begin_inset Formula $i\le i\le n$
|
||
\end_inset
|
||
|
||
gælder
|
||
\begin_inset Formula
|
||
\[
|
||
\text{Det}(A)=\sum_{j=1}^{n}a_{i,j}\cdot A_{i,j}
|
||
\]
|
||
|
||
\end_inset
|
||
|
||
|
||
\end_layout
|
||
|
||
\begin_layout Standard
|
||
Tilsvarende gælder der, for
|
||
\begin_inset Formula $1\leq j\leq n$
|
||
\end_inset
|
||
|
||
, at
|
||
\begin_inset Formula
|
||
\[
|
||
\text{\text{Det}(A)=\sum_{i=1}^{n}a_{i,j}\cdot A_{i,j}}
|
||
\]
|
||
|
||
\end_inset
|
||
|
||
|
||
\end_layout
|
||
|
||
\begin_layout Standard
|
||
Disse kan relateres til prop 11.30 og dermed bruges til at beskrive henholdsvis
|
||
udvikling af række og søjle.
|
||
\end_layout
|
||
|
||
\begin_layout Standard
|
||
\begin_inset Newpage pagebreak
|
||
\end_inset
|
||
|
||
|
||
\end_layout
|
||
|
||
\begin_layout Section
|
||
Egenværdier og egenvektorer
|
||
\end_layout
|
||
|
||
\begin_layout Subsection
|
||
Definition 12.1 (Egenværdi og egenvektor)
|
||
\end_layout
|
||
|
||
\begin_layout Standard
|
||
Et element
|
||
\begin_inset Formula $\boldsymbol{v\in}V\setminus\{\boldsymbol{0}\}$
|
||
\end_inset
|
||
|
||
siges at være en egenvektor for L, såfremt der eksisterer en skalar
|
||
\begin_inset Formula $\lambda\in\mathbb{F},$
|
||
\end_inset
|
||
|
||
så
|
||
\end_layout
|
||
|
||
\begin_layout Standard
|
||
\begin_inset Formula
|
||
\[
|
||
L(\boldsymbol{v})=\lambda\cdot\boldsymbol{v}
|
||
\]
|
||
|
||
\end_inset
|
||
|
||
Hvor
|
||
\begin_inset Formula $\lambda$
|
||
\end_inset
|
||
|
||
kaldes for egenværdien hørende til
|
||
\begin_inset Formula $\boldsymbol{v}$
|
||
\end_inset
|
||
|
||
.
|
||
Dette kan også gøres for matricer, såfremt
|
||
\begin_inset Formula $L=L_{A},$
|
||
\end_inset
|
||
|
||
så
|
||
\end_layout
|
||
|
||
\begin_layout Standard
|
||
\begin_inset Formula
|
||
\[
|
||
A\cdot\boldsymbol{v}=\lambda\cdot\boldsymbol{v}
|
||
\]
|
||
|
||
\end_inset
|
||
|
||
|
||
\end_layout
|
||
|
||
\begin_layout Subsection
|
||
Definition 12.4 (Egenrum)
|
||
\end_layout
|
||
|
||
\begin_layout Standard
|
||
Lad
|
||
\begin_inset Formula $L:V\rightarrow V$
|
||
\end_inset
|
||
|
||
betegne en lineær operator, og lad
|
||
\begin_inset Formula $\lambda\in\mathbb{F}$
|
||
\end_inset
|
||
|
||
.
|
||
Egenrummet for L tilhørende
|
||
\begin_inset Formula $\lambda$
|
||
\end_inset
|
||
|
||
defineres til:
|
||
\begin_inset Formula
|
||
\[
|
||
E_{L}(\lambda)=\{\boldsymbol{v}\in V\,|\,L(\boldsymbol{v})=\lambda\cdot\boldsymbol{v}\}
|
||
\]
|
||
|
||
\end_inset
|
||
|
||
|
||
\end_layout
|
||
|
||
\begin_layout Standard
|
||
Dette kan også defineres som en matric, definitionen følger.
|
||
\end_layout
|
||
|
||
\begin_layout Subsection
|
||
Definition 12.16 (Similære matricer)
|
||
\end_layout
|
||
|
||
\begin_layout Standard
|
||
Lad
|
||
\begin_inset Formula $A,B\in\text{Mat}_{n}(\mathbb{F})$
|
||
\end_inset
|
||
|
||
betegne kvadratiske matricer.
|
||
|
||
\begin_inset Formula $A$
|
||
\end_inset
|
||
|
||
og
|
||
\begin_inset Formula $B$
|
||
\end_inset
|
||
|
||
er da similære, hvis der eksisterer en invertibel matrix
|
||
\begin_inset Formula $S\in\text{Mat}_{n}(\mathbb{F})$
|
||
\end_inset
|
||
|
||
, så
|
||
\begin_inset Formula $A=S^{-1}\cdot B\cdot S$
|
||
\end_inset
|
||
|
||
|
||
\end_layout
|
||
|
||
\begin_layout Standard
|
||
At de er similære, betyder blandt andet at de har det samme karakteristiske
|
||
polynomium, pr.
|
||
Lemma 12.15 og derfor har de ens egenværdier.
|
||
\end_layout
|
||
|
||
\begin_layout Standard
|
||
Dette viser at det karakteristiske polynomium ikke afhænger af basen.
|
||
\end_layout
|
||
|
||
\begin_layout Subsection
|
||
Lemma 12.15 (Similære Matricer)
|
||
\end_layout
|
||
|
||
\begin_layout Standard
|
||
Lad
|
||
\begin_inset Formula $A,B\in\text{Mat}_{n}(\mathbb{F})$
|
||
\end_inset
|
||
|
||
og lad
|
||
\begin_inset Formula $S\in\text{Mat}_{n}(\mathbb{F})$
|
||
\end_inset
|
||
|
||
betegne en invertibel matrix, så gælder
|
||
\begin_inset Formula
|
||
\[
|
||
A=S^{-1}\cdot B\cdot S
|
||
\]
|
||
|
||
\end_inset
|
||
|
||
|
||
\end_layout
|
||
|
||
\begin_layout Standard
|
||
og så er de karakteristiske polynomiumer
|
||
\begin_inset Formula $p_{A}$
|
||
\end_inset
|
||
|
||
og
|
||
\begin_inset Formula $p_{B}$
|
||
\end_inset
|
||
|
||
ens.
|
||
|
||
\end_layout
|
||
|
||
\begin_layout Standard
|
||
|
||
\series bold
|
||
Bevis
|
||
\end_layout
|
||
|
||
\begin_layout Standard
|
||
Lad
|
||
\begin_inset Formula $t\in\mathbb{F}.$
|
||
\end_inset
|
||
|
||
Vi skal da vise at
|
||
\begin_inset Formula $p_{A}(t)=p_{B}(t),$
|
||
\end_inset
|
||
|
||
derfor:
|
||
\end_layout
|
||
|
||
\begin_layout Standard
|
||
\begin_inset Formula
|
||
\[
|
||
\text{Det}(A-t\cdot{\rm I})=\text{Det}(B-t\cdot{\rm I})
|
||
\]
|
||
|
||
\end_inset
|
||
|
||
|
||
\end_layout
|
||
|
||
\begin_layout Standard
|
||
Men
|
||
\begin_inset Formula
|
||
\begin{align*}
|
||
S^{-1}\cdot(B-t\cdot{\rm I)\cdot S} & =S^{-1}\cdot B\cdot S-t\cdot S^{-1}\cdot S\\
|
||
& =S^{-1}\cdot B\cdot S-t\cdot S^{-1}\cdot S\\
|
||
& =A-t\cdot{\rm I}
|
||
\end{align*}
|
||
|
||
\end_inset
|
||
|
||
Så derfor konkluderes:
|
||
\begin_inset Formula
|
||
\begin{align*}
|
||
p_{A}(t) & =\text{Det}(A-t\cdot{\rm I})\\
|
||
& =\text{Det}(S^{-1}\cdot(B-t\cdot{\rm I})\cdot S)\\
|
||
& =\text{Det(}S^{-1})\cdot\text{Det}(B-t\cdot{\rm I})\cdot\text{Det}(S)\\
|
||
& =\text{Det}(S^{-1})\cdot p_{B}(t)\cdot\text{Det}(S)\\
|
||
& =\text{Det}(S^{-1}\cdot S)\cdot p_{B}(t)\\
|
||
& =p_{B}(t)
|
||
\end{align*}
|
||
|
||
\end_inset
|
||
|
||
|
||
\end_layout
|
||
|
||
\begin_layout Standard
|
||
Hvilket afslutter beviset.
|
||
\end_layout
|
||
|
||
\begin_layout Subsection
|
||
Definition 13.1 (Diagonaliserbar, bare lige SUPER kort)
|
||
\end_layout
|
||
|
||
\begin_layout Standard
|
||
Ting går ned langs diagonalen, wuhu.
|
||
\end_layout
|
||
|
||
\begin_layout Subsection
|
||
Proposition 13.2(Diagonalgøgl)
|
||
\end_layout
|
||
|
||
\begin_layout Standard
|
||
Lad
|
||
\begin_inset Formula $\mathcal{V}=(\boldsymbol{v}_{1},\boldsymbol{v}_{2},\dots,\boldsymbol{v}_{n})$
|
||
\end_inset
|
||
|
||
betegne en basis for
|
||
\begin_inset Formula $V$
|
||
\end_inset
|
||
|
||
.
|
||
Så er
|
||
\begin_inset Formula $\mathcal{V}$
|
||
\end_inset
|
||
|
||
en basis af egenvektorer for
|
||
\begin_inset Formula $L$
|
||
\end_inset
|
||
|
||
hvis og kun hvis matrixrepræsentationen
|
||
\begin_inset Formula $_{\mathcal{V}}[L]_{\mathcal{V}}$
|
||
\end_inset
|
||
|
||
er diagonal.
|
||
I givet fald er den
|
||
\begin_inset Formula $i$
|
||
\end_inset
|
||
|
||
'te diagonalindgang i
|
||
\begin_inset Formula $_{\mathcal{V}}[L]_{\mathcal{V}}$
|
||
\end_inset
|
||
|
||
lig egenværdien for
|
||
\begin_inset Formula $\boldsymbol{v}_{i}.$
|
||
\end_inset
|
||
|
||
|
||
\end_layout
|
||
|
||
\begin_layout Standard
|
||
|
||
\series bold
|
||
Bevis
|
||
\end_layout
|
||
|
||
\begin_layout Standard
|
||
Bemærk at den
|
||
\begin_inset Formula $i$
|
||
\end_inset
|
||
|
||
'te søjle i
|
||
\begin_inset Formula $_{\mathcal{V}}[L]_{\mathcal{V}}$
|
||
\end_inset
|
||
|
||
er lig koordinatvektoren
|
||
\begin_inset Formula $[L(\boldsymbol{v}_{i})]_{\mathcal{V}}\in\mathbb{F}^{n},$
|
||
\end_inset
|
||
|
||
jf.
|
||
definition 8.9 (Definitionen for matrixrepræsentation).
|
||
|
||
\end_layout
|
||
|
||
\begin_layout Standard
|
||
Hvis
|
||
\begin_inset Formula $\mathcal{V}$
|
||
\end_inset
|
||
|
||
er en basis for
|
||
\begin_inset Formula $V$
|
||
\end_inset
|
||
|
||
bestående af egenvektorer for
|
||
\begin_inset Formula $L$
|
||
\end_inset
|
||
|
||
, så vil den
|
||
\begin_inset Formula $i$
|
||
\end_inset
|
||
|
||
'te søjle i
|
||
\begin_inset Formula $_{\mathcal{V}}[L]_{\mathcal{V}}$
|
||
\end_inset
|
||
|
||
være lig
|
||
\begin_inset Formula
|
||
\[
|
||
[L(\boldsymbol{v}_{i})]_{\mathcal{V}}=[\lambda_{i}\cdot\boldsymbol{v}_{i}]_{\mathcal{V}}=\lambda_{i}\cdot[v]_{\mathcal{V}}=\lambda_{i}\cdot\boldsymbol{e}_{i}
|
||
\]
|
||
|
||
\end_inset
|
||
|
||
|
||
\end_layout
|
||
|
||
\begin_layout Standard
|
||
Specielt er
|
||
\begin_inset Formula $_{\mathcal{V}}[L]_{\mathcal{V}}$
|
||
\end_inset
|
||
|
||
da diagonal med
|
||
\begin_inset Formula $i$
|
||
\end_inset
|
||
|
||
'te diagonalindgang lig
|
||
\begin_inset Formula $\lambda_{i}$
|
||
\end_inset
|
||
|
||
.
|
||
|
||
\end_layout
|
||
|
||
\begin_layout Standard
|
||
Hvis omvendt
|
||
\begin_inset Formula $_{\mathcal{V}}[L]_{\mathcal{V}}$
|
||
\end_inset
|
||
|
||
er diagonal med diagonalindgange
|
||
\begin_inset Formula $\lambda_{i}$
|
||
\end_inset
|
||
|
||
for
|
||
\begin_inset Formula $i=1,2,\dots,n$
|
||
\end_inset
|
||
|
||
, så er
|
||
\begin_inset Formula
|
||
\[
|
||
[L(\boldsymbol{v}_{i})]_{\mathcal{V}}=\lambda_{i}\cdot\boldsymbol{e}_{i}=\lambda_{i}\cdot[\boldsymbol{v}]_{\mathcal{V}}=[\lambda_{i}\cdot\boldsymbol{v}_{i}]_{\mathcal{V}}
|
||
\]
|
||
|
||
\end_inset
|
||
|
||
|
||
\end_layout
|
||
|
||
\begin_layout Standard
|
||
og dermed gælder der at
|
||
\begin_inset Formula
|
||
\[
|
||
L(\boldsymbol{v}_{i})=\lambda_{i}\cdot\boldsymbol{v}_{i}\qquad for\,\,i=1,2,\dots,n
|
||
\]
|
||
|
||
\end_inset
|
||
|
||
|
||
\end_layout
|
||
|
||
\begin_layout Standard
|
||
Hvilket afslutter beviset at
|
||
\begin_inset Formula $\mathcal{V}$
|
||
\end_inset
|
||
|
||
består af egenvektorer.
|
||
\end_layout
|
||
|
||
\begin_layout Standard
|
||
Dette kan også omskrives til matricer, men dette bevis er udeladt.
|
||
Det er Lemma 13.3.
|
||
\end_layout
|
||
|
||
\begin_layout Section
|
||
Diagonalisering
|
||
\end_layout
|
||
|
||
\begin_layout Subsection
|
||
Definition 13.1 (Diagonaliserbar)
|
||
\end_layout
|
||
|
||
\begin_layout Standard
|
||
Den lineære operator
|
||
\begin_inset Formula $L$
|
||
\end_inset
|
||
|
||
kaldes
|
||
\series bold
|
||
diagonaliserbar
|
||
\series default
|
||
såfremt der eksisterer en basis
|
||
\begin_inset Formula $V$
|
||
\end_inset
|
||
|
||
bestående af egenvektorer for L.
|
||
En matrix
|
||
\begin_inset Formula $A\in\text{Mat}_{n}(\mathbb{F})$
|
||
\end_inset
|
||
|
||
siges at være diagonaliserbar, hvis det tilsvarende er gældende for den
|
||
lineære operator
|
||
\begin_inset Formula $L_{A}:\mathbb{F}^{n}\rightarrow\mathbb{F}^{n}$
|
||
\end_inset
|
||
|
||
.
|
||
\end_layout
|
||
|
||
\begin_layout Subsection
|
||
Proposition 13.2 (Diagonalgøgl)
|
||
\end_layout
|
||
|
||
\begin_layout Standard
|
||
Lad
|
||
\begin_inset Formula $\mathcal{V}=(\boldsymbol{v}_{1},\boldsymbol{v}_{2},\dots,\boldsymbol{v}_{n})$
|
||
\end_inset
|
||
|
||
betegne en basis for
|
||
\begin_inset Formula $V$
|
||
\end_inset
|
||
|
||
.
|
||
Så er
|
||
\begin_inset Formula $\mathcal{V}$
|
||
\end_inset
|
||
|
||
en basis af egenvektorer for
|
||
\begin_inset Formula $L$
|
||
\end_inset
|
||
|
||
hvis og kun hvis matrixrepræsentationen
|
||
\begin_inset Formula $_{\mathcal{V}}[L]_{\mathcal{V}}$
|
||
\end_inset
|
||
|
||
er diagonal.
|
||
I givet fald er den
|
||
\begin_inset Formula $i$
|
||
\end_inset
|
||
|
||
'te diagonalindgang i
|
||
\begin_inset Formula $_{\mathcal{V}}[L]_{\mathcal{V}}$
|
||
\end_inset
|
||
|
||
lig egenværdien for
|
||
\begin_inset Formula $\boldsymbol{v}_{i}.$
|
||
\end_inset
|
||
|
||
|
||
\end_layout
|
||
|
||
\begin_layout Standard
|
||
|
||
\series bold
|
||
Bevis
|
||
\end_layout
|
||
|
||
\begin_layout Standard
|
||
Bemærk at den
|
||
\begin_inset Formula $i$
|
||
\end_inset
|
||
|
||
'te søjle i
|
||
\begin_inset Formula $_{\mathcal{V}}[L]_{\mathcal{V}}$
|
||
\end_inset
|
||
|
||
er lig koordinatvektoren
|
||
\begin_inset Formula $[L(\boldsymbol{v}_{i})]_{\mathcal{V}}\in\mathbb{F}^{n},$
|
||
\end_inset
|
||
|
||
jf.
|
||
definition 8.9 (Definitionen for matrixrepræsentation).
|
||
|
||
\end_layout
|
||
|
||
\begin_layout Standard
|
||
Hvis
|
||
\begin_inset Formula $\mathcal{V}$
|
||
\end_inset
|
||
|
||
er en basis for
|
||
\begin_inset Formula $V$
|
||
\end_inset
|
||
|
||
bestående af egenvektorer for
|
||
\begin_inset Formula $L$
|
||
\end_inset
|
||
|
||
, så vil den
|
||
\begin_inset Formula $i$
|
||
\end_inset
|
||
|
||
'te søjle i
|
||
\begin_inset Formula $_{\mathcal{V}}[L]_{\mathcal{V}}$
|
||
\end_inset
|
||
|
||
være lig
|
||
\begin_inset Formula
|
||
\[
|
||
[L(\boldsymbol{v}_{i})]_{\mathcal{V}}=[\lambda_{i}\cdot\boldsymbol{v}_{i}]_{\mathcal{V}}=\lambda_{i}\cdot[v]_{\mathcal{V}}=\lambda_{i}\cdot\boldsymbol{e}_{i}
|
||
\]
|
||
|
||
\end_inset
|
||
|
||
|
||
\end_layout
|
||
|
||
\begin_layout Standard
|
||
Specielt er
|
||
\begin_inset Formula $_{\mathcal{V}}[L]_{\mathcal{V}}$
|
||
\end_inset
|
||
|
||
da diagonal med
|
||
\begin_inset Formula $i$
|
||
\end_inset
|
||
|
||
'te diagonalindgang lig
|
||
\begin_inset Formula $\lambda_{i}$
|
||
\end_inset
|
||
|
||
.
|
||
|
||
\end_layout
|
||
|
||
\begin_layout Standard
|
||
Hvis omvendt
|
||
\begin_inset Formula $_{\mathcal{V}}[L]_{\mathcal{V}}$
|
||
\end_inset
|
||
|
||
er diagonal med diagonalindgange
|
||
\begin_inset Formula $\lambda_{i}$
|
||
\end_inset
|
||
|
||
for
|
||
\begin_inset Formula $i=1,2,\dots,n$
|
||
\end_inset
|
||
|
||
, så er
|
||
\begin_inset Formula
|
||
\[
|
||
[L(\boldsymbol{v}_{i})]_{\mathcal{V}}=\lambda_{i}\cdot\boldsymbol{e}_{i}=\lambda_{i}\cdot[\boldsymbol{v}]_{\mathcal{V}}=[\lambda_{i}\cdot\boldsymbol{v}_{i}]_{\mathcal{V}}
|
||
\]
|
||
|
||
\end_inset
|
||
|
||
|
||
\end_layout
|
||
|
||
\begin_layout Standard
|
||
og dermed gælder der at
|
||
\begin_inset Formula
|
||
\[
|
||
L(\boldsymbol{v}_{i})=\lambda_{i}\cdot\boldsymbol{v}_{i}\qquad for\,\,i=1,2,\dots,n
|
||
\]
|
||
|
||
\end_inset
|
||
|
||
|
||
\end_layout
|
||
|
||
\begin_layout Standard
|
||
Hvilket afslutter beviset at
|
||
\begin_inset Formula $\mathcal{V}$
|
||
\end_inset
|
||
|
||
består af egenvektorer.
|
||
\end_layout
|
||
|
||
\begin_layout Subsection
|
||
Lemma 13.3 (Diagonalgøgl, nu med matricer)
|
||
\end_layout
|
||
|
||
\begin_layout Standard
|
||
Lad
|
||
\begin_inset Formula $\boldsymbol{A\in\text{Mat}_{n}(\mathbb{F}).}$
|
||
\end_inset
|
||
|
||
For en invertibel matrix
|
||
\begin_inset Formula $S\in\text{Mat}_{n}(\mathbb{F})$
|
||
\end_inset
|
||
|
||
vil
|
||
\begin_inset Formula
|
||
\[
|
||
D=S^{-1}AS
|
||
\]
|
||
|
||
\end_inset
|
||
|
||
|
||
\end_layout
|
||
|
||
\begin_layout Standard
|
||
være en diagonalmatrix hvis og kun hvis søjlerne i
|
||
\begin_inset Formula $S$
|
||
\end_inset
|
||
|
||
udgør en basis for
|
||
\begin_inset Formula $\mathbb{F}^{n}$
|
||
\end_inset
|
||
|
||
, bestående af egenvektorer for
|
||
\begin_inset Formula $A$
|
||
\end_inset
|
||
|
||
.
|
||
I givet fald vil egenværdien for den
|
||
\begin_inset Formula $i$
|
||
\end_inset
|
||
|
||
'te søjle i
|
||
\begin_inset Formula $S$
|
||
\end_inset
|
||
|
||
være identisk med en
|
||
\begin_inset Formula $i$
|
||
\end_inset
|
||
|
||
'te diagonalindgang i
|
||
\begin_inset Formula $D$
|
||
\end_inset
|
||
|
||
.
|
||
Specielt er
|
||
\begin_inset Formula $A$
|
||
\end_inset
|
||
|
||
diagonaliserbar hvis og kun hvis
|
||
\begin_inset Formula $A$
|
||
\end_inset
|
||
|
||
er similær til en diagonalmatrix (similariteten følger af definition 12.16).
|
||
\end_layout
|
||
|
||
\begin_layout Standard
|
||
|
||
\series bold
|
||
Bevis
|
||
\end_layout
|
||
|
||
\begin_layout Standard
|
||
Lad
|
||
\begin_inset Formula $S\in\text{Mat}_{n}(\mathbb{F})$
|
||
\end_inset
|
||
|
||
betegne en matrix med søjler
|
||
\begin_inset Formula $(\boldsymbol{v}_{1},\boldsymbol{v}_{2},\dots,\boldsymbol{v}_{n})$
|
||
\end_inset
|
||
|
||
.
|
||
Jf .
|
||
proposition 7.3 (Hvis
|
||
\begin_inset Formula $A$
|
||
\end_inset
|
||
|
||
er en kvadratisk matrix med søjler
|
||
\begin_inset Formula $\boldsymbol{a}_{1},\dots,\boldsymbol{a}_{n}$
|
||
\end_inset
|
||
|
||
så er
|
||
\begin_inset Formula $A$
|
||
\end_inset
|
||
|
||
invertibel hvis og kun hvis
|
||
\begin_inset Formula $(\boldsymbol{a}_{1},\dots,\boldsymbol{a}_{n})$
|
||
\end_inset
|
||
|
||
er en basis for
|
||
\begin_inset Formula $\mathbb{F}^{n}$
|
||
\end_inset
|
||
|
||
), såfremt
|
||
\begin_inset Formula $S$
|
||
\end_inset
|
||
|
||
er invertibel, så vil vi yderligere have, at
|
||
\begin_inset Formula
|
||
\[
|
||
S=_{\varepsilon}[\boxempty]_{\mathcal{V}}
|
||
\]
|
||
|
||
\end_inset
|
||
|
||
|
||
\end_layout
|
||
|
||
\begin_layout Standard
|
||
hvilket, jf.
|
||
eksempel 8.8(A), betyder at, for hver søjle, siger
|
||
\begin_inset Formula $[\boldsymbol{v}_{i}]_{\varepsilon}$
|
||
\end_inset
|
||
|
||
og det altså oplagt er matricen der indholder egenvektorer.
|
||
Dermed er
|
||
\end_layout
|
||
|
||
\begin_layout Standard
|
||
\begin_inset Formula
|
||
\[
|
||
S^{-1}AS=\,_{\varepsilon}[\boxempty]_{\mathcal{V}}^{-1}\cdot_{\varepsilon}[L_{A}]_{\varepsilon}\cdot{}_{\varepsilon}[\boxempty]_{\mathcal{V}}=_{\mathcal{V}}[L_{A}]_{\mathcal{V}}
|
||
\]
|
||
|
||
\end_inset
|
||
|
||
|
||
\end_layout
|
||
|
||
\begin_layout Standard
|
||
Jf.
|
||
korollar 8.13 og prop 8.7, der begger siger noget om at det er ok at kæde
|
||
transformationsmatricerne sammen.
|
||
Det endelige udsagn følger da af prop 13.2
|
||
\end_layout
|
||
|
||
\begin_layout Section
|
||
Spektralsætningen
|
||
\end_layout
|
||
|
||
\begin_layout Subsection
|
||
Sætning 14.18
|
||
\end_layout
|
||
|
||
\begin_layout Standard
|
||
Lad
|
||
\begin_inset Formula $L:V\rightarrow V$
|
||
\end_inset
|
||
|
||
betegne en selvadjungeret operator.
|
||
Så gælder der:
|
||
\end_layout
|
||
|
||
\begin_layout Standard
|
||
(1) Alle egenværdier for
|
||
\begin_inset Formula $L$
|
||
\end_inset
|
||
|
||
er reele.
|
||
\end_layout
|
||
|
||
\begin_layout Standard
|
||
(2) Såfremt
|
||
\begin_inset Formula $\boldsymbol{v}$
|
||
\end_inset
|
||
|
||
og
|
||
\begin_inset Formula $\boldsymbol{w}$
|
||
\end_inset
|
||
|
||
er egenvektorer for
|
||
\begin_inset Formula $L$
|
||
\end_inset
|
||
|
||
hørende til forskellige egenværdier, så er
|
||
\begin_inset Formula $\boldsymbol{v}$
|
||
\end_inset
|
||
|
||
og
|
||
\begin_inset Formula $\boldsymbol{w}$
|
||
\end_inset
|
||
|
||
ortogonale.
|
||
\end_layout
|
||
|
||
\begin_layout Standard
|
||
|
||
\series bold
|
||
Bevis
|
||
\end_layout
|
||
|
||
\begin_layout Standard
|
||
(1)
|
||
\end_layout
|
||
|
||
\begin_layout Standard
|
||
Lad
|
||
\begin_inset Formula $\boldsymbol{v}$
|
||
\end_inset
|
||
|
||
og
|
||
\begin_inset Formula $\boldsymbol{u}$
|
||
\end_inset
|
||
|
||
betegne egenvektorer for
|
||
\begin_inset Formula $L$
|
||
\end_inset
|
||
|
||
med egenværdier hhv.
|
||
|
||
\begin_inset Formula $\lambda$
|
||
\end_inset
|
||
|
||
og
|
||
\begin_inset Formula $\mu$
|
||
\end_inset
|
||
|
||
.
|
||
Så gælder der både, at
|
||
\end_layout
|
||
|
||
\begin_layout Standard
|
||
\begin_inset Formula
|
||
\begin{align*}
|
||
\left\langle \boldsymbol{u},L(\boldsymbol{v})\right\rangle & =\left\langle \boldsymbol{u},\lambda\cdot\boldsymbol{v}\right\rangle \\
|
||
& =\overline{\lambda}\cdot\left\langle \boldsymbol{u},\boldsymbol{v}\right\rangle
|
||
\end{align*}
|
||
|
||
\end_inset
|
||
|
||
|
||
\end_layout
|
||
|
||
\begin_layout Standard
|
||
men jf.
|
||
formel 14.4 (
|
||
\begin_inset Formula $\left\langle L^{*}(\boldsymbol{u}),\boldsymbol{v}\right\rangle =\left\langle \boldsymbol{u},L(\boldsymbol{v})\right\rangle $
|
||
\end_inset
|
||
|
||
), har vi at:
|
||
\begin_inset Formula
|
||
\begin{align*}
|
||
\left\langle \boldsymbol{u},L(\boldsymbol{v})\right\rangle & =\left\langle L^{*}(\boldsymbol{u}),\boldsymbol{v}\right\rangle \\
|
||
& =\left\langle L(\boldsymbol{u}),\boldsymbol{v}\right\rangle \qquad\text{Da den er selvadjungeret}\\
|
||
& =\left\langle \mu\cdot\text{\boldsymbol{u},\boldsymbol{v}}\right\rangle \\
|
||
& =\mu\cdot\left\langle u,\boldsymbol{v}\right\rangle
|
||
\end{align*}
|
||
|
||
\end_inset
|
||
|
||
|
||
\end_layout
|
||
|
||
\begin_layout Standard
|
||
I tilfældet hvor
|
||
\begin_inset Formula $\text{\boldsymbol{v}=\boldsymbol{u}}$
|
||
\end_inset
|
||
|
||
, og dermed
|
||
\begin_inset Formula $\lambda=\mu$
|
||
\end_inset
|
||
|
||
, betyder de to ovenstående resultater, at:
|
||
\begin_inset Formula
|
||
\[
|
||
\overline{\lambda}\cdot\left\langle \boldsymbol{v},\boldsymbol{v}\right\rangle =\lambda\cdot\left\langle \boldsymbol{v},\boldsymbol{v}\right\rangle
|
||
\]
|
||
|
||
\end_inset
|
||
|
||
|
||
\end_layout
|
||
|
||
\begin_layout Standard
|
||
Hvilket kun er muligt når
|
||
\begin_inset Formula $\overline{\lambda}=\lambda$
|
||
\end_inset
|
||
|
||
, idet
|
||
\begin_inset Formula $\boldsymbol{v}$
|
||
\end_inset
|
||
|
||
er en egenvektor og dermed ikke kan være 0.
|
||
Dette medfører at
|
||
\begin_inset Formula $\lambda$
|
||
\end_inset
|
||
|
||
må være et reelt tal.
|
||
Dette er ikke relevant for andre tilfælde, end hvor de to egenvektorer
|
||
er ens, da man altid vil kunne lave samme argument, hvis blot man gør det
|
||
her for hver egenvektor.
|
||
\end_layout
|
||
|
||
\begin_layout Standard
|
||
(2)
|
||
\end_layout
|
||
|
||
\begin_layout Standard
|
||
Betragt nu tilfældet hvor
|
||
\begin_inset Formula $\boldsymbol{u=w},$
|
||
\end_inset
|
||
|
||
er en egenvektor med egenværdi
|
||
\begin_inset Formula $\mu\ne\lambda$
|
||
\end_inset
|
||
|
||
.
|
||
Da implicerer de to formler fra (1) og resultatet af (1) (at alle egenværdier
|
||
er reele), at
|
||
\end_layout
|
||
|
||
\begin_layout Standard
|
||
\begin_inset Formula
|
||
\[
|
||
\lambda\cdot\left\langle \boldsymbol{w},\boldsymbol{v}\right\rangle =\mu\cdot\left\langle \boldsymbol{w},\boldsymbol{v}\right\rangle
|
||
\]
|
||
|
||
\end_inset
|
||
|
||
|
||
\end_layout
|
||
|
||
\begin_layout Standard
|
||
Hvor følgende kan udledes
|
||
\begin_inset Formula
|
||
\[
|
||
(\lambda-\mu)\cdot\left\langle \boldsymbol{w},\boldsymbol{v}\right\rangle =0
|
||
\]
|
||
|
||
\end_inset
|
||
|
||
|
||
\end_layout
|
||
|
||
\begin_layout Standard
|
||
Hvilket kun er muligt hvis
|
||
\begin_inset Formula
|
||
\[
|
||
\left\langle \boldsymbol{w},\boldsymbol{v}\right\rangle =0
|
||
\]
|
||
|
||
\end_inset
|
||
|
||
|
||
\end_layout
|
||
|
||
\begin_layout Standard
|
||
Hvorefter det kan konkluderes at
|
||
\begin_inset Formula $\boldsymbol{v}$
|
||
\end_inset
|
||
|
||
og
|
||
\begin_inset Formula $\boldsymbol{w}$
|
||
\end_inset
|
||
|
||
er ortogonale på hinanden.
|
||
\end_layout
|
||
|
||
\begin_layout Subsection
|
||
Sætning 14.20 (Spektralsætningen)
|
||
\end_layout
|
||
|
||
\begin_layout Standard
|
||
Lad
|
||
\begin_inset Formula $L:V\rightarrow V$
|
||
\end_inset
|
||
|
||
betegne en selvadjungerende operator.
|
||
Så eksisterer der en ortonormal basis for
|
||
\begin_inset Formula $V$
|
||
\end_inset
|
||
|
||
bestående af egenvektorer for
|
||
\begin_inset Formula $L$
|
||
\end_inset
|
||
|
||
med reele egenværdier.
|
||
Specielt er
|
||
\begin_inset Formula $L$
|
||
\end_inset
|
||
|
||
ortonormal diagonaliserbar.
|
||
\end_layout
|
||
|
||
\begin_layout Standard
|
||
|
||
\series bold
|
||
Bevis
|
||
\end_layout
|
||
|
||
\begin_layout Standard
|
||
Per definition 14.18, vides der allerede at alle egenværdier for
|
||
\begin_inset Formula $L$
|
||
\end_inset
|
||
|
||
er reele, derfor skal der blot vises at
|
||
\begin_inset Formula $V$
|
||
\end_inset
|
||
|
||
har en ortonormal basis bestående af egenvektorer for
|
||
\begin_inset Formula $L$
|
||
\end_inset
|
||
|
||
.
|
||
Dette gøres via et induktion i
|
||
\begin_inset Formula $n=\text{Dim}(V)$
|
||
\end_inset
|
||
|
||
.
|
||
\end_layout
|
||
|
||
\begin_layout Standard
|
||
Hvis
|
||
\begin_inset Formula $\text{Dim}(V)=1$
|
||
\end_inset
|
||
|
||
, så lader vi
|
||
\begin_inset Formula $\mathcal{V}=(\boldsymbol{v})$
|
||
\end_inset
|
||
|
||
betegne en ortonormal basis for
|
||
\begin_inset Formula $V$
|
||
\end_inset
|
||
|
||
.
|
||
I givet fald, er
|
||
\begin_inset Formula $L(\boldsymbol{v})\in\text{Span}(\boldsymbol{v})$
|
||
\end_inset
|
||
|
||
og dermed gælder
|
||
\begin_inset Formula $L(\boldsymbol{v})=\lambda\cdot\boldsymbol{v}$
|
||
\end_inset
|
||
|
||
oplagt.
|
||
Dermed er
|
||
\begin_inset Formula $\boldsymbol{v}$
|
||
\end_inset
|
||
|
||
en egenvektor for
|
||
\begin_inset Formula $L$
|
||
\end_inset
|
||
|
||
.
|
||
|
||
\end_layout
|
||
|
||
\begin_layout Standard
|
||
Antag nu at
|
||
\begin_inset Formula $n=\text{Dim}(V)>1$
|
||
\end_inset
|
||
|
||
og at resultatet er vist for selvadjungerende operatorer på vektorrum af
|
||
dimension
|
||
\begin_inset Formula $n-1$
|
||
\end_inset
|
||
|
||
.
|
||
Vælg da, jf.
|
||
sætning 14.19, der siger at alle selvadjungerende operatorer har en reel
|
||
egenværdi og dermed en egenvektor, en egenvektor
|
||
\begin_inset Formula $\boldsymbol{v}$
|
||
\end_inset
|
||
|
||
for
|
||
\begin_inset Formula $L$
|
||
\end_inset
|
||
|
||
og sæt
|
||
\begin_inset Formula $W=\text{Span}(\boldsymbol{v})^{\perp}.$
|
||
\end_inset
|
||
|
||
Idet
|
||
\begin_inset Formula $L=L^{*}$
|
||
\end_inset
|
||
|
||
, da
|
||
\begin_inset Formula $L$
|
||
\end_inset
|
||
|
||
er selvadjungerende, så viser Lemma 14.10 (Lad L være en lineær operator
|
||
på et indre produkt rum V af
|
||
\begin_inset Formula $\text{Dim}(V)>0$
|
||
\end_inset
|
||
|
||
over
|
||
\begin_inset Formula $\mathbb{K},$
|
||
\end_inset
|
||
|
||
lad da
|
||
\begin_inset Formula $W$
|
||
\end_inset
|
||
|
||
være et underrum af
|
||
\begin_inset Formula $V$
|
||
\end_inset
|
||
|
||
, der er stabilt overfor
|
||
\begin_inset Formula $L^{*}.$
|
||
\end_inset
|
||
|
||
Så vil
|
||
\begin_inset Formula $W^{\perp}$
|
||
\end_inset
|
||
|
||
være stabilt overfor
|
||
\begin_inset Formula $L$
|
||
\end_inset
|
||
|
||
), at
|
||
\begin_inset Formula $W$
|
||
\end_inset
|
||
|
||
er stabilt overfor
|
||
\begin_inset Formula $L$
|
||
\end_inset
|
||
|
||
.
|
||
Den inducerede operator
|
||
\begin_inset Formula $L_{W}$
|
||
\end_inset
|
||
|
||
på
|
||
\begin_inset Formula $W$
|
||
\end_inset
|
||
|
||
er ydermere selvadjungeret, pr.
|
||
eksempel 14.15(B) (der konkluderer at
|
||
\begin_inset Formula $L_{W}:W\rightarrow W$
|
||
\end_inset
|
||
|
||
er selvadjungeret).
|
||
Idet
|
||
\begin_inset Formula $\text{Dim}(v)=n-1$
|
||
\end_inset
|
||
|
||
, jf.
|
||
korollar 10.21 (der siger at
|
||
\begin_inset Formula $\text{Dim}(V)=\text{Dim}(W)+\text{Dim}(W)^{\perp},$
|
||
\end_inset
|
||
|
||
hvor, i vores tilfælde,
|
||
\begin_inset Formula $\text{Dim}(W)=1$
|
||
\end_inset
|
||
|
||
, da det kun er elementet
|
||
\begin_inset Formula $\boldsymbol{v}$
|
||
\end_inset
|
||
|
||
, så
|
||
\begin_inset Formula $\text{Dim}(W)^{\perp}=\text{Dim}(V)-1$
|
||
\end_inset
|
||
|
||
.
|
||
Note, det nævnte
|
||
\begin_inset Formula $W$
|
||
\end_inset
|
||
|
||
her, er ikke det
|
||
\begin_inset Formula $W$
|
||
\end_inset
|
||
|
||
brugt i det udestående bevis), så implicerer induktionsantagelsen, at W
|
||
har en ortonormal base
|
||
\begin_inset Formula $\mathcal{W}=(\boldsymbol{w}_{1},\boldsymbol{w}_{2},\dots,\boldsymbol{w}_{n-1}),$
|
||
\end_inset
|
||
|
||
bestående af egenvektorer for
|
||
\begin_inset Formula $L_{W}$
|
||
\end_inset
|
||
|
||
(note,
|
||
\begin_inset Formula $L_{W}$
|
||
\end_inset
|
||
|
||
betyder blot at
|
||
\begin_inset Formula $L$
|
||
\end_inset
|
||
|
||
er stabilt overfor W, således at tager man et element fra W, bruger den
|
||
lineære operator, så ender man indenfor W igen), og dermed for
|
||
\begin_inset Formula $L.$
|
||
\end_inset
|
||
|
||
|
||
\end_layout
|
||
|
||
\begin_layout Standard
|
||
Sæt nu
|
||
\begin_inset Formula
|
||
\[
|
||
\boldsymbol{w}_{n}=\frac{1}{\left\Vert \boldsymbol{v}\right\Vert }\cdot\boldsymbol{v}
|
||
\]
|
||
|
||
\end_inset
|
||
|
||
|
||
\end_layout
|
||
|
||
\begin_layout Standard
|
||
Så er elementerne
|
||
\begin_inset Formula $\mathcal{V}=(\boldsymbol{w}_{1},\boldsymbol{w}_{2},\dots,\boldsymbol{w}_{n})$
|
||
\end_inset
|
||
|
||
en ortonormal mængde (da de er normaliserede),
|
||
\begin_inset Formula $\boldsymbol{w}_{1},\boldsymbol{w}_{2},\dots,\boldsymbol{w}_{n-1}$
|
||
\end_inset
|
||
|
||
er ortonormale pr.
|
||
valg af
|
||
\begin_inset Formula $\mathcal{W}$
|
||
\end_inset
|
||
|
||
og
|
||
\begin_inset Formula $\boldsymbol{v}$
|
||
\end_inset
|
||
|
||
(og dermed
|
||
\begin_inset Formula $\boldsymbol{w}_{n})$
|
||
\end_inset
|
||
|
||
er ortogonal på
|
||
\begin_inset Formula $\boldsymbol{w}_{1},\boldsymbol{w}_{2},\dots,\boldsymbol{w}_{n-1}$
|
||
\end_inset
|
||
|
||
, per valg af W, da
|
||
\begin_inset Formula $W=\text{Span}(\boldsymbol{v})^{\perp}$
|
||
\end_inset
|
||
|
||
.
|
||
Specielt er
|
||
\begin_inset Formula $\mathcal{V}$
|
||
\end_inset
|
||
|
||
lineært uafhængig, da den består af ortogonale vektorer, og dermed er det
|
||
en basis for
|
||
\begin_inset Formula $V$
|
||
\end_inset
|
||
|
||
.
|
||
Til sidst bemærkes det, at
|
||
\begin_inset Formula $V$
|
||
\end_inset
|
||
|
||
består af egenvektorer for
|
||
\begin_inset Formula $L$
|
||
\end_inset
|
||
|
||
, per antagelse af de
|
||
\begin_inset Formula $n-1$
|
||
\end_inset
|
||
|
||
elementer og tilsidst på grund af indsættelsen af det sidste
|
||
\begin_inset Formula $\boldsymbol{v}.$
|
||
\end_inset
|
||
|
||
|
||
\end_layout
|
||
|
||
\end_body
|
||
\end_document
|