linalg-beviser/beviser.lyx

951 lines
17 KiB
Plaintext
Raw Normal View History

2017-06-09 08:59:25 +00:00
#LyX 2.2 created this file. For more info see http://www.lyx.org/
\lyxformat 508
\begin_document
\begin_header
\save_transient_properties true
\origin unavailable
\textclass article
\use_default_options true
2017-06-09 09:48:05 +00:00
\begin_modules
algorithm2e
theorems-ams
theorems-ams-extended
\end_modules
2017-06-09 08:59:25 +00:00
\maintain_unincluded_children false
2017-06-09 09:48:05 +00:00
\language danish
2017-06-09 08:59:25 +00:00
\language_package default
\inputencoding auto
\fontencoding global
2017-06-09 09:48:05 +00:00
\font_roman "palatino" "default"
\font_sans "biolinum" "default"
2017-06-09 08:59:25 +00:00
\font_typewriter "default" "default"
2017-06-09 09:48:05 +00:00
\font_math "eulervm" "auto"
2017-06-09 08:59:25 +00:00
\font_default_family default
\use_non_tex_fonts false
\font_sc false
\font_osf false
\font_sf_scale 100 100
\font_tt_scale 100 100
\graphics default
\default_output_format default
\output_sync 0
\bibtex_command default
\index_command default
\paperfontsize default
2017-06-09 09:48:05 +00:00
\spacing single
2017-06-09 08:59:25 +00:00
\use_hyperref false
\papersize default
\use_geometry false
\use_package amsmath 1
\use_package amssymb 1
\use_package cancel 1
\use_package esint 1
\use_package mathdots 1
\use_package mathtools 1
\use_package mhchem 1
\use_package stackrel 1
\use_package stmaryrd 1
\use_package undertilde 1
\cite_engine basic
\cite_engine_type default
\biblio_style plain
\use_bibtopic false
\use_indices false
\paperorientation portrait
\suppress_date false
\justification true
\use_refstyle 1
\index Index
\shortcut idx
\color #008000
\end_index
\secnumdepth 3
\tocdepth 3
2017-06-09 09:48:05 +00:00
\paragraph_separation skip
\defskip medskip
\quotes_language danish
2017-06-09 08:59:25 +00:00
\papercolumns 1
\papersides 1
\paperpagestyle default
\tracking_changes false
\output_changes false
\html_math_output 0
\html_css_as_file 0
\html_be_strict false
\end_header
\begin_body
2017-06-09 09:48:05 +00:00
\begin_layout Section
Løsninger og mindste kvadraters løsninger til lineære ligningssystemer
\end_layout
\begin_layout Subsection
2017-06-09 10:37:20 +00:00
Lemma 1.5 (Hovedsætning)
2017-06-09 09:48:05 +00:00
\end_layout
\begin_layout Standard
Et lineært ligningssystem
\begin_inset Formula $L^{\prime}$
\end_inset
fremkommer fra et andet ligningssystem
\begin_inset Formula $L$
\end_inset
ved brug af ERO, er de to ligningssystemer ækvivalente.
\end_layout
\begin_layout Standard
Beviset for dette er for én elementær rækkeoperation.
Dette er tilstrækkeligt da beviset kan anvendes gentagne gange ved udførslen
af flere ERO'er.
\end_layout
\begin_layout Paragraph
Bevis
\end_layout
\begin_layout Standard
Det bemærkes at en løsning til
\begin_inset Formula $L$
\end_inset
også vil være en løsning til
\begin_inset Formula
\[
\alpha\cdot l_{i}
\]
\end_inset
og
\begin_inset Formula
\[
l_{i}+\alpha\cdot l_{j}.
\]
\end_inset
Løsningsmængden for
\begin_inset Formula $L$
\end_inset
vil være en delmængde af løsningsmængden for
\begin_inset Formula $L^{\prime}$
\end_inset
.
Et symmetrisk argument gælder for
\begin_inset Formula $L^{\prime}$
\end_inset
til
\begin_inset Formula $L$
\end_inset
.
Derfor må løsningsmængderne være ens.
\end_layout
\begin_layout Subsection
2017-06-09 10:37:20 +00:00
Proposition 1.14
\begin_inset Quotes ald
\end_inset
Et vigtigt resultat
\begin_inset Quotes ard
\end_inset
2017-06-09 09:48:05 +00:00
\end_layout
\begin_layout Standard
Et homogent lineært ligningssystem med flere ubekendte end ligninger (dvs.
på matrixform: flere søjler end rækker) har en løsning forskellig fra
\begin_inset Formula $\boldsymbol{0}$
\end_inset
.
\end_layout
\begin_layout Paragraph
Bevis
\end_layout
\begin_layout Standard
Hvis der anvendes Gauss-elimination kan det antages at de homogene lineære
ligningssystem er
\emph on
reduceret
\emph default
.
Da antallet af
\emph on
ledende ubekendte
\emph default
er mindre end eller lig antallet af ligninger
\begin_inset Formula $m$
\end_inset
, vil der være mindst
\begin_inset Formula $n-m$
\end_inset
frie ubekendte.
Da det er antaget at
\begin_inset Formula $m<n$
\end_inset
vil antallet af frie ubekendte være mindst én.
Proposition 1.9 fortæller at der eksisterer løsninger til ligningssystemer,
der antager arbitrære værdier for de frie ubekendte.
Således eksisterer der helt sikkert en løsning forskellig fra
\begin_inset Formula $\boldsymbol{0}$
\end_inset
.
\end_layout
\begin_layout Subsection
2017-06-09 10:37:20 +00:00
Proposition 3.11 (Hovedsætning for
\emph on
løsninger til lineære ligningssystemer
\emph default
)
2017-06-09 09:48:05 +00:00
\end_layout
\begin_layout Standard
Det antages at en vektor
\begin_inset Formula $\boldsymbol{z}_{0}\in\mathbb{F}^{n}$
\end_inset
er en løsning til det lineære ligningssystem
\begin_inset Formula $A\cdot\boldsymbol{x}=\boldsymbol{b}$
\end_inset
og at
\begin_inset Formula $\boldsymbol{z}\in\mathbb{F}^{n}$
\end_inset
er en løsning til det tilsvarende homogene ligningssystem
\begin_inset Formula $A\cdot\boldsymbol{x}=\boldsymbol{0}$
\end_inset
.
Løsningsmængden til ligningssystemet vil da bestå af alle elementer på
formen
\begin_inset Formula
\[
\boldsymbol{z}+\boldsymbol{z_{0}}\in\mathbb{F}^{n},
\]
\end_inset
for
\begin_inset Formula $A\in{\rm Mat}_{m,n}(\mathbb{F})$
\end_inset
og
\begin_inset Formula $\boldsymbol{b}\in\mathbb{F}^{n}$
\end_inset
.
\end_layout
\begin_layout Paragraph
Bevis
\end_layout
\begin_layout Standard
Beviset deles op i to tilfælde:
\end_layout
\begin_layout Enumerate
\begin_inset Formula $\boldsymbol{z}+\boldsymbol{z_{0}}\in\mathbb{F}^{n}$
\end_inset
er en løsning til det lineære ligningssystem
\end_layout
\begin_layout Enumerate
Enhver løsning
\begin_inset Formula $\boldsymbol{z}^{\prime}$
\end_inset
vil kunne opskrives på formen
\begin_inset Formula $\boldsymbol{z}+\boldsymbol{z_{0}}$
\end_inset
\end_layout
\begin_layout Standard
(1) Det ses at
\begin_inset Formula
\begin{align*}
A\cdot(\boldsymbol{z}+\boldsymbol{z_{0}}) & =A\cdot\boldsymbol{z}+A\cdot\boldsymbol{z_{0}}\\
& =\boldsymbol{0}+\boldsymbol{b}\\
& =\boldsymbol{b}
\end{align*}
\end_inset
\end_layout
\begin_layout Standard
(2) En løsning
\begin_inset Formula $\boldsymbol{z}^{\prime}$
\end_inset
til
\begin_inset Formula $A\cdot\boldsymbol{x}=\boldsymbol{b}$
\end_inset
opfylder
\begin_inset Formula
\begin{align*}
A\cdot(\boldsymbol{z}^{\prime}-\boldsymbol{z}_{0}) & =A\cdot\boldsymbol{z}^{\prime}-A\cdot\boldsymbol{z_{0}}\\
& =\boldsymbol{b}-\boldsymbol{b}\\
& =\boldsymbol{0}
\end{align*}
\end_inset
Derfor må
\begin_inset Formula $\boldsymbol{z}^{\prime}-\boldsymbol{z}_{0}$
\end_inset
være en løsning til det homogene lineære ligningssystem
\begin_inset Formula $A\cdot\boldsymbol{x}=\boldsymbol{0}$
\end_inset
.
Det vil sige at
\begin_inset Formula $\boldsymbol{z}^{\prime}-\boldsymbol{z}_{0}=\boldsymbol{z}$
\end_inset
, og
\begin_inset Formula $\boldsymbol{z}^{\prime}$
\end_inset
har den ønskede form.
\end_layout
\begin_layout Subsection
2017-06-09 10:37:20 +00:00
Proposition 10.33 (Hovedsætning for
\emph on
mindste kvadraters løsninger
\emph default
)
2017-06-09 09:48:05 +00:00
\end_layout
\begin_layout Standard
Ethvert lineært ligningssystem har
\emph on
mindst én
\emph default
\emph on
mindste kvadraters løsning
\emph default
.
Mindste kvadraters løsninger til
\begin_inset Formula $A\cdot\boldsymbol{x}=\boldsymbol{b}$
\end_inset
bestemmes som løsningsmængden til det lineære ligningssystem
\begin_inset Formula
\[
A\cdot\boldsymbol{x}=\boldsymbol{p}
\]
\end_inset
hvor
\begin_inset Formula $\boldsymbol{p}$
\end_inset
betegner den ortogonale projektion af
\begin_inset Formula $\boldsymbol{b}$
\end_inset
på søjlerummet
\begin_inset Formula $R(A)$
\end_inset
, det vil sige at
\begin_inset Formula $\boldsymbol{p}\in R(A)$
\end_inset
, mens
\begin_inset Formula $\boldsymbol{b}\not\in R(A)$
\end_inset
.
Ligningssystemet har altså
\emph on
ikke
\emph default
en
\begin_inset Quotes ald
\end_inset
ordinær
\begin_inset Quotes ard
\end_inset
løsning.
\end_layout
2017-06-09 10:37:20 +00:00
\begin_layout Paragraph
Bevis
\end_layout
\begin_layout Standard
\begin_inset Formula $\boldsymbol{p}$
\end_inset
er pr.
definition indeholdt i
\begin_inset Formula $R(A)$
\end_inset
.
Det gælder jf.
Proposition 10.32 for alle andre
\begin_inset Formula $A\cdot\boldsymbol{z}\in R(A)$
\end_inset
at
\begin_inset Formula
\[
\left\Vert \boldsymbol{b}-A\cdot\boldsymbol{z}\right\Vert \geq\left\Vert \boldsymbol{b}-\boldsymbol{p}\right\Vert
\]
\end_inset
med lighedstegn netop når
\begin_inset Formula $A\cdot\boldsymbol{z}=\boldsymbol{p}$
\end_inset
.
Dette viser at mindste kvadraters løsninger til
\begin_inset Formula $A\cdot\boldsymbol{x}=\boldsymbol{b}$
\end_inset
bestemmes som løsningerne til
\begin_inset Formula $A\cdot\boldsymbol{x}=\boldsymbol{p}$
\end_inset
.
\end_layout
2017-06-09 09:48:05 +00:00
\begin_layout Subsubsection
Hjælpesætning - Proposition 10.32
\end_layout
\begin_layout Standard
\begin_inset Formula $W$
\end_inset
er et underrum af et indre produkt rum
\begin_inset Formula $V$
\end_inset
.
\begin_inset Formula $\boldsymbol{v}\in V$
\end_inset
,
\begin_inset Formula $\boldsymbol{p}=W$
\end_inset
,
\begin_inset Formula $\boldsymbol{h}=W^{\perp}$
\end_inset
.
Det gælder da at
\begin_inset Formula
\[
\boldsymbol{v}=\boldsymbol{p}+\boldsymbol{h}
\]
\end_inset
og
\begin_inset Formula
\[
\left\Vert \boldsymbol{v}-\boldsymbol{p}\right\Vert <\left\Vert \boldsymbol{v}-\boldsymbol{w}\right\Vert
\]
\end_inset
for alle
\begin_inset Formula $\boldsymbol{w}\in W\setminus\{\boldsymbol{p}\}$
\end_inset
.
\end_layout
2017-06-09 10:37:20 +00:00
\begin_layout Subsection
Noter
\end_layout
\begin_layout Standard
Proposition 10.36 er også nævnt i dispositionerne.
Der er dog nok ikke tid til også at gennemgå denne til eksamen.
Studerende til eksamen: Hvor meget tid har de? Har de tid? Lad os finde
ud af det! Skal den med? IDK!
\end_layout
\begin_layout Standard
\begin_inset Newpage newpage
\end_inset
\end_layout
\begin_layout Section
Invertible matricer
\end_layout
\begin_layout Subsection
Lemma 4.3 (Målsætning uden bevis)
\end_layout
\begin_layout Standard
Antag at
\begin_inset Formula $A\in{\rm Mat}_{n}(\mathbb{F})$
\end_inset
er en invertibel matrix og
\begin_inset Formula $\boldsymbol{b}\in\mathbb{F}^{n}$
\end_inset
.
\end_layout
\begin_layout Standard
Da vil ligningssystemet
\begin_inset Formula $A\cdot\boldsymbol{x}=\boldsymbol{b}$
\end_inset
have præcis én løsning.
Denne vil være lig
\begin_inset Formula $A^{-1}\cdot\boldsymbol{b}$
\end_inset
.
\end_layout
\begin_layout Subsection
Lemma 4.4 (Hovedsætning)
\end_layout
\begin_layout Standard
Antag
\begin_inset Formula $A\in{\rm Mat}_{n}(\mathbb{F})$
\end_inset
(OBS!
\begin_inset Formula $A$
\end_inset
er kvadratisk!) og lad
\begin_inset Formula $H$
\end_inset
bestemme en matrix på
\begin_inset Formula $RREF$
\end_inset
, der er rækkeækvivalent med
\begin_inset Formula $A$
\end_inset
.
Følgende udsagn er da ækvivalente
\end_layout
\begin_layout Enumerate
For enhver vektor
\begin_inset Formula $\boldsymbol{b}\in\mathbb{F}^{n}$
\end_inset
vil det lineære ligningssystem
\begin_inset Formula $A\cdot\boldsymbol{x}=\boldsymbol{b}$
\end_inset
udelukkende have præcis én løsning.
\end_layout
\begin_layout Enumerate
Det homogene lineære liningssystem
\begin_inset Formula $A\cdot\boldsymbol{x}=\boldsymbol{0}$
\end_inset
har kun nulvektoren
\begin_inset Formula $\boldsymbol{0}$
\end_inset
som løsning.
\end_layout
\begin_layout Enumerate
Det homogene (fuldstændigt) reducerede ligningssystem
\begin_inset Formula $H\cdot\boldsymbol{x}=\boldsymbol{0}$
\end_inset
har
\emph on
ingen frie ubekendte.
\end_layout
\begin_layout Enumerate
Matricen
\begin_inset Formula $H$
\end_inset
er lig identitetsmatricen
\begin_inset Formula ${\rm I}_{n}$
\end_inset
.
\end_layout
2017-06-09 09:48:05 +00:00
\begin_layout Paragraph
Bevis
\end_layout
2017-06-09 08:59:25 +00:00
\begin_layout Standard
2017-06-09 10:37:20 +00:00
\begin_inset Formula $(1)\Rightarrow(2)$
2017-06-09 09:48:05 +00:00
\end_inset
2017-06-09 10:37:20 +00:00
: Oplagt, da nulvektoren
\begin_inset Formula $\boldsymbol{0}$
2017-06-09 09:48:05 +00:00
\end_inset
2017-06-09 10:37:20 +00:00
er en løsning til ethvert homogent ligningssystem.
(1) giver da at dette må være den éneste løsning.
\end_layout
\begin_layout Standard
\begin_inset Formula $(2)\Rightarrow(3)$
2017-06-09 09:48:05 +00:00
\end_inset
2017-06-09 10:37:20 +00:00
: Da de to ligningssystemer
\begin_inset Formula $A\cdot\boldsymbol{x}=\boldsymbol{0}$
\end_inset
og
\begin_inset Formula $H\cdot\boldsymbol{x}=\boldsymbol{0}$
\end_inset
er ækvivalente har de samme løsningsmængde.
Hvis
\begin_inset Formula $(2)$
\end_inset
er opfyldt har
\begin_inset Formula $H\cdot\boldsymbol{x}=\boldsymbol{0}$
\end_inset
præcis én løsning, hvilket giver at der ikke er frie variable i ligningssysteme
t.
Dette opfylder jf.
Proposition 1.9 (ingen frie variable ved antal pivoter svarende til antal
ligninger (RREF i matrix-speak)) (3) ud fra (2).
\end_layout
\begin_layout Standard
\begin_inset Formula $(3)\Rightarrow(4)$
\end_inset
: Da
\begin_inset Formula $H$
\end_inset
er på RREF, så må der eksistere en følge af naturlige tal
2017-06-09 09:48:05 +00:00
\begin_inset Formula
\[
2017-06-09 10:37:20 +00:00
1\leq d_{1}<d_{2}<\cdots<d_{r}\leq n,
2017-06-09 09:48:05 +00:00
\]
\end_inset
2017-06-09 08:59:25 +00:00
2017-06-09 10:37:20 +00:00
hvor
\begin_inset Formula $r$
\end_inset
er antallet af pivoter, såleds at de krævede egenskaber for RREF er opfyldt.
Den
\begin_inset Formula $(i,j)$
\end_inset
'te indgang i
\begin_inset Formula $H$
\end_inset
betegns med
\begin_inset Formula $h_{i,j}$
2017-06-09 09:48:05 +00:00
\end_inset
.
2017-06-09 10:37:20 +00:00
Da har vi specielt, at
\begin_inset Formula
\[
h_{i,d_{j}=}\begin{cases}
1 & {\rm hvis}\quad i=j,j\leq r\\
0 & {\rm hvis}\quad i\neq j,j\leq r
\end{cases}.
\]
\end_inset
(
\emph on
Nævn eventuelt Kroeneckers delta i relation til dette)
\end_layout
\begin_layout Standard
Det er givet at
\begin_inset Formula $x_{d_{1}},x_{d_{2}},\dots,x_{d_{r}}$
\end_inset
er de ledende ubekendte for det lineære ligningssystem
\begin_inset Formula $H\cdot\boldsymbol{x}=\boldsymbol{0}$
\end_inset
.
Da der ikke er frie ubekendte for
\begin_inset Formula $H\cdot\boldsymbol{x}=\boldsymbol{0}$
\end_inset
jf.
(3), så må
\begin_inset Formula $r=n$
\end_inset
og
\begin_inset Formula $d_{i}=i$
\end_inset
for
\begin_inset Formula $i=1,2,\dots,n$
\end_inset
.
Dermed giver ovenstående at
\begin_inset Formula $H$
\end_inset
er identitetsmatricen
\begin_inset Formula ${\rm I}_{n}$
\end_inset
.
\end_layout
\begin_layout Standard
\begin_inset Formula $(4)\Rightarrow(1)$
\end_inset
: Hvis (4) er opfyldt vil totalmatricen
\begin_inset Formula $(A\mid\boldsymbol{b})$
\end_inset
(dvs.
for systemet
2017-06-09 09:48:05 +00:00
\begin_inset Formula $A\cdot\boldsymbol{x}=\boldsymbol{b}$
\end_inset
2017-06-09 10:37:20 +00:00
) være rækkeækvivalent med
\begin_inset Formula $({\rm I}_{n}\mid\boldsymbol{c})$
\end_inset
for en passende vektor
\begin_inset Formula $\boldsymbol{c}\in\mathbb{F}^{n}$
2017-06-09 09:48:05 +00:00
\end_inset
.
2017-06-09 10:37:20 +00:00
Særligt vil løsningsmængderne for
\begin_inset Formula $A\cdot\boldsymbol{x}=\boldsymbol{b}$
\end_inset
og
\begin_inset Formula $I_{n}\cdot\boldsymbol{x}=\boldsymbol{c}$
\end_inset
være identiske.
\begin_inset Formula ${\rm I}_{n}\cdot\boldsymbol{x}=\boldsymbol{c}$
\end_inset
har imidlertid kun løsningen
\begin_inset Formula $\boldsymbol{c}$
\end_inset
, hvilket opfylder (1) (præcis én løsning).
2017-06-09 09:48:05 +00:00
\end_layout
\begin_layout Subsection
2017-06-09 10:37:20 +00:00
Lemma 4.5 (Leder op til 4.6, perspektiv uden bevis)
2017-06-09 09:48:05 +00:00
\end_layout
\begin_layout Standard
2017-06-09 10:37:20 +00:00
For en kvadratisk matrix
\begin_inset Formula $A$
\end_inset
, der opfylder et af de fire udsagn i Lemma 4.4, vil der eksistere en kvadratisk
matrix
\begin_inset Formula $B$
\end_inset
af samme størrelse som
\begin_inset Formula $A$
\end_inset
, således at
\begin_inset Formula $A\cdot B={\rm I}_{n}$
\end_inset
.
\end_layout
\begin_layout Subsection
Lemma 4.6 (Vigtig konklusion)
\end_layout
\begin_layout Standard
En kvadratisk matrix
\begin_inset Formula $A$
\end_inset
er invertibel hvis og kun hvis
\begin_inset Formula $A$
\end_inset
opfylder de ækvivalente udsagn i Lemma 4.4.
\end_layout
\begin_layout Paragraph
Bevis
\end_layout
\begin_layout Standard
Først vises at en invertibel matrix opfylder udsagnene i Lemma 4.4: Lemma
4.3 giver at en invertibel matrix vil opfylde udsagn (1) i Lemma 4.4.
\end_layout
\begin_layout Standard
Det ønskes nu at vise at en matrix, der opfylder udsagnene i Lemma 4.4 er
invertibel: Det antages, at
\begin_inset Formula $A$
\end_inset
opfylder udsagnene i Lemma 4.4.
Ifølge Lemma 4.5 eksisterer der dermed en kvadratisk matrix af samme størrelse
\begin_inset Formula $B$
\end_inset
, så
\begin_inset Formula $A\cdot B={\rm I}_{n}$
\end_inset
.
Det påstås at
\begin_inset Formula $B$
\end_inset
opfylder udsagn
\begin_inset Formula $(2)$
\end_inset
i Lemma
\begin_inset Formula $4.4$
\end_inset
.
Lad en vektor
\begin_inset Formula $\boldsymbol{v}$
\end_inset
med
\begin_inset Formula $n$
\end_inset
indgange være en løsning til det homogene ligningssystem
\begin_inset Formula $B\cdot\boldsymbol{x}=\boldsymbol{0}$
\end_inset
.
Da vil
\begin_inset Formula
\begin{align*}
\boldsymbol{v} & ={\rm I}_{n}\cdot\boldsymbol{v}\\
& =(A\cdot B)\cdot\boldsymbol{v}\\
& =A\cdot(B\cdot\boldsymbol{v})\\
& =A\cdot\boldsymbol{0}\\
& =\boldsymbol{0}.
\end{align*}
\end_inset
Nu kan vi anvende Lemma 4.5 på
\begin_inset Formula $B$
\end_inset
og konkludere, at der eksisterer endnu en kvadratisk matrix af samme størrelse
\begin_inset Formula $C$
\end_inset
, så
\begin_inset Formula $B\cdot C={\rm I}_{n}$
\end_inset
.
\end_layout
\begin_layout Standard
Det ønskes nu at vise at
\begin_inset Formula $C=A$
\end_inset
, hvilket giver at
\begin_inset Formula $B$
\end_inset
er en invers til
\begin_inset Formula $A$
\end_inset
.
Dette vises ved
\begin_inset Formula
\begin{align*}
A & =A\cdot{\rm I}_{n}\\
& =A\cdot(B\cdot C)\\
& =(A\cdot B)\cdot C\\
& ={\rm I}_{n}\cdot C\\
& =C.
\end{align*}
\end_inset
\end_layout
\begin_layout Standard
Beviset er nu afsluttet.
2017-06-09 08:59:25 +00:00
\end_layout
\end_body
\end_document