advancedskrald/main.py

376 lines
12 KiB
Python
Raw Normal View History

2019-05-18 15:12:35 +00:00
import glob
import random
import re
2019-04-04 20:25:15 +00:00
import sys
2019-04-10 11:39:50 +00:00
import warnings
2019-05-18 15:12:35 +00:00
import time
from typing import List, Tuple
2019-04-04 20:25:15 +00:00
2019-04-10 11:39:50 +00:00
import cv2
import matplotlib.pyplot as plt
import numpy as np
2019-04-10 11:39:50 +00:00
from sklearn.exceptions import DataConversionWarning
2019-04-04 10:59:37 +00:00
import runner
2019-05-18 15:12:35 +00:00
from tensor_classifier import predict_board, predict_piece, predict_empty_nn
from util import load_classifier, PIECE, COLOR, POSITION, Board, Squares, PieceAndColor, OUR_PIECES, FILE, RANK, LESS_PIECE
2019-04-04 10:59:37 +00:00
warnings.filterwarnings(action='ignore', category=DataConversionWarning)
np.set_printoptions(threshold=sys.maxsize)
2019-04-04 10:59:37 +00:00
2019-04-10 11:39:50 +00:00
def identify_piece(image: np.ndarray, position: POSITION, sift: cv2.xfeatures2d_SIFT) -> PieceAndColor:
2019-04-04 10:59:37 +00:00
centers = np.load("training_data/centers.npy")
best = 0
2019-04-10 11:39:50 +00:00
probs = {p.name: {} for p in OUR_PIECES}
best_piece = best_color = None
2019-04-10 11:39:50 +00:00
for piece in OUR_PIECES:
for color in COLOR:
2019-04-04 10:59:37 +00:00
#color = runner.compute_color(file, rank)
2019-04-10 20:32:30 +00:00
#classifier = load_classifier(f"classifiers/neural_net_{piece}/{color}.pkl")
classifier = load_classifier(f"classifiers/classifier_{piece}/{color}.pkl")
2019-04-04 10:59:37 +00:00
features = runner.generate_bag_of_words(image, centers, sift)
prob = classifier.predict_proba(features)
2019-04-10 20:32:30 +00:00
#image = cv2.resize(image, (172, 172))
#data = np.reshape(image, (1, np.product(image.shape)))
#prob = classifier.predict_proba(data)
2019-04-10 11:39:50 +00:00
probs[piece.name][color.name] = prob[0, 1]
2019-05-18 15:12:35 +00:00
#print(f"{piece}, {color}, {prob[0, 1]}")
2019-04-10 11:39:50 +00:00
#if prob[0, 1] > best and color == position.color: # can only be best if correct color. Iterating through both colors for debugging only
if prob[0, 1] > best:
2019-04-10 11:39:50 +00:00
best = prob[0, 1]
best_piece, best_color = piece, color
2019-04-10 11:39:50 +00:00
#print(probs)
return best_piece, best_color
2019-04-04 10:59:37 +00:00
def pred_test(position: POSITION, mystery_image=None, empty_bias=False):
2019-04-04 10:59:37 +00:00
sift = cv2.xfeatures2d.SIFT_create()
if mystery_image is None:
mystery_image = cv2.imread("training_images/rook/white/rook_training_D4_2.png")
2019-04-10 11:39:50 +00:00
probs = identify_piece(mystery_image, position, sift)
2019-04-04 10:59:37 +00:00
return probs
def pre_process_and_train() -> None:
2019-04-04 10:59:37 +00:00
runner.do_pre_processing()
runner.train_pieces_svm()
def build_board_from_squares(squares: Squares) -> Board:
2019-04-04 10:59:37 +00:00
sift = cv2.xfeatures2d.SIFT_create()
board = Board()
2019-04-04 10:59:37 +00:00
counter = 0
for position, square in squares.values():
2019-04-10 11:39:50 +00:00
likely_piece = identify_piece(square, position, sift)
board[position] = likely_piece
if likely_piece != PIECE.EMPTY:
2019-04-04 10:59:37 +00:00
counter += 1
print(counter)
print(64/(counter-1))
return board
def test_entire_board() -> None:
board_img = cv2.imread("homo_pls_fuck.jpg")
warped = runner.warp_board(board_img)
2019-04-04 10:59:37 +00:00
squares = runner.get_squares(warped)
board = build_board_from_squares(squares)
2019-04-04 10:59:37 +00:00
print(board)
2019-04-24 07:54:37 +00:00
def predict_empty(square: np.ndarray, position: POSITION) -> bool:
y, x = np.histogram(square.ravel(), bins=32, range=[0, 256])
2019-04-04 10:59:37 +00:00
left, right = x[:-1], x[1:]
X = np.array([left, right]).T.flatten()
Y = np.array([y, y]).T.flatten()
area = sum(np.diff(x) * y)
plt.plot(X, Y)
plt.xlabel(f"{position}")
#plt.show()
2019-04-04 10:59:37 +00:00
empty_classifier = load_classifier(f"classifiers/classifier_empty/white_piece_on_{position.color}_square.pkl")
prob = empty_classifier.predict_proba(np.array(y).reshape(1, -1))
2019-04-10 11:39:50 +00:00
#print(f"{position}, {position.color}: {prob[0, 1]}")
2019-05-18 15:12:35 +00:00
y, x = np.histogram(square.ravel(), bins=64, range=[0, 256])
lel = np.array(y).reshape(1, -1)
#print(lel[lel > 5000])
#print(np.array(y).reshape(1, -1))
return prob[0, 1] > 0.75
if position.color == "white":
return prob[0, 1] > 0.75 or len(lel[lel > 5000]) > 5
else:
return prob[0, 1] > 0.65 or len(lel[lel > 5000]) > 5
2019-04-04 16:27:19 +00:00
def remove_most_empties(warped):
2019-04-04 16:27:19 +00:00
empty = 0
non_empties = []
for position in POSITION:
counter = 0
2019-04-10 20:32:30 +00:00
img_src = runner.get_square(warped, position)
width, height, _ = img_src.shape
src = img_src[width // 25:, height // 25:]
# src = src[:-width//200, :-height//200]
segmentator = cv2.ximgproc.segmentation.createGraphSegmentation(sigma=0.8, k=150, min_size=700)
segment = segmentator.processImage(src)
mask = segment.reshape(list(segment.shape) + [1]).repeat(3, axis=2)
masked = np.ma.masked_array(src, fill_value=0)
pls = []
for i in range(np.max(segment)):
masked.mask = mask != i
y, x = np.where(segment == i)
2019-04-10 20:32:30 +00:00
pls.append(len(y))
top, bottom, left, right = min(y), max(y), min(x), max(x)
dst = masked.filled()[top: bottom + 1, left: right + 1]
2019-04-24 07:54:37 +00:00
#cv2.imwrite(f"tmp_seg/segment_{datetime.utcnow().timestamp()}_{position}.png", dst)
2019-04-04 20:25:15 +00:00
if np.max(segment) > 0 and not np.all([x < (164 ** 2) * 0.2 for x in pls]) and (
2019-04-10 20:32:30 +00:00
np.max(segment) >= 3 or np.all([x < (164 ** 2) * 0.9469 for x in pls])):
2019-04-10 11:39:50 +00:00
#print(f"{position} is nonempty")
2019-04-10 20:32:30 +00:00
non_empties.append([position, img_src])
empty += 1
2019-04-04 16:27:19 +00:00
2019-04-10 11:39:50 +00:00
#print(64 - empty)
return non_empties
2019-05-18 15:12:35 +00:00
def test_empties():
pred_empty = 0
actual_empty = 0
import random
for filename in glob.glob(f"training_images/*/*_square/*.png"):
square = cv2.imread(filename)
if square.shape != (172, 172, 3):
continue
if 'empty' in filename:
actual_empty += 1
if "black" in filename:
pos = POSITION.A1
else:
pos = POSITION.A2
square = cv2.GaussianBlur(square, (7, 7), 0)
square = cv2.multiply(square, np.array([(random.random() * 0.50) + 0.90]))
pred_empty += predict_empty(square, pos)
#pred_empty += 1 - predict_empty_nn(square)
print(actual_empty)
print(pred_empty)
print(min(actual_empty,pred_empty)/max(actual_empty, pred_empty))
def test_piece_recognition(svms = False):
sift = cv2.xfeatures2d.SIFT_create()
total = 0
correct_guess = 0
for filename in glob.glob(f"training_images/rook/*/*.png"):
img = cv2.imread(filename)
square = cv2.GaussianBlur(img, (9, 9), 0)
square = cv2.multiply(square, np.array([(random.random() * 5) + 0.90]))
#cv2.imwrite("normal_square.png", img)
#cv2.imwrite("modified_square.png", square)
#cv2.imshow("normal", img)
#cv2.imshow("modified", square)
#cv2.waitKey(0)
if "black" in filename:
pos = POSITION.A1
else:
pos = POSITION.A2
if (svms):
res = identify_piece(square, pos, sift)[0]
correct_guess += (res == LESS_PIECE.ROOK)
else:
res = predict_piece(square)
correct_guess += (res == LESS_PIECE.ROOK)
total += 1
for filename in glob.glob(f"training_images/knight/*/*.png"):
img = cv2.imread(filename)
square = cv2.GaussianBlur(img, (7, 7), 0)
square = cv2.multiply(square, np.array([(random.random() * 0.50) + 0.90]))
if "black" in filename:
pos = POSITION.A1
else:
pos = POSITION.A2
if (svms):
res = identify_piece(square, pos, sift)[0]
correct_guess += (res == LESS_PIECE.KNIGHT)
else:
res = predict_piece(square)
correct_guess += (res == LESS_PIECE.KNIGHT)
total += 1
for filename in glob.glob(f"training_images/bishop/*/*.png"):
img = cv2.imread(filename)
square = cv2.GaussianBlur(img, (7, 7), 0)
square = cv2.multiply(square, np.array([(random.random() * 0.50) + 0.90]))
if "black" in filename:
pos = POSITION.A1
else:
pos = POSITION.A2
if (svms):
res = identify_piece(square, pos, sift)[0]
correct_guess += (res == LESS_PIECE.BISHOP)
else:
res = predict_piece(square)
correct_guess += (res == LESS_PIECE.BISHOP)
total += 1
for filename in glob.glob(f"training_images/king/*/*.png"):
img = cv2.imread(filename)
square = cv2.GaussianBlur(img, (7, 7), 0)
square = cv2.multiply(square, np.array([(random.random() * 0.50) + 0.90]))
if "black" in filename:
pos = POSITION.A1
else:
pos = POSITION.A2
if (svms):
res = identify_piece(square, pos, sift)[0]
correct_guess += (res == LESS_PIECE.KING)
else:
res = predict_piece(square)
correct_guess += (res == LESS_PIECE.KING)
total += 1
for filename in glob.glob(f"training_images/queen/*/*.png"):
img = cv2.imread(filename)
square = cv2.GaussianBlur(img, (7, 7), 0)
square = cv2.multiply(square, np.array([(random.random() * 0.50) + 0.90]))
if "black" in filename:
pos = POSITION.A1
else:
pos = POSITION.A2
if (svms):
res = identify_piece(square, pos, sift)[0]
correct_guess += (res == LESS_PIECE.QUEEN)
else:
res = predict_piece(square)
correct_guess += (res == LESS_PIECE.QUEEN)
total += 1
print(total)
print(correct_guess)
print(min(total, correct_guess)/max(total, correct_guess))
def find_occupied_squares(warped: np.ndarray) -> Squares:
non_empties = remove_most_empties(warped)
completely_non_empties = {}
for position, square in non_empties:
2019-04-24 07:54:37 +00:00
if not predict_empty(square, position):
completely_non_empties[position] = square
2019-04-04 10:59:37 +00:00
2019-04-10 11:39:50 +00:00
return completely_non_empties
2019-04-04 10:59:37 +00:00
2019-05-18 15:12:35 +00:00
def find_occupied_using_nn(warped: np.ndarray) -> Squares:
non_empties = runner.get_squares(warped)
completely_non_empties = {}
for (position, square) in non_empties.items():
prediction = predict_empty_nn(square)
if prediction:
completely_non_empties[position] = square
return completely_non_empties
2019-04-10 11:39:50 +00:00
if __name__ == '__main__':
2019-05-18 15:12:35 +00:00
test_piece_recognition(svms=True)
exit()
2019-04-10 11:39:50 +00:00
#runner.train_pieces_svm()
2019-05-18 15:12:35 +00:00
#board = cv2.imread("quality_check.png")
#board = cv2.imread("whole_boards/boards_for_empty/board_1554286526.199486_rank_3.png")
board = cv2.imread("whole_boards/boards_for_empty/lmao_xd_gg_v2.png")
start = time.time()
2019-04-10 11:39:50 +00:00
warped = runner.warp_board(board)
2019-05-18 15:12:35 +00:00
print(time.time() - start)
#cv2.imshow("warped", warped)
#cv2.waitKey(0)
# squares = runner.get_squares(warped)
#squares = find_occupied_squares(warped)
squares = find_occupied_using_nn(warped)
for pos, square in squares.items():
piece = predict_piece(square)
cv2.putText(square, f"{pos} {piece}", (0, 50), cv2.FONT_HERSHEY_SIMPLEX, fontScale=1, color=(255,)*3, thickness=3)
2019-04-10 20:32:30 +00:00
cv2.imshow(f"{pos}", square)
cv2.waitKey(0)
2019-05-18 15:12:35 +00:00
exit()
tmp = find_occupied_squares(warped)
#for pos, square in tmp:
# cv2.imshow(f"{pos}", square)
#cv2.waitKey(0)
board = predict_board(tmp)
for pos, piece in board.items():
print(f"{pos}, {piece}")
2019-04-10 20:32:30 +00:00
exit()
"""
2019-04-10 11:39:50 +00:00
rook_square = runner.get_square(warped, POSITION.H3)
knight_square = runner.get_square(warped, POSITION.D3)
cv2.imshow("lel", rook_square)
cv2.imshow("lil", knight_square)
2019-04-10 20:32:30 +00:00
#rook_out = cv2.Canny(rook_square, 50, 55, L2gradient=True)
2019-04-10 11:39:50 +00:00
knight_out = cv2.Canny(knight_square, 50, 55, L2gradient=True)
2019-04-10 20:32:30 +00:00
knight_out_l = cv2.Canny(knight_square, 50, 55, L2gradient=False)
cv2.imshow("lal", knight_out)
cv2.imshow("lul", knight_out_l)
cv2.waitKey(0)
2019-04-04 10:59:37 +00:00
exit()
2019-04-10 20:32:30 +00:00
"""
2019-04-10 11:39:50 +00:00
occupied = find_occupied_squares(warped)
2019-04-04 10:59:37 +00:00
2019-04-10 11:39:50 +00:00
sift = cv2.xfeatures2d.SIFT_create()
for position, square in occupied:
print("---"*15)
piece, color = identify_piece(square, position, sift)
print(f"{piece} on {position}")
text_color = 255 if color == COLOR.WHITE else 0
cv2.putText(square, f"{position} {piece.name}", (0, 50), cv2.FONT_HERSHEY_SIMPLEX, fontScale=1, color=(text_color,)*3, thickness=3)
cv2.imshow(f"{position}", square)
2019-04-04 10:59:37 +00:00
cv2.waitKey(0)