advancedskrald/main.py

622 lines
19 KiB
Python
Raw Normal View History

2019-04-04 10:59:37 +00:00
from functools import lru_cache
import cv2
import runner
from sklearn.externals import joblib
import numpy as np
import operator
2019-04-04 16:27:19 +00:00
from matplotlib import pyplot as plt
2019-04-04 10:59:37 +00:00
import glob
import os
import heapq
import math
2019-04-04 16:27:19 +00:00
from datetime import datetime
2019-04-04 20:25:15 +00:00
import sys
np.set_printoptions(threshold=sys.maxsize)
2019-04-04 10:59:37 +00:00
pieces = ['rook', 'knight']
#pieces = ['rook', 'knight']
#piece_to_symbol = {'rook': 1, 'knight': 2, 'empty': 0}
piece_to_symbol = {'rook': 1, 'knight': 2}
colors = ['black', 'white']
def classify(image, sift : cv2.xfeatures2d_SIFT, file, rank, empty_bias=False):
centers = np.load("training_data/centers.npy")
probs = {'rook': {'black': 0, 'white': 0}, 'knight': {'black': 0, 'white': 0}, 'empty': {'black': 0, 'white': 0}}
#probs = {'rook': 0, 'knight': 0, 'empty': 0}
for piece in pieces:
for color in colors:
#color = runner.compute_color(file, rank)
classifier = joblib.load(f"classifiers/classifier_{piece}/{color}.pkl")
features = runner.generate_bag_of_words(image, centers, sift)
prob = classifier.predict_proba(features)
probs[piece][color] = prob[0, 1]
if empty_bias:
probs['empty'] *= 1.2
return probs
def pred_test(file, rank, mystery_image=None, empty_bias=False):
sift = cv2.xfeatures2d.SIFT_create()
if mystery_image is None:
mystery_image = cv2.imread("training_images/rook/white/rook_training_D4_2.png")
probs = classify(mystery_image, sift, file, rank, empty_bias=empty_bias)
return probs
def pre_process_and_train():
runner.do_pre_processing()
runner.train_pieces_svm()
def build_board_from_dict(board_dict : dict):
sift = cv2.xfeatures2d.SIFT_create()
board = [[0]*8 for _ in range(8)]
counter = 0
for idx, value in enumerate(board_dict.values()):
probs = classify(value, sift)
likely_piece = max(probs.items(), key=operator.itemgetter(1))[0]
symbol = piece_to_symbol[likely_piece]
column = idx // 8
row = (idx % 7)
board[row][column] = symbol
print(probs)
if likely_piece != 'empty':
counter += 1
print(counter)
print(64/(counter-1))
return board
def detect_using_nn(spec_image):
probs = {'rook': 0, 'knight': 0}
for piece in pieces:
piece_class = piece_to_symbol[piece]
win_size = (64, 64)
classifier = joblib.load("classifiers/neural_net_" + piece + ".pkl")
spec_image = cv2.resize(spec_image, (64, 128))
features = np.reshape(spec_image, (1, np.product(spec_image.shape)))
prob = classifier.predict_proba(features)
print(piece)
print(prob[0,1])
def test_entire_board():
board = cv2.imread("homo_pls_fuck.jpg")
warped = runner.warp_board(board)
board_dict = runner.get_squares(warped)
board = build_board_from_dict(board_dict)
print(board)
def lel_test():
# img = cv2.imread('training_images/rook/white/rook_training_D4_2.png')
counter = 0
for filename in glob.glob(os.path.join("training_images", "empty", "*", "*.png")):
img = cv2.imread(filename)
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
ret = cv2.adaptiveThreshold(gray, 255, cv2.ADAPTIVE_THRESH_MEAN_C, cv2.THRESH_BINARY, 3, 3)
# binarize the image
#ret, bw = cv2.threshold(gray, 100, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)
# find connected components
connectivity = 4
nb_components, output, stats, centroids = cv2.connectedComponentsWithStats(ret, connectivity, cv2.CV_32S)
sizes = stats[1:, -1]
nb_components = nb_components - 1
min_size = 250 # threshhold value for objects in scene
img2 = np.zeros((img.shape), np.uint8)
for i in range(0, nb_components + 1):
# use if sizes[i] >= min_size: to identify your objects
color = np.random.randint(255, size=3)
# draw the bounding rectangele around each object
cv2.rectangle(img2, (stats[i][0], stats[i][1]), (stats[i][0] + stats[i][2], stats[i][1] + stats[i][3]),
(0, 255, 0), 2)
img2[output == i + 1] = color
#print(nb_components+1)
if nb_components+1 >= 4:
counter += 1
print(filename)
cv2.imshow("lel", img2)
cv2.waitKey(0)
print(counter)
def selective_search(image, use_fast=False, use_slow=False):
# speed-up using multithreads
cv2.setUseOptimized(True)
cv2.setNumThreads(4)
if type(image) == str:
# read image
im = cv2.imread(image)
else:
im = image
# resize image
#newHeight = 200
#newWidth = int(im.shape[1] * 150 / im.shape[0])
#im = cv2.resize(im, (newWidth, newHeight))
#im = cv2.imread(image)
#lel, im = cv2.threshold(im, 128, 255, cv2.THRESH_BINARY)
# create Selective Search Segmentation Object using default parameters
ss = cv2.ximgproc.segmentation.createSelectiveSearchSegmentation()
# set input image on which we will run segmentation
ss.setBaseImage(im)
# Switch to fast but low recall Selective Search method
ss.switchToSingleStrategy()
if (use_fast):
ss.switchToSelectiveSearchFast()
# Switch to high recall but slow Selective Search method
elif (use_slow):
ss.switchToSelectiveSearchQuality()
# run selective search segmentation on input image
rects = ss.process()
#print('Total Number of Region Proposals: {}'.format(len(rects)))
# number of region proposals to show
numShowRects = 150
# increment to increase/decrease total number
# of reason proposals to be shown
increment = 1
best_proposals = []
while True:
# create a copy of original image
# itereate over all the region proposals
for i, rect in enumerate(rects):
imOut = im.copy()
# draw rectangle for region proposal till numShowRects
if (i < numShowRects):
x, y, w, h = rect
# cv2.rectangle(imOut, (x, y), (x + w, y + h), (0, 255, 0), 1, cv2.LINE_AA)
# size = (max(w, x) - min(w, x)) * ((max(h, y) - min(h, y)))
top_left = (x,y)
bottom_left = (x, y+h)
top_right = (x+w, y)
bottom_right = (x+w, y+h)
rect_width = bottom_right[0] - bottom_left[0]
rect_height = bottom_right[1] - top_right[1]
size = rect_width * rect_height
#print(f"({x}, {y}), ({w}, {h})\n Of size: { size }")
#cv2.rectangle(imOut, (x, y), (x + w, y + h), (0, 255, 0), 1, cv2.LINE_AA)
#cv2.imshow("lel", imOut)
#cv2.waitKey(0)
best_proposals.append((rect, size))
#if size > biggest_size:
# biggest_rect = (x, y, w, h)
# biggest_size = size
# print(f"New biggest: \n({x}, {y}), ({w}, {h})\nOf size: {biggest_size}")
else:
break
height, width, channels = im.shape
center_x = width // 2
center_y = (height // 2)+5
dists = []
#print(f"Amount of best proposals:\n{len(best_proposals)}")
#print(f"lel: {len(heapq.nlargest(10, best_proposals, key=lambda x: x[1]))}")
for i in heapq.nlargest(10, best_proposals, key=lambda x: x[1]):
width, height, channels = im.shape
#print(width * height)
#print(i[1])
x, y, w, h = i[0]
if i[1] <= (width*height)*0.8 and i[1] > (width*height)*0.25:
imCop = imOut.copy()
#cv2.rectangle(imCop, (x, y), (x + w, y + h), (0, 255, 0), 2, cv2.LINE_AA)
#cv2.imshow("lel", imCop)
#cv2.waitKey(0)
#cv2.rectangle(imCop, (x, y), (x + w, y + h), (0, 255, 0), 4, cv2.LINE_AA)
top_left = (x,y)
bottom_left = (x, y+h)
top_right = (x+w, y)
bottom_right = (x+w, y+h)
box_center_x = (top_left[0]+bottom_left[0]+top_right[0]+bottom_right[0]) // 4
box_center_y = (top_left[1]+bottom_left[1]+top_right[1]+bottom_right[1]) // 4
#print(f"{box_center_x}, {box_center_y}, {center_x}, {center_y}")
dist = (center_x - box_center_x) ** 2 + (center_y - box_center_y) ** 2
print(dist)
dists.append([i, dist])
cv2.drawMarker(imCop, position=(x+w, h+y), color=(255, 0, 0), thickness=3)
cv2.drawMarker(imCop, position=(x+w, y), color=(255, 0, 0), thickness=3)
cv2.drawMarker(imCop, position=(x, y), color=(255, 0, 0), thickness=3)
cv2.drawMarker(imCop, position=(x, y+h), color=(255, 0, 0), thickness=3)
cv2.drawMarker(imCop, position=(box_center_x, box_center_y), color=(0, 255, 0), thickness=3)
cv2.drawMarker(imCop, position=(center_x, center_y), color=(0, 0, 255), thickness=3)
#cv2.imshow("lel", imCop)
#cv2.waitKey(0)
#print("-------"*5)
for pls in dists:
imCop = imOut.copy()
x, y, w, h = pls[0][0]
#print(x,y,w,h)
#print(pls[1])
top_left = (x, y)
bottom_left = (x, y + h)
top_right = (x + w, y)
bottom_right = (x + w, y + h)
cv2.drawMarker(imCop, position=(x + w, h + y), color=(255, 0, 0), thickness=3)
cv2.drawMarker(imCop, position=(x + w, y), color=(255, 0, 0), thickness=3)
cv2.drawMarker(imCop, position=(x, y), color=(255, 0, 0), thickness=3)
cv2.drawMarker(imCop, position=(x, y + h), color=(255, 0, 0), thickness=3)
box_center_x = (top_left[0] + bottom_left[0] + top_right[0] + bottom_right[0]) // 4
box_center_y = (top_left[1] + bottom_left[1] + top_right[1] + bottom_right[1]) // 4
cv2.drawMarker(imCop, position=(box_center_x, box_center_y), color=(0, 255, 0), thickness=3)
cv2.drawMarker(imCop, position=(center_y, center_x), color=(0, 0, 255), thickness=3)
cv2.rectangle(imCop, (x, y), (x + w, y + h), (0, 255, 0), 2, cv2.LINE_AA)
#cv2.imshow("lel", imCop)
#cv2.waitKey(0)
imCop = imOut.copy()
best = heapq.nsmallest(1, dists, key=lambda x: x[1])
if (len(best) == 0):
return ((0, 0), (0, height), (width, 0), (width, height))
x, y, w, h = best[0][0][0]
cv2.rectangle(imCop, (x, y), (x + w, y + h), (0, 255, 0), 4, cv2.LINE_AA)
top_left = (x, y)
bottom_left = (x, y + h)
top_right = (x + w, y)
bottom_right = (x + w, y + h)
cv2.drawMarker(imCop, position=(x + w, h + y), color=(255, 0, 0), thickness=3)
cv2.drawMarker(imCop, position=(x + w, y), color=(255, 0, 0), thickness=3)
cv2.drawMarker(imCop, position=(x, y), color=(255, 0, 0), thickness=3)
cv2.drawMarker(imCop, position=(x, y + h), color=(255, 0, 0), thickness=3)
box_center_x = (top_left[0] + bottom_left[0] + top_right[0] + bottom_right[0]) // 4
box_center_y = (top_left[1] + bottom_left[1] + top_right[1] + bottom_right[1]) // 4
cv2.drawMarker(imCop, position=(box_center_x, box_center_y), color=(0, 255, 0), thickness=3)
cv2.drawMarker(imCop, position=(center_x, center_y), color=(0, 0, 255), thickness=3)
#cv2.imshow("lel", imCop)
#cv2.waitKey(0)
return (top_left, bottom_left, top_right, bottom_right)
# show output
cv2.imshow("Output", imOut)
# record key press
k = cv2.waitKey(0) & 0xFF
# m is pressed
if k == 109:
# increase total number of rectangles to show by increment
numShowRects += increment
# l is pressed
elif k == 108 and numShowRects > increment:
# decrease total number of rectangles to show by increment
numShowRects -= increment
# q is pressed
elif k == 113:
break
# close image show window
cv2.destroyAllWindows()
2019-04-04 16:27:19 +00:00
2019-04-04 10:59:37 +00:00
def predict(square, file, rank):
2019-04-04 16:27:19 +00:00
square_color = runner.compute_color(file, rank)
2019-04-04 10:59:37 +00:00
2019-04-04 16:27:19 +00:00
y, x = np.histogram(square.ravel(), bins=256, range=[0, 256]) # TODO: Maybe img.ravel() ?
2019-04-04 10:59:37 +00:00
2019-04-04 16:27:19 +00:00
for color in ['black', 'white']:
empty_classifier = load_classifier(f"classifiers/classifier_empty/white_piece_on_{color}_square.pkl")
prob = empty_classifier.predict_proba(np.array(y).reshape(1, -1))
print(f"{file}{rank}, {color}: {prob[0, 1]}")
if prob[0, 1] > 0.5:
return 'empty'
2019-04-04 10:59:37 +00:00
return None
@lru_cache()
def load_classifier(filename):
2019-04-04 16:27:19 +00:00
print(f"loading {filename}")
2019-04-04 10:59:37 +00:00
return joblib.load(filename)
if __name__ == '__main__':
2019-04-04 20:25:15 +00:00
board = cv2.imread("whole_boards/boards_for_empty/board_1554286488.605142_.png")
2019-04-04 16:27:19 +00:00
warped = runner.warp_board(board)
empty = 0
files = "ABCDEFGH"
ranks = [1, 2, 3, 4, 5, 6, 7, 8]
non_empties = []
for file in files:
for rank in ranks:
2019-04-04 20:25:15 +00:00
counter = 0
2019-04-04 16:27:19 +00:00
src = runner.get_square(warped, file, rank)
2019-04-04 20:25:15 +00:00
width, height, _ = src.shape
src = src[width//25:, height//25:]
# src = src[:-width//200, :-height//200]
segmentator = cv2.ximgproc.segmentation.createGraphSegmentation(sigma=0.8, k=150, min_size=700)
2019-04-04 16:27:19 +00:00
segment = segmentator.processImage(src)
2019-04-04 20:25:15 +00:00
2019-04-04 16:27:19 +00:00
mask = segment.reshape(list(segment.shape) + [1]).repeat(3, axis=2)
masked = np.ma.masked_array(src, fill_value=0)
2019-04-04 20:25:15 +00:00
pls = []
2019-04-04 16:27:19 +00:00
for i in range(np.max(segment)):
masked.mask = mask != i
2019-04-04 20:25:15 +00:00
2019-04-04 16:27:19 +00:00
y, x = np.where(segment == i)
2019-04-04 20:25:15 +00:00
2019-04-04 16:27:19 +00:00
top, bottom, left, right = min(y), max(y), min(x), max(x)
2019-04-04 20:25:15 +00:00
2019-04-04 16:27:19 +00:00
dst = masked.filled()[top: bottom + 1, left: right + 1]
2019-04-04 20:25:15 +00:00
lel = (bottom - top) * (right - left)
#print(f"this is lel: {lel} ")
#print(f"this is meh: {np.sum(mask[:,:,0])} ")
if f"{file}{rank}" == "H7":
print("--"*20)
print("H7")
print(lel)
print(len(y))
print(np.max(segment))
# print(lel)
# print(np.sum(mask[:, :, 0]))
print("--"*20)
pls.append(len(y))
if len(y) < (164**2)*0.65:
counter += 1
2019-04-04 16:27:19 +00:00
cv2.imwrite(f"segment_test/segment_{datetime.utcnow().timestamp()}_{file}{rank}.jpg", dst)
2019-04-04 20:25:15 +00:00
if np.max(segment) > 0 and not np.all([x < (164**2)*0.2 for x in pls]) and (np.max(segment) >= 3 or np.all([x < (164**2)*0.942 for x in pls])):
2019-04-04 16:27:19 +00:00
print(f"{file}{rank} is nonempty")
non_empties.append([f"{file}{rank}", src])
2019-04-04 20:25:15 +00:00
print(counter)
2019-04-04 16:27:19 +00:00
print(np.max(segment))
empty += 1
2019-04-04 20:25:15 +00:00
print("++"*20)
print(counter)
2019-04-04 16:27:19 +00:00
print(64-empty)
for non_empty in non_empties:
cv2.imshow(non_empty[0], non_empty[1])
cv2.waitKey(0)
exit()
#empty_classifier = load_classifier(f"classifiers/classifier_empty/white_piece_on_white_square.pkl")
#print(empty_classifier.predict_proba(np.array([0]*16).reshape(1, -1))[0, 1])
#exit()
2019-04-04 10:59:37 +00:00
board = cv2.imread("whole_boards/board_102_1554110461.608167_.png")
warped = runner.warp_board(board)
files = "ABCDEFGH"
2019-04-04 16:27:19 +00:00
ranks = [1, 2, 3, 4, 5, 6, 7, 8]
2019-04-04 10:59:37 +00:00
counter = 0
for file in files:
for rank in ranks:
square = runner.get_square(warped, file, rank)
if predict(square, file, rank) == 'empty':
counter += 1
print(counter)
exit()
square = runner.get_square(warped, "D", 2)
gray_square = cv2.cvtColor(square, cv2.COLOR_BGR2GRAY)
print(cv2.meanStdDev(gray_square)[1])
print(cv2.meanStdDev(square)[1])
cv2.imshow("square", square)
cv2.waitKey(0)
print(pred_test("C", 2, square))
sift: cv2.xfeatures2d_SIFT = cv2.xfeatures2d.SIFT_create()
gray = cv2.cvtColor(square, cv2.COLOR_BGR2GRAY)
kp, desc = sift.detectAndCompute(gray, None)
cv2.drawKeypoints(square, kp, square)
cv2.imshow("kp", square)
cv2.waitKey(0)
exit()
board = cv2.imread("whole_boards/board_202_1554154094.001122_.png")
runner.fetch_empty_fields(board)
exit()
warped = runner.warp_board(board)
counter = 0
#square = runner.get_square(warped, "A", 3)
#top_left, bottom_left, top_right, bottom_right = selective_search(square, use_fast=True)
#cropped = square[top_left[1]:bottom_right[1], top_left[0]:bottom_right[0]]
for file in files:
for rank in ranks:
square = runner.get_square(warped, file, rank)
top_left, bottom_left, top_right, bottom_right = selective_search(square, use_fast=True)
cropped = square[top_left[1]:bottom_right[1], top_left[0]:bottom_right[0]]
rect_width = bottom_right[0] - bottom_left[0]
rect_height = bottom_right[1] - top_right[1]
size = rect_width * rect_height
square_height, square_width, channels = square.shape
empty_bias = (size == square_height*square_width)
if size == square_height*square_width:
print(f"{file}{rank} is likely empty")
res = pred_test(file, rank, mystery_image=square, empty_bias=empty_bias)
print(res)
if (max(res.items(), key=operator.itemgetter(1))[0] == 'empty'):
counter += 1
print(f"Amount of empty fields: {counter}")
#print("Non-cropped:\t",pred_test(square))
#print("Cropped:\t",pred_test(cropped))
#cv2.imshow("square", square)
#cv2.waitKey(0)
#runner.do_pre_processing()
#runner.train()
#img = "warped_square_B5.png"
#detect_using_nn(img)
#selective_search("training_images/empty/colorless/warped_square_A6.png", use_fast=True)
#selective_search("warped_square_B5.png", use_fast=True)
img = "training_images/rook/white/rook_training_D4_7.png"
#img = "training_images/rook/white_square/rook_training_E4_10.png"
#img = "training_images/knight/white_square/training_D5_134.png"
#top_left, bottom_left, top_right, bottom_right = selective_search(img, use_fast=True)
#cropped = cv2.imread(img)[top_left[1]:bottom_right[1], top_left[0]:bottom_right[0]]
#cv2.imshow("output", cropped)
#print(pred_test(cropped))
#cv2.waitKey(0)
#lel_test()
# test_entire_board()
#board = [[0, 0, 1, 2, 0, 0, 0, 2], [0, 1, 2, 2, 1, 0, 0, 1], [0, 0, 0, 0, 1, 0, 2, 0], [0, 2, 2, 1, 1, 2, 2, 0], [0, 1, 0, 0, 1, 2, 0, 0], [0, 0, 0, 0, 0, 2, 2, 0], [0, 0, 0, 2, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0]]
#for i in board:
# print(i)
#warped = cv2.imread("homo_pls_fuck.jpg")
#square = runner.get_square(warped, "D", 4)
#print(pred_test(square))
#cv2.imshow("lel", square)
#cv2.waitKey(0)