What up we can find all empties, we best

This commit is contained in:
Alexander Munch-Hansen 2019-04-08 23:59:06 +02:00
parent 5165609ac8
commit 6393b12e82
2 changed files with 67 additions and 62 deletions

124
main.py
View File

@ -3,11 +3,15 @@ import sys
from collections import defaultdict
from datetime import datetime
import matplotlib.pyplot as plt
import numpy as np
import runner
from util import load_classifier, PIECE, COLOR, POSITION, Board, Squares, PieceAndColor
from sklearn.exceptions import DataConversionWarning
import warnings
warnings.filterwarnings(action='ignore', category=DataConversionWarning)
np.set_printoptions(threshold=sys.maxsize)
@ -37,7 +41,7 @@ def pred_test(position: POSITION, mystery_image=None, empty_bias=False):
sift = cv2.xfeatures2d.SIFT_create()
if mystery_image is None:
mystery_image = cv2.imread("training_images/rook/white/rook_training_D4_2.png")
probs = classify(mystery_image, sift, empty_bias=empty_bias)
probs = identify_piece(mystery_image, sift, empty_bias=empty_bias)
return probs
@ -71,36 +75,36 @@ def test_entire_board() -> None:
def predict(square: np.ndarray, position: POSITION) -> PIECE:
y, x = np.histogram(square.ravel(), bins=256, range=[0, 256])
y, x = np.histogram(square.ravel(), bins=32, range=[0, 256])
for color in COLOR:
empty_classifier = load_classifier(f"classifiers/classifier_empty/white_piece_on_{color}_square.pkl")
prob = empty_classifier.predict_proba(np.array(y).reshape(1, -1))
print(f"{file}{rank}, {color}: {prob[0, 1]}")
if prob[0, 1] > 0.5:
return PIECE.EMPTY
left, right = x[:-1], x[1:]
X = np.array([left, right]).T.flatten()
Y = np.array([y, y]).T.flatten()
area = sum(np.diff(x) * y)
plt.plot(X, Y)
plt.xlabel(f"{position}")
#plt.show()
#for color in COLOR:
empty_classifier = load_classifier(f"classifiers/classifier_empty/white_piece_on_{position.color}_square.pkl")
prob = empty_classifier.predict_proba(np.array(y).reshape(1, -1))
print(f"{position}, {position.color}: {prob[0, 1]}")
if prob[0, 1] > 0.95:
print(f"{position} is empty")
return PIECE.EMPTY
return None
if __name__ == '__main__':
board = cv2.imread("whole_boards/boards_for_empty/board_1554286488.605142_rank_3.png")
warped = runner.warp_board(board)
def remove_most_empties(warped):
empty = 0
files = "ABCDEFGH"
ranks = [1, 2, 3, 4, 5, 6, 7, 8]
non_empties = []
for position in POSITION:
counter = 0
src = runner.get_square(warped, position)
width, height, _ = src.shape
src = src[width//25:, height//25:]
src = src[width // 25:, height // 25:]
# src = src[:-width//200, :-height//200]
segmentator = cv2.ximgproc.segmentation.createGraphSegmentation(sigma=0.8, k=150, min_size=700)
segment = segmentator.processImage(src)
@ -112,44 +116,32 @@ if __name__ == '__main__':
masked.mask = mask != i
y, x = np.where(segment == i)
pls.append(len(y))
top, bottom, left, right = min(y), max(y), min(x), max(x)
dst = masked.filled()[top: bottom + 1, left: right + 1]
lel = (bottom - top) * (right - left)
#print(f"this is lel: {lel} ")
#print(f"this is meh: {np.sum(mask[:,:,0])} ")
if position == POSITION.H7:
print("--"*20)
print("H7")
print(lel)
print(len(y))
print(np.max(segment))
# print(lel)
# print(np.sum(mask[:, :, 0]))
print("--"*20)
pls.append(len(y))
if len(y) < (164**2)*0.65:
counter += 1
cv2.imwrite(f"segment_test/segment_{datetime.utcnow().timestamp()}_{position}.png", dst)
if np.max(segment) > 0 and not np.all([x < (164**2)*0.2 for x in pls]) and (np.max(segment) >= 3 or np.all([x < (164**2)*0.942 for x in pls])):
if np.max(segment) > 0 and not np.all([x < (164 ** 2) * 0.2 for x in pls]) and (
np.max(segment) >= 3 or np.all([x < (164 ** 2) * 0.942 for x in pls])):
print(f"{position} is nonempty")
non_empties.append([f"{position}", src])
print(counter)
print(np.max(segment))
non_empties.append([position, src])
empty += 1
print("++"*20)
print(counter)
print(64-empty)
for non_empty in non_empties:
cv2.imshow(non_empty[0], non_empty[1])
cv2.waitKey(0)
exit()
print(64 - empty)
return non_empties
if __name__ == '__main__':
#board = cv2.imread("whole_boards/boards_for_empty/board_1554286488.605142_rank_3.png")
board = cv2.imread("whole_boards/boards_for_empty/board_1554288606.075646_rank_1.png")
warped = runner.warp_board(board)
non_empties = remove_most_empties(warped)
#empty_classifier = load_classifier(f"classifiers/classifier_empty/white_piece_on_white_square.pkl")
#print(empty_classifier.predict_proba(np.array([0]*16).reshape(1, -1))[0, 1])
@ -157,21 +149,33 @@ if __name__ == '__main__':
#exit()
board = cv2.imread("whole_boards/board_102_1554110461.608167_.png")
warped = runner.warp_board(board)
files = "ABCDEFGH"
ranks = [1, 2, 3, 4, 5, 6, 7, 8]
counter = 0
completely_non_empties = []
for position, square in non_empties:
#predict(square, position)
for file in files:
for rank in ranks:
square_img = runner.get_square(warped, file, rank)
if predict(square_img, file, rank) == 'empty':
#y, x = np.histogram(square.ravel(), bins=32, range=[0, 256])
#left, right = x[:-1], x[1:]
#X = np.array([left, right]).T.flatten()
#Y = np.array([y, y]).T.flatten()
#plt.plot(X, Y)
#plt.xlabel(f"{position}")
#plt.show()
if predict(square,position) == PIECE.EMPTY:
counter += 1
else:
completely_non_empties.append([position, square])
print(counter)
for position, square in completely_non_empties:
cv2.imshow(f"{position}", square)
cv2.waitKey(0)
exit()

View File

@ -82,7 +82,7 @@ def train_empty_or_piece_hist() -> None:
for piece in (PIECE.EMPTY, PIECE.ROOK, PIECE.KNIGHT):
for filename in glob.glob(os.path.join("training_images", f"{piece}", f"{square_color}_square", "*.png")):
img = cv2.imread(filename)
y, x = np.histogram(img.ravel(), bins=256, range=[0, 256])
y, x = np.histogram(img.ravel(), bins=32, range=[0, 256])
X.append(y)
Y.append(piece == PIECE.EMPTY)
@ -176,9 +176,10 @@ def get_square(warped_board: np.ndarray, position: POSITION) -> np.ndarray:
square_size = size // 8
padding = 0
x1 = side + (square_size * position.file)
x1 = side + (square_size * (position.file - 1))
x2 = x1 + square_size
y1 = max(0, side + (square_size * (8 - position.rank)) - padding) # 8 - rank because chessboard is from 8 to 1
y2 = min(width, y1 + square_size + padding)
square = warped_board[y1:y2, x1:x2]