152 lines
3.8 KiB
Python
152 lines
3.8 KiB
Python
#!/usr/bin/env python3
|
|
import math
|
|
import random
|
|
from itertools import combinations
|
|
|
|
|
|
def euclid(a, b):
|
|
"""returns the Greatest Common Divisor of a and b.
|
|
Inspired by https://en.wikipedia.org/wiki/Euclidean_algorithm#Implementations"""
|
|
a = abs(a)
|
|
b = abs(b)
|
|
if a < b:
|
|
a, b = b, a
|
|
while b != 0:
|
|
a, b = b, a % b
|
|
return a
|
|
|
|
|
|
def coPrime(x, y):
|
|
"""returns 'True' if the values in the list L are all co-prime
|
|
otherwise, it returns 'False'. """
|
|
if euclid(x, y) != 1:
|
|
return False
|
|
return True
|
|
|
|
|
|
def iterative_extended_euclid(a, b):
|
|
""" returns the GCD (in old_r) of a and b as well as the "Bezout's Identity" such that
|
|
a*old_s + b*old_t = GCD(a,b).
|
|
Algorithm is adopted from https://en.wikipedia.org/wiki/Extended_Euclidean_algorithm#Pseudocode
|
|
"""
|
|
old_r, r = a, b
|
|
old_s, s = 1, 0
|
|
old_t, t = 0, 1
|
|
|
|
while r != 0:
|
|
quotient = old_r // r
|
|
old_r, r = r, old_r - (quotient * r)
|
|
old_s, s = s, old_s - (quotient * s)
|
|
old_t, t = t, old_t - (quotient * t)
|
|
|
|
print(old_r, old_s, old_t)
|
|
return old_r, old_s, old_t
|
|
|
|
|
|
|
|
|
|
def modInv(a, m):
|
|
"""returns the multiplicative inverse of a in modulo m as a
|
|
positive value between zero and m-1
|
|
Adopted from https://en.wikipedia.org/wiki/Modular_multiplicative_inverse#Extended_Euclidean_algorithm
|
|
"""
|
|
if coPrime(a, m):
|
|
linear_combination = iterative_extended_euclid(a, m)
|
|
print(linear_combination[1] % m)
|
|
return linear_combination[1] % m
|
|
else:
|
|
return 0
|
|
|
|
|
|
def miller_rabin(n, k):
|
|
|
|
# Implementation uses the Miller-Rabin Primality Test
|
|
# The optimal number of rounds for this test is 40
|
|
# See http://stackoverflow.com/questions/6325576/how-many-iterations-of-rabin-miller-should-i-use-for-cryptographic-safe-primes
|
|
# for justification
|
|
|
|
# If number is even, it's a composite number
|
|
|
|
if n == 2:
|
|
return True
|
|
|
|
if n % 2 == 0:
|
|
return False
|
|
|
|
r, s = 0, n - 1
|
|
while s % 2 == 0:
|
|
r += 1
|
|
s //= 2
|
|
for _ in range(k):
|
|
a = random.randrange(2, n - 1)
|
|
x = pow(a, s, n)
|
|
if x == 1 or x == n - 1:
|
|
continue
|
|
for _ in range(r - 1):
|
|
x = pow(x, 2, n)
|
|
if x == n - 1:
|
|
break
|
|
else:
|
|
return False
|
|
return True
|
|
|
|
|
|
def findAPrime(a, b, k):
|
|
"""Return a pseudo prime number roughly between a and b,
|
|
(could be larger than b). """
|
|
x = random.randint(a, b)
|
|
while True:
|
|
if miller_rabin(x, k):
|
|
return x
|
|
else:
|
|
x += 1
|
|
|
|
|
|
def newKey(a, b, k):
|
|
""" Try to find two large pseudo primes roughly between a and b.
|
|
Generate public and private keys for RSA encryption."""
|
|
|
|
p = findAPrime(a, b, k)
|
|
while True:
|
|
q = findAPrime(a, b, k)
|
|
if q != p:
|
|
break
|
|
|
|
n = p * q
|
|
m = (p - 1) * (q - 1) # Compute phi(n) for n=pq where p and q are prime
|
|
|
|
# Find and e that is coprime to phi(n) to be used in the public key
|
|
while True:
|
|
e = random.randint(1, m)
|
|
if coPrime(e, m):
|
|
break
|
|
|
|
# Let d be the modular inverse to e, to be used as private key
|
|
d = modInv(e, m)
|
|
return (n, e, d)
|
|
|
|
|
|
def encrypt(message, modN, e):
|
|
"""given a string message, public keys and blockSize, encrypt using
|
|
RSA algorithms."""
|
|
return pow(message, e, modN)
|
|
|
|
|
|
def decrypt(secret, modN, d):
|
|
"""reverse function of encrypt"""
|
|
return pow(secret, d, modN)
|
|
|
|
|
|
if __name__ == '__main__':
|
|
n, e, d = newKey(2**40, 2 ** 41, 20)
|
|
message = 35274764
|
|
|
|
print("original message is {}".format(message))
|
|
print("-"*80)
|
|
cipher = encrypt(message, n, e)
|
|
print("cipher text is {}".format(cipher))
|
|
print("-"*80)
|
|
deciphered = decrypt(cipher, n, d)
|
|
print("decrypted message is {}".format(deciphered))
|
|
|