Altered algorithms, added comments

This commit is contained in:
Alexander Munch-Hansen 2021-02-28 21:05:08 +01:00
parent 310e3b3b2a
commit 02489adde9

163
main.py
View File

@ -5,7 +5,8 @@ from itertools import combinations
def euclid(a, b):
"""returns the Greatest Common Divisor of a and b"""
"""returns the Greatest Common Divisor of a and b.
Inspired by https://en.wikipedia.org/wiki/Euclidean_algorithm#Implementations"""
a = abs(a)
b = abs(b)
if a < b:
@ -15,156 +16,136 @@ def euclid(a, b):
return a
def coPrime(l):
def coPrime(x, y):
"""returns 'True' if the values in the list L are all co-prime
otherwise, it returns 'False'. """
for i, j in combinations(l, 2):
if euclid(i, j) != 1:
return False
if euclid(x, y) != 1:
return False
return True
def extendedEuclid(a, b):
"""return a tuple of three values: x, y and z, such that x is
the GCD of a and b, and x = y * a + z * b"""
if a == 0:
return b, 0, 1
else:
g, y, x = extendedEuclid(b % a, a)
return g, x - (b // a) * y, y
def iterative_extended_euclid(a, b):
""" returns the GCD (in old_r) of a and b as well as the "Bezout's Identity" such that
a*old_s + b*old_t = GCD(a,b).
Algorithm is adopted from https://en.wikipedia.org/wiki/Extended_Euclidean_algorithm#Pseudocode
"""
old_r, r = a, b
old_s, s = 1, 0
old_t, t = 0, 1
while r != 0:
quotient = old_r // r
old_r, r = r, old_r - (quotient * r)
old_s, s = s, old_s - (quotient * s)
old_t, t = t, old_t - (quotient * t)
print(old_r, old_s, old_t)
return old_r, old_s, old_t
def modInv(a, m):
"""returns the multiplicative inverse of a in modulo m as a
positive value between zero and m-1"""
# notice that a and m need to be co-prime to each other.
if coPrime([a, m]):
linearCombination = extendedEuclid(a, m)
return linearCombination[1] % m
positive value between zero and m-1
Adopted from https://en.wikipedia.org/wiki/Modular_multiplicative_inverse#Extended_Euclidean_algorithm
"""
if coPrime(a, m):
linear_combination = iterative_extended_euclid(a, m)
print(linear_combination[1] % m)
return linear_combination[1] % m
else:
return 0
def extractTwos(m):
"""m is a positive integer. A tuple (s, d) of integers is returned
such that m = (2 ** s) * d."""
# the problem can be reduced to counting how many '0's there are in
# the end of bin(m). This can be done this way: m & a stretch of '1's
# which can be represent as (2 ** n) - 1.
assert m >= 0
i = 0
while m & (2 ** i) == 0:
i += 1
return i, m >> i
def miller_rabin(n, k):
# Implementation uses the Miller-Rabin Primality Test
# The optimal number of rounds for this test is 40
# See http://stackoverflow.com/questions/6325576/how-many-iterations-of-rabin-miller-should-i-use-for-cryptographic-safe-primes
# for justification
def millerRabin(n, k):
"""
Miller Rabin pseudo-prime test
return True means likely a prime, (how sure about that, depending on k)
return False means definitely a composite.
Raise assertion error when n, k are not positive integers
and n is not 1
"""
assert n >= 1
# ensure n is bigger than 1
assert k > 0
# ensure k is a positive integer so everything down here makes sense
# If number is even, it's a composite number
if n == 2:
return True
# make sure to return True if n == 2
if n % 2 == 0:
return False
# immediately return False for all the even numbers bigger than 2
extract2 = extractTwos(n - 1)
s = extract2[0]
d = extract2[1]
assert 2 ** s * d == n - 1
def tryComposite(a):
"""Inner function which will inspect whether a given witness
will reveal the true identity of n. Will only be called within
millerRabin"""
x = pow(a,d,n)
r, s = 0, n - 1
while s % 2 == 0:
r += 1
s //= 2
for _ in range(k):
a = random.randrange(2, n - 1)
x = pow(a, s, n)
if x == 1 or x == n - 1:
return None
continue
for _ in range(r - 1):
x = pow(x, 2, n)
if x == n - 1:
break
else:
for j in range(1, s):
x = pow(x,2,n)
if x == 1:
return False
elif x == n - 1:
return None
return False
for i in range(0, k):
a = random.randint(2, n - 2)
if tryComposite(a) == False:
return False
return True # actually, we should return probably true.
return True
def findAPrime(a, b, k):
"""Return a pseudo prime number roughly between a and b,
(could be larger than b). Raise ValueError if cannot find a
pseudo prime after 10 * ln(x) + 3 tries. """
(could be larger than b). """
x = random.randint(a, b)
for i in range(0, int(10 * math.log(x) + 3)):
if millerRabin(x, k):
while True:
if miller_rabin(x, k):
return x
else:
x += 1
raise ValueError
def newKey(a, b, k):
""" Try to find two large pseudo primes roughly between a and b.
Generate public and private keys for RSA encryption.
Raises ValueError if it fails to find one"""
try:
p = findAPrime(a, b, k)
while True:
q = findAPrime(a, b, k)
if q != p:
break
except:
raise ValueError
n = p * q
m = (p - 1) * (q - 1)
Generate public and private keys for RSA encryption."""
p = findAPrime(a, b, k)
while True:
e = random.randint(1, m)
if coPrime([e, m]):
q = findAPrime(a, b, k)
if q != p:
break
n = p * q
m = (p - 1) * (q - 1) # Compute phi(n) for n=pq where p and q are prime
# Find and e that is coprime to phi(n) to be used in the public key
while True:
e = random.randint(1, m)
if coPrime(e, m):
break
# Let d be the modular inverse to e, to be used as private key
d = modInv(e, m)
return (n, e, d)
def encrypt(message, modN, e, blockSize):
def encrypt(message, modN, e):
"""given a string message, public keys and blockSize, encrypt using
RSA algorithms."""
return pow(message, e, modN)
def decrypt(secret, modN, d, blockSize):
def decrypt(secret, modN, d):
"""reverse function of encrypt"""
return pow(secret, d, modN)
if __name__ == '__main__':
if __name__ == '__main__':
n, e, d = newKey(2**40, 2 ** 41, 20)
message = 35274764
print("original message is {}".format(message))
print("-"*80)
cipher = encrypt(message, n, e, 15)
cipher = encrypt(message, n, e)
print("cipher text is {}".format(cipher))
print("-"*80)
deciphered = decrypt(cipher, n, d, 15)
deciphered = decrypt(cipher, n, d)
print("decrypted message is {}".format(deciphered))