crypto_computing/week4.py

179 lines
5.2 KiB
Python
Raw Normal View History

2019-09-18 14:09:36 +00:00
# Concept: Create 8 PKs where each represent a bloodtype. Let 7 of them be created by OGen and 1 of them by KeyGen.
# The one represents our bloodtype. Bob will then encrypt 8 values using these PKs, where each value repredents
# A truth value, thus either true or false, s.t. each cipher is an entry in the bloodtype comptability matrix.
2019-09-21 23:41:39 +00:00
import math
import random
from secrets import SystemRandom
2019-09-21 23:41:39 +00:00
from .week1 import BloodType, blood_cell_compatibility_lookup
bloodtypes = {b: i for i, b in enumerate(BloodType, start=1)} # we can't encrypt 0, so we have to index from 1
2019-09-18 14:09:36 +00:00
class ElGamal:
def __init__(self, g, q, p):
2019-09-18 14:09:36 +00:00
self.gen_ = g
self.order = q
self.p = p
2019-09-18 14:09:36 +00:00
self.pk = None
self.sk = None
def gen_key(self):
key = SystemRandom().randint(1, self.order)
2019-09-21 23:41:39 +00:00
while math.gcd(self.order, key) != 1:
key = SystemRandom().randint(1, self.order)
return key
2019-09-18 14:09:36 +00:00
def gen(self, sk):
h = pow(self.gen_, sk, self.order)
2019-09-18 14:09:36 +00:00
self.sk = sk
self.pk = (self.gen_, h)
return self.pk
def enc(self, m, pk):
# sample random r \in Zq
2019-09-18 16:14:19 +00:00
r = SystemRandom().randint(1, self.order)
2019-09-18 14:09:36 +00:00
g, h = pk
s = pow(h, r, self.order)
p = pow(g, r, self.order)
c = s * m
return c, p
2019-09-18 14:09:36 +00:00
def dec(self, c):
c1, c2 = c
h = pow(c2, self.sk, self.order)
m = c1 / h
2019-09-18 14:09:36 +00:00
return m
def ogen(self):
s = SystemRandom().randint(1, self.order)
h = pow(s, 2, self.order)
2019-09-18 14:09:36 +00:00
return self.gen_, h
class Alice:
def __init__(self, bloodtype, elgamal):
self.elgamal = elgamal
self.sk = elgamal.gen_key()
self.pk = elgamal.gen(self.sk)
2019-09-21 23:41:39 +00:00
self.b = bloodtypes[bloodtype]
self.fake_pks = [self.elgamal.ogen() for _ in range(7)]
2019-09-18 14:09:36 +00:00
def send_pks(self):
all_pks = self.fake_pks
all_pks.insert(self.b-1, self.pk)
2019-09-18 14:09:36 +00:00
return all_pks
def retrieve(self, ciphers):
2019-09-21 23:41:39 +00:00
#print(ciphers)
mb = self.elgamal.dec(ciphers[self.b-1])
2019-09-21 23:41:39 +00:00
# Bob sends 1 for false, 2 for true, so we have to subtract 1 here
return mb - 1
2019-09-18 14:09:36 +00:00
class Bob:
def __init__(self, bloodtype, elgamal):
2019-09-21 23:41:39 +00:00
self.bloodtype = bloodtypes[bloodtype]
2019-09-18 14:09:36 +00:00
self.truth_vals = []
self.elgamal = elgamal
self.pks = None
# Bob needs his row of the truth table, to create the 8 messages
2019-09-18 14:09:36 +00:00
for donor in BloodType:
2019-09-18 16:14:19 +00:00
truth_val = blood_cell_compatibility_lookup(bloodtype, donor)
2019-09-18 14:09:36 +00:00
self.truth_vals.append(truth_val)
def receive_pks(self, pks):
self.pks = pks
def transfer_messages(self):
ciphers = []
for idx, truth_val in enumerate(self.truth_vals):
pk = self.pks[idx]
2019-09-21 23:41:39 +00:00
c = self.elgamal.enc(truth_val + 1, pk) # + 1 since Bob can't send 0, as it will encrypt to 0
2019-09-18 14:09:36 +00:00
ciphers.append(c)
return ciphers
2019-09-21 23:41:39 +00:00
def is_prime(n: int, k: int) -> bool:
"""
Miller-Rabin Primality test.
Adapted from pseudo-code at https://en.wikipedia.org/wiki/Miller%E2%80%93Rabin_primality_test.
:param n: An odd integer to be tested for primality.
:param k: The number of rounds of testing to perform.
:return: True if n is 'probably prime', False otherwise if n is composite.
"""
# write n as 2r·d + 1 with d odd (by factoring out powers of 2 from n 1)
d = n - 1
r = 0
while d % 2 == 0:
d >>= 1
r += 1
for i in range(k): # witnessLoop
continue_wl = False
a = random.randint(2, n - 2)
x = pow(a, d, n)
if x == 1 or x == n - 1:
continue
for j in range(r - 1):
x = pow(x, 2, n)
if x == n - 1:
continue_wl = True
break
if continue_wl:
continue
return False
return True
def gen_prime(b: int, k: int = 10) -> int:
"""
Generate strong probable prime by drawing integers at random until one passes the is_prime test.
Adapted from pseudo-code at https://en.wikipedia.org/wiki/Miller%E2%80%93Rabin_primality_test.
:param b: The number of bits of the result.
:param k: The number of rounds of testing to perform.
:return: a strong probable prime.
"""
while True:
n = random.randint(2**(b-1), (2**b)-1)
if n % 2 == 0:
continue
if is_prime(n, k):
return n
def run(donor: BloodType, recipient: BloodType):
p = gen_prime(128)
2019-09-18 16:14:19 +00:00
q = 2 * p + 1
g = SystemRandom().randint(2, q)
2019-09-21 23:41:39 +00:00
#print("p:", p, "q:", q, "g:", g)
elgamal = ElGamal(g, q, p)
2019-09-18 16:14:19 +00:00
alice = Alice(donor, elgamal)
bob = Bob(recipient, elgamal)
bob.receive_pks(alice.send_pks())
pls = alice.retrieve(bob.transfer_messages())
2019-09-18 16:14:19 +00:00
return bool(pls)
2019-09-18 14:09:36 +00:00
2019-09-21 23:41:39 +00:00
def main():
2019-09-18 16:14:19 +00:00
green = 0
red = 0
for i, recipient in enumerate(BloodType):
for j, donor in enumerate(BloodType):
z = run(donor, recipient)
lookup = blood_cell_compatibility_lookup(recipient, donor)
if lookup == z:
green += 1
else:
print(f"'{BloodType(donor).name} -> {BloodType(recipient).name}' should be {lookup}.")
red += 1
print("Green:", green)
print("Red :", red)