# Concept: Create 8 PKs where each represent a bloodtype. Let 7 of them be created by OGen and 1 of them by KeyGen. # The one represents our bloodtype. Bob will then encrypt 8 values using these PKs, where each value repredents # A truth value, thus either true or false, s.t. each cipher is an entry in the bloodtype comptability matrix. import math import random from secrets import SystemRandom from .week1 import BloodType, blood_cell_compatibility_lookup bloodtypes = {b: i for i, b in enumerate(BloodType, start=1)} # we can't encrypt 0, so we have to index from 1 class ElGamal: def __init__(self, g, q, p): self.gen_ = g self.order = q self.p = p self.pk = None self.sk = None def gen_key(self): key = SystemRandom().randint(1, self.order) while math.gcd(self.order, key) != 1: key = SystemRandom().randint(1, self.order) return key def gen(self, sk): h = pow(self.gen_, sk, self.order) self.sk = sk self.pk = (self.gen_, h) return self.pk def enc(self, m, pk): # sample random r \in Zq r = SystemRandom().randint(1, self.order) g, h = pk s = pow(h, r, self.order) p = pow(g, r, self.order) c = s * m return c, p def dec(self, c): c1, c2 = c h = pow(c2, self.sk, self.order) m = c1 / h return m def ogen(self): s = SystemRandom().randint(1, self.order) h = pow(s, 2, self.order) return self.gen_, h class Alice: def __init__(self, bloodtype, elgamal): self.elgamal = elgamal self.sk = elgamal.gen_key() self.pk = elgamal.gen(self.sk) self.b = bloodtypes[bloodtype] self.fake_pks = [self.elgamal.ogen() for _ in range(7)] def send_pks(self): all_pks = self.fake_pks all_pks.insert(self.b-1, self.pk) return all_pks def retrieve(self, ciphers): #print(ciphers) mb = self.elgamal.dec(ciphers[self.b-1]) # Bob sends 1 for false, 2 for true, so we have to subtract 1 here return mb - 1 class Bob: def __init__(self, bloodtype, elgamal): self.bloodtype = bloodtypes[bloodtype] self.truth_vals = [] self.elgamal = elgamal self.pks = None # Bob needs his row of the truth table, to create the 8 messages for donor in BloodType: truth_val = blood_cell_compatibility_lookup(bloodtype, donor) self.truth_vals.append(truth_val) def receive_pks(self, pks): self.pks = pks def transfer_messages(self): ciphers = [] for idx, truth_val in enumerate(self.truth_vals): pk = self.pks[idx] c = self.elgamal.enc(truth_val + 1, pk) # + 1 since Bob can't send 0, as it will encrypt to 0 ciphers.append(c) return ciphers def is_prime(n: int, k: int) -> bool: """ Miller-Rabin Primality test. Adapted from pseudo-code at https://en.wikipedia.org/wiki/Miller%E2%80%93Rabin_primality_test. :param n: An odd integer to be tested for primality. :param k: The number of rounds of testing to perform. :return: True if n is 'probably prime', False otherwise if n is composite. """ # write n as 2r·d + 1 with d odd (by factoring out powers of 2 from n − 1) d = n - 1 r = 0 while d % 2 == 0: d >>= 1 r += 1 for i in range(k): # witnessLoop continue_wl = False a = random.randint(2, n - 2) x = pow(a, d, n) if x == 1 or x == n - 1: continue for j in range(r - 1): x = pow(x, 2, n) if x == n - 1: continue_wl = True break if continue_wl: continue return False return True def gen_prime(b: int, k: int = 10) -> int: """ Generate strong probable prime by drawing integers at random until one passes the is_prime test. Adapted from pseudo-code at https://en.wikipedia.org/wiki/Miller%E2%80%93Rabin_primality_test. :param b: The number of bits of the result. :param k: The number of rounds of testing to perform. :return: a strong probable prime. """ while True: n = random.randint(2**(b-1), (2**b)-1) if n % 2 == 0: continue if is_prime(n, k): return n def run(donor: BloodType, recipient: BloodType): p = gen_prime(128) q = 2 * p + 1 g = SystemRandom().randint(2, q) #print("p:", p, "q:", q, "g:", g) elgamal = ElGamal(g, q, p) alice = Alice(donor, elgamal) bob = Bob(recipient, elgamal) bob.receive_pks(alice.send_pks()) pls = alice.retrieve(bob.transfer_messages()) return bool(pls) def main(): green = 0 red = 0 for i, recipient in enumerate(BloodType): for j, donor in enumerate(BloodType): z = run(donor, recipient) lookup = blood_cell_compatibility_lookup(recipient, donor) if lookup == z: green += 1 else: print(f"'{BloodType(donor).name} -> {BloodType(recipient).name}' should be {lookup}.") red += 1 print("Green:", green) print("Red :", red)