move evaluation code into network.py

This commit is contained in:
Alexander Munch-Hansen 2018-03-20 13:17:38 +01:00
parent 99783ee4f8
commit b7e6dd10af
3 changed files with 115 additions and 117 deletions

104
game.py
View File

@ -3,12 +3,8 @@ from player import Player
from bot import Bot
from restore_bot import RestoreBot
from cup import Cup
from eval import Eval
import numpy as np
import sys
import time
import os # for path join
class Game:
@ -91,106 +87,6 @@ class Game:
print(self.board)
print("--------------------------------")
def eval(self, trained_eps = 0):
def do_eval(method, episodes = 1000, trained_eps = 0):
start_time = time.time()
def print_time_estimate(eps_completed):
cur_time = time.time()
time_diff = cur_time - start_time
eps_per_sec = eps_completed / time_diff
secs_per_ep = time_diff / eps_completed
eps_remaining = (episodes - eps_completed)
sys.stderr.write("[EVAL ] Averaging {per_sec} episodes per second\n".format(per_sec = round(eps_per_sec, 2)))
sys.stderr.write("[EVAL ] {eps_remaining} episodes remaining; approx. {time_remaining} seconds remaining\n".format(eps_remaining = eps_remaining, time_remaining = int(eps_remaining * secs_per_ep)))
sys.stderr.write("[EVAL ] Evaluating {eps} episode(s) with method '{method}'\n".format(eps=episodes, method=method))
if method == 'random':
outcomes = []
for i in range(1, episodes + 1):
sys.stderr.write("[EVAL ] Episode {}".format(i))
self.board = Board.initial_state
while Board.outcome(self.board) is None:
roll = self.roll()
self.board = (self.p1.make_move(self.board, self.p1.get_sym(), roll))[0]
roll = self.roll()
self.board = Board.flip(Eval.make_random_move(Board.flip(self.board), 1, roll))
sys.stderr.write("\t outcome {}".format(Board.outcome(self.board)[1]))
outcomes.append(Board.outcome(self.board)[1])
sys.stderr.write("\n")
if i % 50 == 0:
print_time_estimate(i)
return outcomes
elif method == 'pubeval':
outcomes = []
# Add the evaluation code for pubeval, the bot has a method make_pubeval_move(board, sym, roll), which can be used to get the best move according to pubeval
for i in range(1, episodes + 1):
sys.stderr.write("[EVAL ] Episode {}".format(i))
self.board = Board.initial_state
#print("init:", self.board, sep="\n")
while Board.outcome(self.board) is None:
#print("-"*30)
roll = self.roll()
#print(roll)
prev_board = tuple(self.board)
self.board = (self.p1.make_move(self.board, self.p1.get_sym(), roll))[0]
#print("post p1:", self.board, sep="\n")
#print("."*30)
roll = self.roll()
#print(roll)
prev_board = tuple(self.board)
self.board = Eval.make_pubeval_move(self.board, -1, roll)[0][0:26]
#print("post pubeval:", self.board, sep="\n")
#print("*"*30)
#print(self.board)
#print("+"*30)
sys.stderr.write("\t outcome {}".format(Board.outcome(self.board)[1]))
outcomes.append(Board.outcome(self.board)[1])
sys.stderr.write("\n")
if i % 10 == 0:
print_time_estimate(i)
return outcomes
elif method == 'dumbmodel':
config_prime = self.config.copy()
config_prime['model_path'] = os.path.join(config_prime['model_storage_path'], 'dumbmodel')
eval_bot = Bot(1, config = config_prime, name = "dumbmodel")
#print(self.config, "\n", config_prime)
outcomes = []
for i in range(1, episodes + 1):
sys.stderr.write("[EVAL ] Episode {}".format(i))
self.board = Board.initial_state
while Board.outcome(self.board) is None:
roll = self.roll()
self.board = (self.p1.make_move(self.board, self.p1.get_sym(), roll))[0]
roll = self.roll()
self.board = Board.flip(eval_bot.make_move(Board.flip(self.board), self.p1.get_sym(), roll)[0])
sys.stderr.write("\t outcome {}".format(Board.outcome(self.board)[1]))
outcomes.append(Board.outcome(self.board)[1])
sys.stderr.write("\n")
if i % 50 == 0:
print_time_estimate(i)
return outcomes
else:
sys.stderr.write("[EVAL ] Evaluation method '{}' is not defined\n".format(method))
return [0]
return [ (method, do_eval(method,
self.config['episode_count'],
trained_eps = trained_eps))
for method
in self.config['eval_methods'] ]
def play(self, episodes = 1000):
outcomes = []
for i in range(episodes):

22
main.py
View File

@ -87,14 +87,6 @@ if not os.path.isdir(log_path):
os.mkdir(log_path)
# Set up network
from network import Network
# Set up variables
episode_count = config['episode_count']
# Do actions specified by command-line
if args.list_models:
def get_eps_trained(folder):
@ -109,21 +101,29 @@ if args.list_models:
for model in models:
sys.stderr.write(" {name}: {eps_trained}\n".format(name = model[0], eps_trained = model[1]))
elif args.train:
exit()
# Set up network
from network import Network
network = Network(config, config['model'])
eps = config['start_episode']
# Set up variables
episode_count = config['episode_count']
if args.train:
while True:
train_outcome = network.train_model(episodes = episode_count, trained_eps = eps)
eps += episode_count
log_train_outcome(train_outcome, trained_eps = eps)
if config['eval_after_train']:
eval_outcomes = g.eval(trained_eps = eps)
eval_outcomes = network.eval(trained_eps = eps)
log_eval_outcomes(eval_outcomes, trained_eps = eps)
if not config['train_perpetually']:
break
elif args.eval:
eps = config['start_episode']
outcomes = g.eval()
outcomes = network.eval()
log_eval_outcomes(outcomes, trained_eps = eps)
#elif args.play:
# g.play(episodes = episode_count)

View File

@ -6,6 +6,7 @@ import os
import time
import sys
import random
from eval import Eval
class Network:
hidden_size = 40
@ -240,3 +241,104 @@ class Network:
# NOTE: We need to make a method so that we can take a single turn or at least just pick the next best move, so we know how to evaluate according to TD-learning. Right now, our game just continues in a while loop without nothing to stop it!
def eval(self, trained_eps = 0):
def do_eval(method, episodes = 1000, trained_eps = 0):
start_time = time.time()
def print_time_estimate(eps_completed):
cur_time = time.time()
time_diff = cur_time - start_time
eps_per_sec = eps_completed / time_diff
secs_per_ep = time_diff / eps_completed
eps_remaining = (episodes - eps_completed)
sys.stderr.write("[EVAL ] Averaging {per_sec} episodes per second\n".format(per_sec = round(eps_per_sec, 2)))
sys.stderr.write("[EVAL ] {eps_remaining} episodes remaining; approx. {time_remaining} seconds remaining\n".format(eps_remaining = eps_remaining, time_remaining = int(eps_remaining * secs_per_ep)))
sys.stderr.write("[EVAL ] Evaluating {eps} episode(s) with method '{method}'\n".format(eps=episodes, method=method))
if method == 'random':
outcomes = []
for i in range(1, episodes + 1):
sys.stderr.write("[EVAL ] Episode {}".format(i))
board = Board.initial_state
while Board.outcome(board) is None:
roll = (random.randrange(1,7), random.randrange(1,7))
board = (self.p1.make_move(board, self.p1.get_sym(), roll))[0]
roll = (random.randrange(1,7), random.randrange(1,7))
board = Board.flip(Eval.make_random_move(Board.flip(board), 1, roll))
sys.stderr.write("\t outcome {}".format(Board.outcome(board)[1]))
outcomes.append(Board.outcome(board)[1])
sys.stderr.write("\n")
if i % 50 == 0:
print_time_estimate(i)
return outcomes
elif method == 'pubeval':
outcomes = []
# Add the evaluation code for pubeval, the bot has a method make_pubeval_move(board, sym, roll), which can be used to get the best move according to pubeval
for i in range(1, episodes + 1):
sys.stderr.write("[EVAL ] Episode {}".format(i))
board = Board.initial_state
#print("init:", board, sep="\n")
while Board.outcome(board) is None:
#print("-"*30)
roll = (random.randrange(1,7), random.randrange(1,7))
#print(roll)
prev_board = tuple(board)
board = (self.make_move(board, roll))[0]
#print("post p1:", board, sep="\n")
#print("."*30)
roll = (random.randrange(1,7), random.randrange(1,7))
#print(roll)
prev_board = tuple(board)
board = Eval.make_pubeval_move(board, -1, roll)[0][0:26]
#print("post pubeval:", board, sep="\n")
#print("*"*30)
#print(board)
#print("+"*30)
sys.stderr.write("\t outcome {}".format(Board.outcome(board)[1]))
outcomes.append(Board.outcome(board)[1])
sys.stderr.write("\n")
if i % 10 == 0:
print_time_estimate(i)
return outcomes
# elif method == 'dumbmodel':
# config_prime = self.config.copy()
# config_prime['model_path'] = os.path.join(config_prime['model_storage_path'], 'dumbmodel')
# eval_bot = Bot(1, config = config_prime, name = "dumbmodel")
# #print(self.config, "\n", config_prime)
# outcomes = []
# for i in range(1, episodes + 1):
# sys.stderr.write("[EVAL ] Episode {}".format(i))
# board = Board.initial_state
# while Board.outcome(board) is None:
# roll = (random.randrange(1,7), random.randrange(1,7))
# board = (self.make_move(board, self.p1.get_sym(), roll))[0]
# roll = (random.randrange(1,7), random.randrange(1,7))
# board = Board.flip(eval_bot.make_move(Board.flip(board), self.p1.get_sym(), roll)[0])
# sys.stderr.write("\t outcome {}".format(Board.outcome(board)[1]))
# outcomes.append(Board.outcome(board)[1])
# sys.stderr.write("\n")
# if i % 50 == 0:
# print_time_estimate(i)
# return outcomes
else:
sys.stderr.write("[EVAL ] Evaluation method '{}' is not defined\n".format(method))
return [0]
return [ (method, do_eval(method,
self.config['episode_count'],
trained_eps = trained_eps))
for method
in self.config['eval_methods'] ]