clean up and move things to network.py

This commit is contained in:
Alexander Munch-Hansen 2018-03-20 13:03:21 +01:00
parent 9b96cf41da
commit 99783ee4f8
4 changed files with 113 additions and 81 deletions

14
bot.py
View File

@ -12,16 +12,9 @@ class Bot:
self.cup = Cup()
self.sym = sym
self.graph = tf.Graph()
with self.graph.as_default():
self.session = tf.Session()
self.network = Network(self.session, config, name)
self.network.restore_model()
variables_names = [v.name for v in tf.trainable_variables()]
values = self.session.run(variables_names)
for k, v in zip(variables_names, values):
print("Variable: ", k)
print("Shape: ", v.shape)
print(v)
self.network = Network(config, name)
self.network.restore_model()
def restore_model(self):
with self.graph.as_default():
@ -36,6 +29,7 @@ class Bot:
def get_network(self):
return self.network
# TODO: DEPRECATE
def make_move(self, board, sym, roll):
# print(Board.pretty(board))
legal_moves = Board.calculate_legal_states(board, sym, roll)

55
game.py
View File

@ -83,61 +83,6 @@ class Game:
print(Board.outcome(self.board))
def train_model(self, episodes=1000, save_step_size = 100, trained_eps = 0):
start_time = time.time()
def print_time_estimate(eps_completed):
cur_time = time.time()
time_diff = cur_time - start_time
eps_per_sec = eps_completed / time_diff
secs_per_ep = time_diff / eps_completed
eps_remaining = (episodes - eps_completed)
sys.stderr.write("[TRAIN] Averaging {per_sec} episodes per second\n".format(per_sec = round(eps_per_sec, 2)))
sys.stderr.write("[TRAIN] {eps_remaining} episodes remaining; approx. {time_remaining} seconds remaining\n".format(eps_remaining = eps_remaining, time_remaining = int(eps_remaining * secs_per_ep)))
sys.stderr.write("[TRAIN] Training {} episodes and save_step_size {}\n".format(episodes, save_step_size))
outcomes = []
for episode in range(1, episodes + 1):
sys.stderr.write("[TRAIN] Episode {}".format(episode + trained_eps))
self.board = Board.initial_state
prev_board, prev_board_value = self.best_move_and_score()
# find the best move here, make this move, then change turn as the
# first thing inside of the while loop and then call
# best_move_and_score to get V_t+1
while Board.outcome(self.board) is None:
self.next_round()
cur_board, cur_board_value = self.best_move_and_score()
self.p1.get_network().train(prev_board, cur_board_value)
prev_board = cur_board
# print("-"*30)
# print(Board.pretty(self.board))
# print("/"*30)
sys.stderr.write("\t outcome {}".format(Board.outcome(self.board)[1]))
outcomes.append(Board.outcome(self.board)[1])
final_score = np.array([ Board.outcome(self.board)[1] ]).reshape((1, 1))
self.p1.get_network().train(prev_board, final_score)
sys.stderr.write("\n")
if episode % min(save_step_size, episodes) == 0:
sys.stderr.write("[TRAIN] Saving model...\n")
self.p1.get_network().save_model(episode+trained_eps)
sys.stderr.write("[TRAIN] Loading model for training opponent...\n")
self.p2.restore_model()
if episode % 50 == 0:
print_time_estimate(episode)
sys.stderr.write("[TRAIN] Saving model for final episode...\n")
self.p1.get_network().save_model(episode+trained_eps)
self.p2.restore_model()
return outcomes
def next_round_test(self):
print(self.board)
print()

10
main.py
View File

@ -65,6 +65,7 @@ parser.add_argument('--list-models', action='store_true',
args = parser.parse_args()
config = {
'model': args.model,
'model_path': os.path.join(model_storage_path, args.model),
'episode_count': args.episode_count,
'eval_methods': args.eval_methods,
@ -86,10 +87,8 @@ if not os.path.isdir(log_path):
os.mkdir(log_path)
# Set up game
import game
g = game.Game(config = config)
g.set_up_bots()
# Set up network
from network import Network
# Set up variables
@ -111,9 +110,10 @@ if args.list_models:
sys.stderr.write(" {name}: {eps_trained}\n".format(name = model[0], eps_trained = model[1]))
elif args.train:
network = Network(config, config['model'])
eps = config['start_episode']
while True:
train_outcome = g.train_model(episodes = episode_count, trained_eps = eps)
train_outcome = network.train_model(episodes = episode_count, trained_eps = eps)
eps += episode_count
log_train_outcome(train_outcome, trained_eps = eps)
if config['eval_after_train']:

View File

@ -3,7 +3,10 @@ from cup import Cup
import numpy as np
from board import Board
import os
import time
import sys
import random
class Network:
hidden_size = 40
input_size = 26
@ -17,17 +20,11 @@ class Network:
def custom_tanh(self, x, name=None):
return tf.scalar_mul(tf.constant(2.00), tf.tanh(x, name))
def __init__(self, session, config, name):
def __init__(self, config, name):
self.config = config
self.session = session
self.session = tf.Session()
self.checkpoint_path = config['model_path']
self.name = name
# Restore trained episode count for model
episode_count_path = os.path.join(self.checkpoint_path, "episodes_trained")
if os.path.isfile(episode_count_path):
with open(episode_count_path, 'r') as f:
self.config['start_episode'] = int(f.read())
# input = x
self.x = tf.placeholder('float', [1, Network.input_size], name='x')
@ -52,6 +49,8 @@ class Network:
# tf.reduce_sum basically finds the sum of its input, so this gives the
# difference between the two values, in case they should be lists, which
# they might be if our input changes
# TODO: Alexander thinks that self.value will be computed twice (instead of once)
difference_in_values = tf.reduce_sum(self.value_next - self.value, name='difference')
trainable_vars = tf.trainable_variables()
@ -71,6 +70,8 @@ class Network:
self.saver = tf.train.Saver(max_to_keep=1)
self.session.run(tf.global_variables_initializer())
self.restore_model()
def eval_state(self, state):
# Run state through a network
@ -122,12 +123,25 @@ class Network:
print("[NETWK] ({name}) Restoring model from:".format(name = self.name),
str(latest_checkpoint))
self.saver.restore(self.session, latest_checkpoint)
variables_names = [v.name for v in tf.trainable_variables()]
values = self.session.run(variables_names)
for k, v in zip(variables_names, values):
print("Variable: ", k)
print("Shape: ", v.shape)
print(v)
# Restore trained episode count for model
episode_count_path = os.path.join(self.checkpoint_path, "episodes_trained")
if os.path.isfile(episode_count_path):
with open(episode_count_path, 'r') as f:
self.config['start_episode'] = int(f.read())
# Have a circular dependency, #fuck, need to rewrite something
def train(self, board, v_next):
def adjust_weights(self, board, v_next):
# print("lol")
board = np.array(board).reshape((1,26))
self.session.run(self.training_op, feed_dict = {self.x:board, self.value_next: v_next})
self.session.run(self.training_op, feed_dict = { self.x: board,
self.value_next: v_next })
# while game isn't done:
@ -138,6 +152,85 @@ class Network:
def make_move(self, board, roll):
# print(Board.pretty(board))
legal_moves = Board.calculate_legal_states(board, 1, roll)
moves_and_scores = [ (move, self.eval_state(np.array(move).reshape(1,26))) for move in legal_moves ]
scores = [ x[1] for x in moves_and_scores ]
best_score_index = np.array(scores).argmax()
best_move_pair = moves_and_scores[best_score_index]
#print("Found the best state, being:", np.array(move_scores).argmax())
return best_move_pair
def train_model(self, episodes=1000, save_step_size = 100, trained_eps = 0):
start_time = time.time()
def print_time_estimate(eps_completed):
cur_time = time.time()
time_diff = cur_time - start_time
eps_per_sec = eps_completed / time_diff
secs_per_ep = time_diff / eps_completed
eps_remaining = (episodes - eps_completed)
sys.stderr.write("[TRAIN] Averaging {per_sec} episodes per second\n".format(per_sec = round(eps_per_sec, 2)))
sys.stderr.write("[TRAIN] {eps_remaining} episodes remaining; approx. {time_remaining} seconds remaining\n".format(eps_remaining = eps_remaining, time_remaining = int(eps_remaining * secs_per_ep)))
sys.stderr.write("[TRAIN] Training {} episodes and save_step_size {}\n".format(episodes, save_step_size))
outcomes = []
for episode in range(1, episodes + 1):
sys.stderr.write("[TRAIN] Episode {}".format(episode + trained_eps))
# TODO decide which player should be here
player = 1
roll = (random.randrange(1,7), random.randrange(1,7))
prev_board, _ = self.make_move(Board.flip(Board.initial_state) if player == -1 else Board.initial_state, roll)
if player == -1:
prev_board = Board.flip(prev_board)
# find the best move here, make this move, then change turn as the
# first thing inside of the while loop and then call
# best_move_and_score to get V_t+1
# i = 0
while Board.outcome(prev_board) is None:
# print("-"*30)
# print(i)
# print(roll)
# print(Board.pretty(prev_board))
# print("/"*30)
# i += 1
player *= -1
roll = (random.randrange(1,7), random.randrange(1,7))
cur_board, cur_board_value = self.make_move(Board.flip(prev_board) if player == -1 else prev_board, roll)
if player == -1:
cur_board = Board.flip(cur_board)
self.adjust_weights(prev_board, cur_board_value)
prev_board = cur_board
final_board = prev_board
sys.stderr.write("\t outcome {}".format(Board.outcome(final_board)[1]))
outcomes.append(Board.outcome(final_board)[1])
final_score = np.array([ Board.outcome(final_board)[1] ])
self.adjust_weights(prev_board, final_score.reshape((1, 1)))
sys.stderr.write("\n")
if episode % min(save_step_size, episodes) == 0:
sys.stderr.write("[TRAIN] Saving model...\n")
self.save_model(episode+trained_eps)
if episode % 50 == 0:
print_time_estimate(episode)
sys.stderr.write("[TRAIN] Saving model for final episode...\n")
self.save_model(episode+trained_eps)
return outcomes
# take turn, which finds the best state and picks it, based on the current network