Ongoing rewrite of network to use an eager model. We're now capable of

evaluating a list of states with network.py. We can also save and
restore models.
This commit is contained in:
Alexander Munch-Hansen 2018-05-09 00:33:05 +02:00
parent 7b308be4e2
commit 9a2d87516e
4 changed files with 127 additions and 91 deletions

View File

@ -8,6 +8,7 @@ import random
from eval import Eval from eval import Eval
import glob import glob
from operator import itemgetter from operator import itemgetter
import tensorflow.contrib.eager as tfe
class Network: class Network:
# board_features_quack has size 28 # board_features_quack has size 28
@ -25,6 +26,10 @@ class Network:
return tf.scalar_mul(tf.constant(2.00), tf.tanh(x, name)) return tf.scalar_mul(tf.constant(2.00), tf.tanh(x, name))
def __init__(self, config, name): def __init__(self, config, name):
tf.enable_eager_execution()
xavier_init = tf.contrib.layers.xavier_initializer()
self.config = config self.config = config
self.checkpoint_path = os.path.join(config['model_storage_path'], config['model']) self.checkpoint_path = os.path.join(config['model_storage_path'], config['model'])
@ -38,17 +43,7 @@ class Network:
self.hidden_size = 40 self.hidden_size = 40
self.max_learning_rate = 0.1 self.max_learning_rate = 0.1
self.min_learning_rate = 0.001 self.min_learning_rate = 0.001
self.global_step = "lol"
self.global_step = tf.Variable(0, trainable=False, name="global_step")
self.learning_rate = tf.maximum(self.min_learning_rate,
tf.train.exponential_decay(self.max_learning_rate,
self.global_step, 50000,
0.96,
staircase=True),
name="learning_rate")
# Restore trained episode count for model # Restore trained episode count for model
episode_count_path = os.path.join(self.checkpoint_path, "episodes_trained") episode_count_path = os.path.join(self.checkpoint_path, "episodes_trained")
if os.path.isfile(episode_count_path): if os.path.isfile(episode_count_path):
@ -57,62 +52,61 @@ class Network:
else: else:
self.episodes_trained = 0 self.episodes_trained = 0
self.x = tf.placeholder('float', [1, self.input_size], name='input')
self.value_next = tf.placeholder('float', [1, self.output_size], name="value_next")
xavier_init = tf.contrib.layers.xavier_initializer() self.model = tf.keras.Sequential([
tf.keras.layers.Dense(40, activation="sigmoid", kernel_initializer=xavier_init,
W_1 = tf.get_variable("w_1", (self.input_size, self.hidden_size), input_shape=(1,30)),
initializer=xavier_init) tf.keras.layers.Dense(1, activation="sigmoid", kernel_initializer=xavier_init)
W_2 = tf.get_variable("w_2", (self.hidden_size, self.output_size), ])
initializer=xavier_init)
b_1 = tf.get_variable("b_1", (self.hidden_size,),
initializer=tf.zeros_initializer)
b_2 = tf.get_variable("b_2", (self.output_size,),
initializer=tf.zeros_initializer)
value_after_input = tf.sigmoid(tf.matmul(self.x, W_1) + b_1, name='hidden_layer')
self.value = tf.sigmoid(tf.matmul(value_after_input, W_2) + b_2, name='output_layer')
# TODO: Alexander thinks that self.value will be computed twice (instead of once)
difference_in_values = tf.reshape(tf.subtract(self.value_next, self.value, name='difference_in_values'), []) def do_backprop(self, prev_state, value_next):
self.learning_rate = tf.maximum(self.min_learning_rate,
tf.train.exponential_decay(self.max_learning_rate,
self.global_step, 50000,
0.96,
staircase=True),
name="learning_rate")
with tf.GradientTape() as tape:
value = self.model(np.array(input).reshape(1, -1))
grads = tape.gradient(value, self.model.variables)
difference_in_values = tf.reshape(tf.subtract(value_next, value, name='difference_in_values'), [])
tf.summary.scalar("difference_in_values", tf.abs(difference_in_values)) tf.summary.scalar("difference_in_values", tf.abs(difference_in_values))
trainable_vars = tf.trainable_variables()
gradients = tf.gradients(self.value, trainable_vars)
apply_gradients = []
global_step_op = self.global_step.assign_add(1) global_step_op = self.global_step.assign_add(1)
with tf.variable_scope('apply_gradients'): with tf.variable_scope('apply_gradients'):
for gradient, trainable_var in zip(gradients, trainable_vars): for grad, train_var in zip(grads, self.model.variables):
backprop_calc = self.learning_rate * difference_in_values * gradient backprop_calc = self.learning_rate * difference_in_values * grad
grad_apply = trainable_var.assign_add(backprop_calc) train_var.assign_add(backprop_calc)
apply_gradients.append(grad_apply)
with tf.control_dependencies([global_step_op]):
self.training_op = tf.group(*apply_gradients, name='training_op')
self.saver = tf.train.Saver(max_to_keep=1)
def eval_state(self, sess, state): def eval_state(self, sess, state):
return sess.run(self.value, feed_dict={self.x: state}) return sess.run(self.value, feed_dict={self.x: state})
def save_model(self, sess, episode_count, global_step): def save_model(self, episode_count, global_step):
self.saver.save(sess, os.path.join(self.checkpoint_path, 'model.ckpt'), global_step=global_step) tfe.Saver(self.model.variables).save("./tmp_ckpt", global_step=global_step)
with open(os.path.join(self.checkpoint_path, "episodes_trained"), 'w+') as f: #self.saver.save(sess, os.path.join(self.checkpoint_path, 'model.ckpt'), global_step=global_step)
print("[NETWK] ({name}) Saving model to:".format(name=self.name), #with open(os.path.join(self.checkpoint_path, "episodes_trained"), 'w+') as f:
os.path.join(self.checkpoint_path, 'model.ckpt')) # print("[NETWK] ({name}) Saving model to:".format(name=self.name),
f.write(str(episode_count) + "\n") # os.path.join(self.checkpoint_path, 'model.ckpt'))
# f.write(str(episode_count) + "\n")
def restore_model(self, sess):
def calc_vals(self, states):
values = self.model.predict_on_batch(states)
self.save_model(0, 432)
return values
def restore_model(self):
""" """
Restore a model for a session, such that a trained model and either be further trained or Restore a model for a session, such that a trained model and either be further trained or
used for evaluation used for evaluation
@ -126,35 +120,29 @@ class Network:
latest_checkpoint = tf.train.latest_checkpoint(self.checkpoint_path) latest_checkpoint = tf.train.latest_checkpoint(self.checkpoint_path)
print("[NETWK] ({name}) Restoring model from:".format(name=self.name), print("[NETWK] ({name}) Restoring model from:".format(name=self.name),
str(latest_checkpoint)) str(latest_checkpoint))
self.saver.restore(sess, latest_checkpoint) tfe.Saver(model.variables).restore(latest_checkpoint)
variables_names = [v.name for v in tf.trainable_variables()]
values = sess.run(variables_names) variables_names = [v.name for v in self.model.variables]
for k, v in zip(variables_names, values):
print("Variable: ", k)
print("Shape: ", v.shape)
print(v)
# Restore trained episode count for model # Restore trained episode count for model
episode_count_path = os.path.join(self.checkpoint_path, "episodes_trained") episode_count_path = os.path.join(self.checkpoint_path, "episodes_trained")
if os.path.isfile(episode_count_path): if os.path.isfile(episode_count_path):
with open(episode_count_path, 'r') as f: with open(episode_count_path, 'r') as f:
self.config['start_episode'] = int(f.read()) self.config['start_episode'] = int(f.read())
elif self.config['use_baseline'] and glob.glob(os.path.join(os.path.join(self.config['model_storage_path'], "baseline_model"), 'model.ckpt*.index')): else:
checkpoint_path = os.path.join(self.config['model_storage_path'], "baseline_model") latest_checkpoint = tf.train.latest_checkpoint("./")
latest_checkpoint = tf.train.latest_checkpoint(checkpoint_path)
print("[NETWK] ({name}) Restoring model from:".format(name=self.name), print("[NETWK] ({name}) Restoring model from:".format(name=self.name),
str(latest_checkpoint)) str(latest_checkpoint))
self.saver.restore(sess, latest_checkpoint) tfe.Saver(self.model.variables).restore(latest_checkpoint)
variables_names = [v.name for v in tf.trainable_variables()] #variables_names = [v.name for v in self.model.variables]
values = sess.run(variables_names)
for k, v in zip(variables_names, values): # Restore trained episode count for model
print("Variable: ", k) #episode_count_path = os.path.join(self.checkpoint_path, "episodes_trained")
print("Shape: ", v.shape) #if os.path.isfile(episode_count_path):
print(v) # with open(episode_count_path, 'r') as f:
elif not self.config['force_creation']: # self.config['start_episode'] = int(f.read())
print("You need to have baseline_model inside models")
exit()
def make_move(self, sess, board, roll, player): def make_move(self, sess, board, roll, player):

View File

@ -11,12 +11,10 @@ import main
config = main.config.copy() config = main.config.copy()
config['model'] = "tesauro_blah" config['model'] = "tesauro_blah"
config['force_creation'] = True config['force_creation'] = True
config['board_representation'] = 'quack-fat'
network = Network(config, config['model']) network = Network(config, config['model'])
session = tf.Session() network.restore_model()
session.run(tf.global_variables_initializer())
network.restore_model(session)
initial_state = Board.initial_state initial_state = Board.initial_state
initial_state_1 = ( 0, initial_state_1 = ( 0,
@ -51,14 +49,7 @@ def gen_21_rolls():
return a return a
def calc_all_scores(board, player):
scores = []
trans_board = network.board_trans_func(board, player)
rolls = gen_21_rolls()
for roll in rolls:
score = network.eval_state(session, trans_board)
scores.append(score)
return scores
def calculate_possible_states(board): def calculate_possible_states(board):
@ -83,9 +74,16 @@ def calculate_possible_states(board):
#print("-"*30) #print("-"*30)
#print(network.calculate_1_ply(session, Board.initial_state, [2,4], 1)) #print(network.calculate_1_ply(session, Board.initial_state, [2,4], 1))
board = network.board_trans_func(Board.initial_state, 1)
input = [0, 2, 0, 0, 0, 0, -5, 0, -3, 0, 0, 0, 5, -5, 0, 0, 0, 3, 0, 5, 0, 0, 0, 0, -2, 0, 0, 0, 1, 0]
all_input = np.array([input for _ in range(20)])
print(network.calc_vals(all_input))
#print(" "*10 + "network_test") #print(" "*10 + "network_test")
print(" "*20 + "Depth 1") #print(" "*20 + "Depth 1")
print(network.calc_n_ply(2, session, Board.initial_state, 1, [2, 4])) #print(network.calc_n_ply(1, session, Board.initial_state, 1, [2, 4]))
#print(scores) #print(scores)

View File

@ -1,25 +1,32 @@
import time import time
import numpy as np import numpy as np
import tensorflow as tf import tensorflow as tf
import tensorflow.contrib.eager as tfe
tf.enable_eager_execution() tf.enable_eager_execution()
xavier_init = tf.contrib.layers.xavier_initializer()
opt = tf.train.MomentumOptimizer(learning_rate=0.1, momentum=1)
output_size = 1 output_size = 1
hidden_size = 40 hidden_size = 40
input_size = 30 input_size = 30
model = tf.keras.Sequential([ model = tf.keras.Sequential([
tf.keras.layers.Dense(40, activation="sigmoid", input_shape=(1,30)), tf.keras.layers.Dense(40, activation="sigmoid", kernel_initializer=xavier_init, input_shape=(1,input_size)),
tf.keras.layers.Dense(1, activation="sigmoid") tf.keras.layers.Dense(1, activation="sigmoid", kernel_initializer=xavier_init)
]) ])
#tfe.Saver(model.variables).restore(tf.train.latest_checkpoint("./"))
input = [0, 2, 0, 0, 0, 0, -5, 0, -3, 0, 0, 0, 5, -5, 0, 0, 0, 3, 0, 5, 0, 0, 0, 0, -2, 0, 0, 0, 1, 0] input = [0, 2, 0, 0, 0, 0, -5, 0, -3, 0, 0, 0, 5, -5, 0, 0, 0, 3, 0, 5, 0, 0, 0, 0, -2, 0, 0, 0, 1, 0]
all_input = np.array([input for _ in range(8500)]) all_input = np.array([input for _ in range(20)])
single_in = np.array(input).reshape(1,-1) single_in = np.array(input).reshape(1,-1)
@ -34,8 +41,33 @@ print(time.time() - start)
start = time.time() start = time.time()
all_predictions = [model(single_in) for _ in range(8500)] all_predictions = [model(single_in) for _ in range(20)]
print(all_predictions[:10]) #print(all_predictions[:10])
print(time.time() - start) print(time.time() - start)
print("-"*30)
with tf.GradientTape() as tape:
val = model(np.array(input).reshape(1,-1))
grads = tape.gradient(val, model.variables)
grads = [0.1*val-np.random.uniform(-1,1)+grad for grad, trainable_var in zip(grads, model.variables)]
# print(model.variables[0][0])
weights_before = model.weights[0]
start = time.time()
#[trainable_var.assign_add(0.1*val-0.3+grad) for grad, trainable_var in zip(grads, model.variables)]
start = time.time()
#for gradient, trainable_var in zip(grads, model.variables):
# backprop_calc = 0.1 * (val - np.random.uniform(-1, 1)) * gradient
# trainable_var.assign_add(backprop_calc)
opt.apply_gradients(zip(grads, model.variables))
print(time.time() - start)
print(model(np.array(input).reshape(1,-1)))
tfe.Saver(model.variables).save("./tmp_ckpt")

View File

@ -29,12 +29,30 @@ class Everything:
self.value = tf.sigmoid(tf.matmul(value_after_input, W_2) + b_2, name='output_layer') self.value = tf.sigmoid(tf.matmul(value_after_input, W_2) + b_2, name='output_layer')
apply_gradients = []
trainable_vars = tf.trainable_variables()
gradients = tf.gradients(self.value, trainable_vars)
with tf.variable_scope('apply_gradients'):
for gradient, trainable_var in zip(gradients, trainable_vars):
backprop_calc = self.learning_rate * difference_in_values * gradient
grad_apply = trainable_var.assign_add(backprop_calc)
apply_gradients.append(grad_apply)
with tf.control_dependencies([global_step_op]):
self.training_op = tf.group(*apply_gradients, name='training_op')
def eval(self): def eval(self):
input = np.array([0, 2, 0, 0, 0, 0, -5, 0, -3, 0, 0, 0, 5, -5, 0, 0, 0, 3, 0, 5, 0, 0, 0, 0, -2, 0, 0, 0, 1, 0]) input = np.array([0, 2, 0, 0, 0, 0, -5, 0, -3, 0, 0, 0, 5, -5, 0, 0, 0, 3, 0, 5, 0, 0, 0, 0, -2, 0, 0, 0, 1, 0])
start = time.time() start = time.time()
sess = tf.Session() sess = tf.Session()
sess.run(tf.global_variables_initializer()) sess.run(tf.global_variables_initializer())
for i in range(8500): for i in range(20):
val = sess.run(self.value, feed_dict={self.input: input.reshape(1,-1)}) val = sess.run(self.value, feed_dict={self.input: input.reshape(1,-1)})
print(time.time() - start) print(time.time() - start)
print(val) print(val)