backgammon/network_test.py
Alexander Munch-Hansen 9a2d87516e Ongoing rewrite of network to use an eager model. We're now capable of
evaluating a list of states with network.py. We can also save and
restore models.
2018-05-09 00:33:05 +02:00

101 lines
2.5 KiB
Python

from network import Network
import tensorflow as tf
import random
import numpy as np
from board import Board
import main
config = main.config.copy()
config['model'] = "tesauro_blah"
config['force_creation'] = True
config['board_representation'] = 'quack-fat'
network = Network(config, config['model'])
network.restore_model()
initial_state = Board.initial_state
initial_state_1 = ( 0,
0, 0, 0, 2, 0, -5,
0, -3, 0, 0, 0, 0,
-5, 0, 0, 0, 3, 5,
0, 0, 0, 0, 5, -2,
0 )
initial_state_2 = ( 0,
-5, -5, -3, -2, 0, 0,
0, 0, 0, 0, 0, 0,
0, 0, 0, 15, 0, 0,
0, 0, 0, 0, 0, 0,
0 )
boards = {initial_state,
initial_state_1,
initial_state_2 }
def gen_21_rolls():
"""
Calculate all possible rolls, [[1,1], [1,2] ..]
:return: All possible rolls
"""
a = []
for x in range(1, 7):
for y in range(1, 7):
if not [x, y] in a and not [y, x] in a:
a.append([x, y])
return a
def calculate_possible_states(board):
possible_rolls = [(1, 1), (1, 2), (1, 3), (1, 4), (1, 5),
(1, 6), (2, 2), (2, 3), (2, 4), (2, 5),
(2, 6), (3, 3), (3, 4), (3, 5), (3, 6),
(4, 4), (4, 5), (4, 6), (5, 5), (5, 6),
(6, 6)]
for roll in possible_rolls:
meh = Board.calculate_legal_states(board, -1, roll)
print(len(meh))
return [Board.calculate_legal_states(board, -1, roll)
for roll
in possible_rolls]
#for board in boards:
# calculate_possible_states(board)
#print("-"*30)
#print(network.calculate_1_ply(session, Board.initial_state, [2,4], 1))
board = network.board_trans_func(Board.initial_state, 1)
input = [0, 2, 0, 0, 0, 0, -5, 0, -3, 0, 0, 0, 5, -5, 0, 0, 0, 3, 0, 5, 0, 0, 0, 0, -2, 0, 0, 0, 1, 0]
all_input = np.array([input for _ in range(20)])
print(network.calc_vals(all_input))
#print(" "*10 + "network_test")
#print(" "*20 + "Depth 1")
#print(network.calc_n_ply(1, session, Board.initial_state, 1, [2, 4]))
#print(scores)
#print(" "*20 + "Depth 2")
#print(network.n_ply(2, session, boards, 1))
# #print(x.shape)
# with graph_lol.as_default():
# session_2 = tf.Session(graph = graph_lol)
# network_2 = Network(session_2)
# network_2.restore_model()
# print(network_2.eval_state(initial_state))
# print(network.eval_state(initial_state))