499 lines
16 KiB
C#
Executable File
499 lines
16 KiB
C#
Executable File
|
|
using OpenCVForUnity.CoreModule;
|
|
using OpenCVForUnity.UtilsModule;
|
|
using System;
|
|
using System.Collections.Generic;
|
|
using System.Runtime.InteropServices;
|
|
|
|
namespace OpenCVForUnity.MlModule
|
|
{
|
|
|
|
// C++: class LogisticRegression
|
|
//javadoc: LogisticRegression
|
|
|
|
public class LogisticRegression : StatModel
|
|
{
|
|
|
|
protected override void Dispose (bool disposing)
|
|
{
|
|
#if ((UNITY_ANDROID || UNITY_IOS || UNITY_WEBGL) && !UNITY_EDITOR) || UNITY_5 || UNITY_5_3_OR_NEWER
|
|
try {
|
|
if (disposing) {
|
|
}
|
|
if (IsEnabledDispose) {
|
|
if (nativeObj != IntPtr.Zero)
|
|
ml_LogisticRegression_delete (nativeObj);
|
|
nativeObj = IntPtr.Zero;
|
|
}
|
|
} finally {
|
|
base.Dispose (disposing);
|
|
}
|
|
#else
|
|
return;
|
|
#endif
|
|
}
|
|
|
|
protected internal LogisticRegression (IntPtr addr)
|
|
: base (addr)
|
|
{
|
|
}
|
|
|
|
// internal usage only
|
|
public static new LogisticRegression __fromPtr__ (IntPtr addr)
|
|
{
|
|
return new LogisticRegression (addr);
|
|
}
|
|
|
|
// C++: enum RegKinds
|
|
public const int REG_DISABLE = -1;
|
|
public const int REG_L1 = 0;
|
|
public const int REG_L2 = 1;
|
|
// C++: enum Methods
|
|
public const int BATCH = 0;
|
|
public const int MINI_BATCH = 1;
|
|
//
|
|
// C++: Mat cv::ml::LogisticRegression::get_learnt_thetas()
|
|
//
|
|
|
|
//javadoc: LogisticRegression::get_learnt_thetas()
|
|
public Mat get_learnt_thetas ()
|
|
{
|
|
ThrowIfDisposed ();
|
|
#if ((UNITY_ANDROID || UNITY_IOS || UNITY_WEBGL) && !UNITY_EDITOR) || UNITY_5 || UNITY_5_3_OR_NEWER
|
|
|
|
Mat retVal = new Mat (ml_LogisticRegression_get_1learnt_1thetas_10 (nativeObj));
|
|
|
|
return retVal;
|
|
#else
|
|
return null;
|
|
#endif
|
|
}
|
|
|
|
|
|
//
|
|
// C++: static Ptr_LogisticRegression cv::ml::LogisticRegression::create()
|
|
//
|
|
|
|
//javadoc: LogisticRegression::create()
|
|
public static LogisticRegression create ()
|
|
{
|
|
#if ((UNITY_ANDROID || UNITY_IOS || UNITY_WEBGL) && !UNITY_EDITOR) || UNITY_5 || UNITY_5_3_OR_NEWER
|
|
|
|
LogisticRegression retVal = LogisticRegression.__fromPtr__ (ml_LogisticRegression_create_10 ());
|
|
|
|
return retVal;
|
|
#else
|
|
return null;
|
|
#endif
|
|
}
|
|
|
|
|
|
//
|
|
// C++: static Ptr_LogisticRegression cv::ml::LogisticRegression::load(String filepath, String nodeName = String())
|
|
//
|
|
|
|
//javadoc: LogisticRegression::load(filepath, nodeName)
|
|
public static LogisticRegression load (string filepath, string nodeName)
|
|
{
|
|
#if ((UNITY_ANDROID || UNITY_IOS || UNITY_WEBGL) && !UNITY_EDITOR) || UNITY_5 || UNITY_5_3_OR_NEWER
|
|
|
|
LogisticRegression retVal = LogisticRegression.__fromPtr__ (ml_LogisticRegression_load_10 (filepath, nodeName));
|
|
|
|
return retVal;
|
|
#else
|
|
return null;
|
|
#endif
|
|
}
|
|
|
|
//javadoc: LogisticRegression::load(filepath)
|
|
public static LogisticRegression load (string filepath)
|
|
{
|
|
#if ((UNITY_ANDROID || UNITY_IOS || UNITY_WEBGL) && !UNITY_EDITOR) || UNITY_5 || UNITY_5_3_OR_NEWER
|
|
|
|
LogisticRegression retVal = LogisticRegression.__fromPtr__ (ml_LogisticRegression_load_11 (filepath));
|
|
|
|
return retVal;
|
|
#else
|
|
return null;
|
|
#endif
|
|
}
|
|
|
|
|
|
//
|
|
// C++: TermCriteria cv::ml::LogisticRegression::getTermCriteria()
|
|
//
|
|
|
|
//javadoc: LogisticRegression::getTermCriteria()
|
|
public TermCriteria getTermCriteria ()
|
|
{
|
|
ThrowIfDisposed ();
|
|
#if ((UNITY_ANDROID || UNITY_IOS || UNITY_WEBGL) && !UNITY_EDITOR) || UNITY_5 || UNITY_5_3_OR_NEWER
|
|
|
|
double[] tmpArray = new double[3];
|
|
ml_LogisticRegression_getTermCriteria_10 (nativeObj, tmpArray);
|
|
TermCriteria retVal = new TermCriteria (tmpArray);
|
|
|
|
return retVal;
|
|
#else
|
|
return null;
|
|
#endif
|
|
}
|
|
|
|
|
|
//
|
|
// C++: double cv::ml::LogisticRegression::getLearningRate()
|
|
//
|
|
|
|
//javadoc: LogisticRegression::getLearningRate()
|
|
public double getLearningRate ()
|
|
{
|
|
ThrowIfDisposed ();
|
|
#if ((UNITY_ANDROID || UNITY_IOS || UNITY_WEBGL) && !UNITY_EDITOR) || UNITY_5 || UNITY_5_3_OR_NEWER
|
|
|
|
double retVal = ml_LogisticRegression_getLearningRate_10 (nativeObj);
|
|
|
|
return retVal;
|
|
#else
|
|
return -1;
|
|
#endif
|
|
}
|
|
|
|
|
|
//
|
|
// C++: float cv::ml::LogisticRegression::predict(Mat samples, Mat& results = Mat(), int flags = 0)
|
|
//
|
|
|
|
//javadoc: LogisticRegression::predict(samples, results, flags)
|
|
public override float predict (Mat samples, Mat results, int flags)
|
|
{
|
|
ThrowIfDisposed ();
|
|
if (samples != null)
|
|
samples.ThrowIfDisposed ();
|
|
if (results != null)
|
|
results.ThrowIfDisposed ();
|
|
#if ((UNITY_ANDROID || UNITY_IOS || UNITY_WEBGL) && !UNITY_EDITOR) || UNITY_5 || UNITY_5_3_OR_NEWER
|
|
|
|
float retVal = ml_LogisticRegression_predict_10 (nativeObj, samples.nativeObj, results.nativeObj, flags);
|
|
|
|
return retVal;
|
|
#else
|
|
return -1;
|
|
#endif
|
|
}
|
|
|
|
//javadoc: LogisticRegression::predict(samples, results)
|
|
public override float predict (Mat samples, Mat results)
|
|
{
|
|
ThrowIfDisposed ();
|
|
if (samples != null)
|
|
samples.ThrowIfDisposed ();
|
|
if (results != null)
|
|
results.ThrowIfDisposed ();
|
|
#if ((UNITY_ANDROID || UNITY_IOS || UNITY_WEBGL) && !UNITY_EDITOR) || UNITY_5 || UNITY_5_3_OR_NEWER
|
|
|
|
float retVal = ml_LogisticRegression_predict_11 (nativeObj, samples.nativeObj, results.nativeObj);
|
|
|
|
return retVal;
|
|
#else
|
|
return -1;
|
|
#endif
|
|
}
|
|
|
|
//javadoc: LogisticRegression::predict(samples)
|
|
public override float predict (Mat samples)
|
|
{
|
|
ThrowIfDisposed ();
|
|
if (samples != null)
|
|
samples.ThrowIfDisposed ();
|
|
#if ((UNITY_ANDROID || UNITY_IOS || UNITY_WEBGL) && !UNITY_EDITOR) || UNITY_5 || UNITY_5_3_OR_NEWER
|
|
|
|
float retVal = ml_LogisticRegression_predict_12 (nativeObj, samples.nativeObj);
|
|
|
|
return retVal;
|
|
#else
|
|
return -1;
|
|
#endif
|
|
}
|
|
|
|
|
|
//
|
|
// C++: int cv::ml::LogisticRegression::getIterations()
|
|
//
|
|
|
|
//javadoc: LogisticRegression::getIterations()
|
|
public int getIterations ()
|
|
{
|
|
ThrowIfDisposed ();
|
|
#if ((UNITY_ANDROID || UNITY_IOS || UNITY_WEBGL) && !UNITY_EDITOR) || UNITY_5 || UNITY_5_3_OR_NEWER
|
|
|
|
int retVal = ml_LogisticRegression_getIterations_10 (nativeObj);
|
|
|
|
return retVal;
|
|
#else
|
|
return -1;
|
|
#endif
|
|
}
|
|
|
|
|
|
//
|
|
// C++: int cv::ml::LogisticRegression::getMiniBatchSize()
|
|
//
|
|
|
|
//javadoc: LogisticRegression::getMiniBatchSize()
|
|
public int getMiniBatchSize ()
|
|
{
|
|
ThrowIfDisposed ();
|
|
#if ((UNITY_ANDROID || UNITY_IOS || UNITY_WEBGL) && !UNITY_EDITOR) || UNITY_5 || UNITY_5_3_OR_NEWER
|
|
|
|
int retVal = ml_LogisticRegression_getMiniBatchSize_10 (nativeObj);
|
|
|
|
return retVal;
|
|
#else
|
|
return -1;
|
|
#endif
|
|
}
|
|
|
|
|
|
//
|
|
// C++: int cv::ml::LogisticRegression::getRegularization()
|
|
//
|
|
|
|
//javadoc: LogisticRegression::getRegularization()
|
|
public int getRegularization ()
|
|
{
|
|
ThrowIfDisposed ();
|
|
#if ((UNITY_ANDROID || UNITY_IOS || UNITY_WEBGL) && !UNITY_EDITOR) || UNITY_5 || UNITY_5_3_OR_NEWER
|
|
|
|
int retVal = ml_LogisticRegression_getRegularization_10 (nativeObj);
|
|
|
|
return retVal;
|
|
#else
|
|
return -1;
|
|
#endif
|
|
}
|
|
|
|
|
|
//
|
|
// C++: int cv::ml::LogisticRegression::getTrainMethod()
|
|
//
|
|
|
|
//javadoc: LogisticRegression::getTrainMethod()
|
|
public int getTrainMethod ()
|
|
{
|
|
ThrowIfDisposed ();
|
|
#if ((UNITY_ANDROID || UNITY_IOS || UNITY_WEBGL) && !UNITY_EDITOR) || UNITY_5 || UNITY_5_3_OR_NEWER
|
|
|
|
int retVal = ml_LogisticRegression_getTrainMethod_10 (nativeObj);
|
|
|
|
return retVal;
|
|
#else
|
|
return -1;
|
|
#endif
|
|
}
|
|
|
|
|
|
//
|
|
// C++: void cv::ml::LogisticRegression::setIterations(int val)
|
|
//
|
|
|
|
//javadoc: LogisticRegression::setIterations(val)
|
|
public void setIterations (int val)
|
|
{
|
|
ThrowIfDisposed ();
|
|
#if ((UNITY_ANDROID || UNITY_IOS || UNITY_WEBGL) && !UNITY_EDITOR) || UNITY_5 || UNITY_5_3_OR_NEWER
|
|
|
|
ml_LogisticRegression_setIterations_10 (nativeObj, val);
|
|
|
|
return;
|
|
#else
|
|
return;
|
|
#endif
|
|
}
|
|
|
|
|
|
//
|
|
// C++: void cv::ml::LogisticRegression::setLearningRate(double val)
|
|
//
|
|
|
|
//javadoc: LogisticRegression::setLearningRate(val)
|
|
public void setLearningRate (double val)
|
|
{
|
|
ThrowIfDisposed ();
|
|
#if ((UNITY_ANDROID || UNITY_IOS || UNITY_WEBGL) && !UNITY_EDITOR) || UNITY_5 || UNITY_5_3_OR_NEWER
|
|
|
|
ml_LogisticRegression_setLearningRate_10 (nativeObj, val);
|
|
|
|
return;
|
|
#else
|
|
return;
|
|
#endif
|
|
}
|
|
|
|
|
|
//
|
|
// C++: void cv::ml::LogisticRegression::setMiniBatchSize(int val)
|
|
//
|
|
|
|
//javadoc: LogisticRegression::setMiniBatchSize(val)
|
|
public void setMiniBatchSize (int val)
|
|
{
|
|
ThrowIfDisposed ();
|
|
#if ((UNITY_ANDROID || UNITY_IOS || UNITY_WEBGL) && !UNITY_EDITOR) || UNITY_5 || UNITY_5_3_OR_NEWER
|
|
|
|
ml_LogisticRegression_setMiniBatchSize_10 (nativeObj, val);
|
|
|
|
return;
|
|
#else
|
|
return;
|
|
#endif
|
|
}
|
|
|
|
|
|
//
|
|
// C++: void cv::ml::LogisticRegression::setRegularization(int val)
|
|
//
|
|
|
|
//javadoc: LogisticRegression::setRegularization(val)
|
|
public void setRegularization (int val)
|
|
{
|
|
ThrowIfDisposed ();
|
|
#if ((UNITY_ANDROID || UNITY_IOS || UNITY_WEBGL) && !UNITY_EDITOR) || UNITY_5 || UNITY_5_3_OR_NEWER
|
|
|
|
ml_LogisticRegression_setRegularization_10 (nativeObj, val);
|
|
|
|
return;
|
|
#else
|
|
return;
|
|
#endif
|
|
}
|
|
|
|
|
|
//
|
|
// C++: void cv::ml::LogisticRegression::setTermCriteria(TermCriteria val)
|
|
//
|
|
|
|
//javadoc: LogisticRegression::setTermCriteria(val)
|
|
public void setTermCriteria (TermCriteria val)
|
|
{
|
|
ThrowIfDisposed ();
|
|
#if ((UNITY_ANDROID || UNITY_IOS || UNITY_WEBGL) && !UNITY_EDITOR) || UNITY_5 || UNITY_5_3_OR_NEWER
|
|
|
|
ml_LogisticRegression_setTermCriteria_10 (nativeObj, val.type, val.maxCount, val.epsilon);
|
|
|
|
return;
|
|
#else
|
|
return;
|
|
#endif
|
|
}
|
|
|
|
|
|
//
|
|
// C++: void cv::ml::LogisticRegression::setTrainMethod(int val)
|
|
//
|
|
|
|
//javadoc: LogisticRegression::setTrainMethod(val)
|
|
public void setTrainMethod (int val)
|
|
{
|
|
ThrowIfDisposed ();
|
|
#if ((UNITY_ANDROID || UNITY_IOS || UNITY_WEBGL) && !UNITY_EDITOR) || UNITY_5 || UNITY_5_3_OR_NEWER
|
|
|
|
ml_LogisticRegression_setTrainMethod_10 (nativeObj, val);
|
|
|
|
return;
|
|
#else
|
|
return;
|
|
#endif
|
|
}
|
|
|
|
|
|
#if (UNITY_IOS || UNITY_WEBGL) && !UNITY_EDITOR
|
|
const string LIBNAME = "__Internal";
|
|
|
|
|
|
|
|
#else
|
|
const string LIBNAME = "opencvforunity";
|
|
#endif
|
|
|
|
|
|
|
|
// C++: Mat cv::ml::LogisticRegression::get_learnt_thetas()
|
|
[DllImport (LIBNAME)]
|
|
private static extern IntPtr ml_LogisticRegression_get_1learnt_1thetas_10 (IntPtr nativeObj);
|
|
|
|
// C++: static Ptr_LogisticRegression cv::ml::LogisticRegression::create()
|
|
[DllImport (LIBNAME)]
|
|
private static extern IntPtr ml_LogisticRegression_create_10 ();
|
|
|
|
// C++: static Ptr_LogisticRegression cv::ml::LogisticRegression::load(String filepath, String nodeName = String())
|
|
[DllImport (LIBNAME)]
|
|
private static extern IntPtr ml_LogisticRegression_load_10 (string filepath, string nodeName);
|
|
|
|
[DllImport (LIBNAME)]
|
|
private static extern IntPtr ml_LogisticRegression_load_11 (string filepath);
|
|
|
|
// C++: TermCriteria cv::ml::LogisticRegression::getTermCriteria()
|
|
[DllImport (LIBNAME)]
|
|
private static extern void ml_LogisticRegression_getTermCriteria_10 (IntPtr nativeObj, double[] retVal);
|
|
|
|
// C++: double cv::ml::LogisticRegression::getLearningRate()
|
|
[DllImport (LIBNAME)]
|
|
private static extern double ml_LogisticRegression_getLearningRate_10 (IntPtr nativeObj);
|
|
|
|
// C++: float cv::ml::LogisticRegression::predict(Mat samples, Mat& results = Mat(), int flags = 0)
|
|
[DllImport (LIBNAME)]
|
|
private static extern float ml_LogisticRegression_predict_10 (IntPtr nativeObj, IntPtr samples_nativeObj, IntPtr results_nativeObj, int flags);
|
|
|
|
[DllImport (LIBNAME)]
|
|
private static extern float ml_LogisticRegression_predict_11 (IntPtr nativeObj, IntPtr samples_nativeObj, IntPtr results_nativeObj);
|
|
|
|
[DllImport (LIBNAME)]
|
|
private static extern float ml_LogisticRegression_predict_12 (IntPtr nativeObj, IntPtr samples_nativeObj);
|
|
|
|
// C++: int cv::ml::LogisticRegression::getIterations()
|
|
[DllImport (LIBNAME)]
|
|
private static extern int ml_LogisticRegression_getIterations_10 (IntPtr nativeObj);
|
|
|
|
// C++: int cv::ml::LogisticRegression::getMiniBatchSize()
|
|
[DllImport (LIBNAME)]
|
|
private static extern int ml_LogisticRegression_getMiniBatchSize_10 (IntPtr nativeObj);
|
|
|
|
// C++: int cv::ml::LogisticRegression::getRegularization()
|
|
[DllImport (LIBNAME)]
|
|
private static extern int ml_LogisticRegression_getRegularization_10 (IntPtr nativeObj);
|
|
|
|
// C++: int cv::ml::LogisticRegression::getTrainMethod()
|
|
[DllImport (LIBNAME)]
|
|
private static extern int ml_LogisticRegression_getTrainMethod_10 (IntPtr nativeObj);
|
|
|
|
// C++: void cv::ml::LogisticRegression::setIterations(int val)
|
|
[DllImport (LIBNAME)]
|
|
private static extern void ml_LogisticRegression_setIterations_10 (IntPtr nativeObj, int val);
|
|
|
|
// C++: void cv::ml::LogisticRegression::setLearningRate(double val)
|
|
[DllImport (LIBNAME)]
|
|
private static extern void ml_LogisticRegression_setLearningRate_10 (IntPtr nativeObj, double val);
|
|
|
|
// C++: void cv::ml::LogisticRegression::setMiniBatchSize(int val)
|
|
[DllImport (LIBNAME)]
|
|
private static extern void ml_LogisticRegression_setMiniBatchSize_10 (IntPtr nativeObj, int val);
|
|
|
|
// C++: void cv::ml::LogisticRegression::setRegularization(int val)
|
|
[DllImport (LIBNAME)]
|
|
private static extern void ml_LogisticRegression_setRegularization_10 (IntPtr nativeObj, int val);
|
|
|
|
// C++: void cv::ml::LogisticRegression::setTermCriteria(TermCriteria val)
|
|
[DllImport (LIBNAME)]
|
|
private static extern void ml_LogisticRegression_setTermCriteria_10 (IntPtr nativeObj, int val_type, int val_maxCount, double val_epsilon);
|
|
|
|
// C++: void cv::ml::LogisticRegression::setTrainMethod(int val)
|
|
[DllImport (LIBNAME)]
|
|
private static extern void ml_LogisticRegression_setTrainMethod_10 (IntPtr nativeObj, int val);
|
|
|
|
// native support for java finalize()
|
|
[DllImport (LIBNAME)]
|
|
private static extern void ml_LogisticRegression_delete (IntPtr nativeObj);
|
|
|
|
}
|
|
}
|