advancedskrald/ChessAR/Assets/OpenCVForUnity/org/opencv/ml/EM.cs

798 lines
28 KiB
C#
Executable File

using OpenCVForUnity.CoreModule;
using OpenCVForUnity.UtilsModule;
using System;
using System.Collections.Generic;
using System.Runtime.InteropServices;
namespace OpenCVForUnity.MlModule
{
// C++: class EM
//javadoc: EM
public class EM : StatModel
{
protected override void Dispose (bool disposing)
{
#if ((UNITY_ANDROID || UNITY_IOS || UNITY_WEBGL) && !UNITY_EDITOR) || UNITY_5 || UNITY_5_3_OR_NEWER
try {
if (disposing) {
}
if (IsEnabledDispose) {
if (nativeObj != IntPtr.Zero)
ml_EM_delete (nativeObj);
nativeObj = IntPtr.Zero;
}
} finally {
base.Dispose (disposing);
}
#else
return;
#endif
}
protected internal EM (IntPtr addr)
: base (addr)
{
}
// internal usage only
public static new EM __fromPtr__ (IntPtr addr)
{
return new EM (addr);
}
// C++: enum Types
public const int COV_MAT_SPHERICAL = 0;
public const int COV_MAT_DIAGONAL = 1;
public const int COV_MAT_GENERIC = 2;
public const int COV_MAT_DEFAULT = COV_MAT_DIAGONAL;
// C++: enum <unnamed>
public const int DEFAULT_NCLUSTERS = 5;
public const int DEFAULT_MAX_ITERS = 100;
public const int START_E_STEP = 1;
public const int START_M_STEP = 2;
public const int START_AUTO_STEP = 0;
//
// C++: Mat cv::ml::EM::getMeans()
//
//javadoc: EM::getMeans()
public Mat getMeans ()
{
ThrowIfDisposed ();
#if ((UNITY_ANDROID || UNITY_IOS || UNITY_WEBGL) && !UNITY_EDITOR) || UNITY_5 || UNITY_5_3_OR_NEWER
Mat retVal = new Mat (ml_EM_getMeans_10 (nativeObj));
return retVal;
#else
return null;
#endif
}
//
// C++: Mat cv::ml::EM::getWeights()
//
//javadoc: EM::getWeights()
public Mat getWeights ()
{
ThrowIfDisposed ();
#if ((UNITY_ANDROID || UNITY_IOS || UNITY_WEBGL) && !UNITY_EDITOR) || UNITY_5 || UNITY_5_3_OR_NEWER
Mat retVal = new Mat (ml_EM_getWeights_10 (nativeObj));
return retVal;
#else
return null;
#endif
}
//
// C++: static Ptr_EM cv::ml::EM::create()
//
//javadoc: EM::create()
public static EM create ()
{
#if ((UNITY_ANDROID || UNITY_IOS || UNITY_WEBGL) && !UNITY_EDITOR) || UNITY_5 || UNITY_5_3_OR_NEWER
EM retVal = EM.__fromPtr__ (ml_EM_create_10 ());
return retVal;
#else
return null;
#endif
}
//
// C++: static Ptr_EM cv::ml::EM::load(String filepath, String nodeName = String())
//
//javadoc: EM::load(filepath, nodeName)
public static EM load (string filepath, string nodeName)
{
#if ((UNITY_ANDROID || UNITY_IOS || UNITY_WEBGL) && !UNITY_EDITOR) || UNITY_5 || UNITY_5_3_OR_NEWER
EM retVal = EM.__fromPtr__ (ml_EM_load_10 (filepath, nodeName));
return retVal;
#else
return null;
#endif
}
//javadoc: EM::load(filepath)
public static EM load (string filepath)
{
#if ((UNITY_ANDROID || UNITY_IOS || UNITY_WEBGL) && !UNITY_EDITOR) || UNITY_5 || UNITY_5_3_OR_NEWER
EM retVal = EM.__fromPtr__ (ml_EM_load_11 (filepath));
return retVal;
#else
return null;
#endif
}
//
// C++: TermCriteria cv::ml::EM::getTermCriteria()
//
//javadoc: EM::getTermCriteria()
public TermCriteria getTermCriteria ()
{
ThrowIfDisposed ();
#if ((UNITY_ANDROID || UNITY_IOS || UNITY_WEBGL) && !UNITY_EDITOR) || UNITY_5 || UNITY_5_3_OR_NEWER
double[] tmpArray = new double[3];
ml_EM_getTermCriteria_10 (nativeObj, tmpArray);
TermCriteria retVal = new TermCriteria (tmpArray);
return retVal;
#else
return null;
#endif
}
//
// C++: Vec2d cv::ml::EM::predict2(Mat sample, Mat& probs)
//
//javadoc: EM::predict2(sample, probs)
public double[] predict2 (Mat sample, Mat probs)
{
ThrowIfDisposed ();
if (sample != null)
sample.ThrowIfDisposed ();
if (probs != null)
probs.ThrowIfDisposed ();
#if ((UNITY_ANDROID || UNITY_IOS || UNITY_WEBGL) && !UNITY_EDITOR) || UNITY_5 || UNITY_5_3_OR_NEWER
double[] retVal = new double[2];
ml_EM_predict2_10 (nativeObj, sample.nativeObj, probs.nativeObj, retVal);
return retVal;
#else
return null;
#endif
}
//
// C++: bool cv::ml::EM::trainE(Mat samples, Mat means0, Mat covs0 = Mat(), Mat weights0 = Mat(), Mat& logLikelihoods = Mat(), Mat& labels = Mat(), Mat& probs = Mat())
//
//javadoc: EM::trainE(samples, means0, covs0, weights0, logLikelihoods, labels, probs)
public bool trainE (Mat samples, Mat means0, Mat covs0, Mat weights0, Mat logLikelihoods, Mat labels, Mat probs)
{
ThrowIfDisposed ();
if (samples != null)
samples.ThrowIfDisposed ();
if (means0 != null)
means0.ThrowIfDisposed ();
if (covs0 != null)
covs0.ThrowIfDisposed ();
if (weights0 != null)
weights0.ThrowIfDisposed ();
if (logLikelihoods != null)
logLikelihoods.ThrowIfDisposed ();
if (labels != null)
labels.ThrowIfDisposed ();
if (probs != null)
probs.ThrowIfDisposed ();
#if ((UNITY_ANDROID || UNITY_IOS || UNITY_WEBGL) && !UNITY_EDITOR) || UNITY_5 || UNITY_5_3_OR_NEWER
bool retVal = ml_EM_trainE_10 (nativeObj, samples.nativeObj, means0.nativeObj, covs0.nativeObj, weights0.nativeObj, logLikelihoods.nativeObj, labels.nativeObj, probs.nativeObj);
return retVal;
#else
return false;
#endif
}
//javadoc: EM::trainE(samples, means0, covs0, weights0, logLikelihoods, labels)
public bool trainE (Mat samples, Mat means0, Mat covs0, Mat weights0, Mat logLikelihoods, Mat labels)
{
ThrowIfDisposed ();
if (samples != null)
samples.ThrowIfDisposed ();
if (means0 != null)
means0.ThrowIfDisposed ();
if (covs0 != null)
covs0.ThrowIfDisposed ();
if (weights0 != null)
weights0.ThrowIfDisposed ();
if (logLikelihoods != null)
logLikelihoods.ThrowIfDisposed ();
if (labels != null)
labels.ThrowIfDisposed ();
#if ((UNITY_ANDROID || UNITY_IOS || UNITY_WEBGL) && !UNITY_EDITOR) || UNITY_5 || UNITY_5_3_OR_NEWER
bool retVal = ml_EM_trainE_11 (nativeObj, samples.nativeObj, means0.nativeObj, covs0.nativeObj, weights0.nativeObj, logLikelihoods.nativeObj, labels.nativeObj);
return retVal;
#else
return false;
#endif
}
//javadoc: EM::trainE(samples, means0, covs0, weights0, logLikelihoods)
public bool trainE (Mat samples, Mat means0, Mat covs0, Mat weights0, Mat logLikelihoods)
{
ThrowIfDisposed ();
if (samples != null)
samples.ThrowIfDisposed ();
if (means0 != null)
means0.ThrowIfDisposed ();
if (covs0 != null)
covs0.ThrowIfDisposed ();
if (weights0 != null)
weights0.ThrowIfDisposed ();
if (logLikelihoods != null)
logLikelihoods.ThrowIfDisposed ();
#if ((UNITY_ANDROID || UNITY_IOS || UNITY_WEBGL) && !UNITY_EDITOR) || UNITY_5 || UNITY_5_3_OR_NEWER
bool retVal = ml_EM_trainE_12 (nativeObj, samples.nativeObj, means0.nativeObj, covs0.nativeObj, weights0.nativeObj, logLikelihoods.nativeObj);
return retVal;
#else
return false;
#endif
}
//javadoc: EM::trainE(samples, means0, covs0, weights0)
public bool trainE (Mat samples, Mat means0, Mat covs0, Mat weights0)
{
ThrowIfDisposed ();
if (samples != null)
samples.ThrowIfDisposed ();
if (means0 != null)
means0.ThrowIfDisposed ();
if (covs0 != null)
covs0.ThrowIfDisposed ();
if (weights0 != null)
weights0.ThrowIfDisposed ();
#if ((UNITY_ANDROID || UNITY_IOS || UNITY_WEBGL) && !UNITY_EDITOR) || UNITY_5 || UNITY_5_3_OR_NEWER
bool retVal = ml_EM_trainE_13 (nativeObj, samples.nativeObj, means0.nativeObj, covs0.nativeObj, weights0.nativeObj);
return retVal;
#else
return false;
#endif
}
//javadoc: EM::trainE(samples, means0, covs0)
public bool trainE (Mat samples, Mat means0, Mat covs0)
{
ThrowIfDisposed ();
if (samples != null)
samples.ThrowIfDisposed ();
if (means0 != null)
means0.ThrowIfDisposed ();
if (covs0 != null)
covs0.ThrowIfDisposed ();
#if ((UNITY_ANDROID || UNITY_IOS || UNITY_WEBGL) && !UNITY_EDITOR) || UNITY_5 || UNITY_5_3_OR_NEWER
bool retVal = ml_EM_trainE_14 (nativeObj, samples.nativeObj, means0.nativeObj, covs0.nativeObj);
return retVal;
#else
return false;
#endif
}
//javadoc: EM::trainE(samples, means0)
public bool trainE (Mat samples, Mat means0)
{
ThrowIfDisposed ();
if (samples != null)
samples.ThrowIfDisposed ();
if (means0 != null)
means0.ThrowIfDisposed ();
#if ((UNITY_ANDROID || UNITY_IOS || UNITY_WEBGL) && !UNITY_EDITOR) || UNITY_5 || UNITY_5_3_OR_NEWER
bool retVal = ml_EM_trainE_15 (nativeObj, samples.nativeObj, means0.nativeObj);
return retVal;
#else
return false;
#endif
}
//
// C++: bool cv::ml::EM::trainEM(Mat samples, Mat& logLikelihoods = Mat(), Mat& labels = Mat(), Mat& probs = Mat())
//
//javadoc: EM::trainEM(samples, logLikelihoods, labels, probs)
public bool trainEM (Mat samples, Mat logLikelihoods, Mat labels, Mat probs)
{
ThrowIfDisposed ();
if (samples != null)
samples.ThrowIfDisposed ();
if (logLikelihoods != null)
logLikelihoods.ThrowIfDisposed ();
if (labels != null)
labels.ThrowIfDisposed ();
if (probs != null)
probs.ThrowIfDisposed ();
#if ((UNITY_ANDROID || UNITY_IOS || UNITY_WEBGL) && !UNITY_EDITOR) || UNITY_5 || UNITY_5_3_OR_NEWER
bool retVal = ml_EM_trainEM_10 (nativeObj, samples.nativeObj, logLikelihoods.nativeObj, labels.nativeObj, probs.nativeObj);
return retVal;
#else
return false;
#endif
}
//javadoc: EM::trainEM(samples, logLikelihoods, labels)
public bool trainEM (Mat samples, Mat logLikelihoods, Mat labels)
{
ThrowIfDisposed ();
if (samples != null)
samples.ThrowIfDisposed ();
if (logLikelihoods != null)
logLikelihoods.ThrowIfDisposed ();
if (labels != null)
labels.ThrowIfDisposed ();
#if ((UNITY_ANDROID || UNITY_IOS || UNITY_WEBGL) && !UNITY_EDITOR) || UNITY_5 || UNITY_5_3_OR_NEWER
bool retVal = ml_EM_trainEM_11 (nativeObj, samples.nativeObj, logLikelihoods.nativeObj, labels.nativeObj);
return retVal;
#else
return false;
#endif
}
//javadoc: EM::trainEM(samples, logLikelihoods)
public bool trainEM (Mat samples, Mat logLikelihoods)
{
ThrowIfDisposed ();
if (samples != null)
samples.ThrowIfDisposed ();
if (logLikelihoods != null)
logLikelihoods.ThrowIfDisposed ();
#if ((UNITY_ANDROID || UNITY_IOS || UNITY_WEBGL) && !UNITY_EDITOR) || UNITY_5 || UNITY_5_3_OR_NEWER
bool retVal = ml_EM_trainEM_12 (nativeObj, samples.nativeObj, logLikelihoods.nativeObj);
return retVal;
#else
return false;
#endif
}
//javadoc: EM::trainEM(samples)
public bool trainEM (Mat samples)
{
ThrowIfDisposed ();
if (samples != null)
samples.ThrowIfDisposed ();
#if ((UNITY_ANDROID || UNITY_IOS || UNITY_WEBGL) && !UNITY_EDITOR) || UNITY_5 || UNITY_5_3_OR_NEWER
bool retVal = ml_EM_trainEM_13 (nativeObj, samples.nativeObj);
return retVal;
#else
return false;
#endif
}
//
// C++: bool cv::ml::EM::trainM(Mat samples, Mat probs0, Mat& logLikelihoods = Mat(), Mat& labels = Mat(), Mat& probs = Mat())
//
//javadoc: EM::trainM(samples, probs0, logLikelihoods, labels, probs)
public bool trainM (Mat samples, Mat probs0, Mat logLikelihoods, Mat labels, Mat probs)
{
ThrowIfDisposed ();
if (samples != null)
samples.ThrowIfDisposed ();
if (probs0 != null)
probs0.ThrowIfDisposed ();
if (logLikelihoods != null)
logLikelihoods.ThrowIfDisposed ();
if (labels != null)
labels.ThrowIfDisposed ();
if (probs != null)
probs.ThrowIfDisposed ();
#if ((UNITY_ANDROID || UNITY_IOS || UNITY_WEBGL) && !UNITY_EDITOR) || UNITY_5 || UNITY_5_3_OR_NEWER
bool retVal = ml_EM_trainM_10 (nativeObj, samples.nativeObj, probs0.nativeObj, logLikelihoods.nativeObj, labels.nativeObj, probs.nativeObj);
return retVal;
#else
return false;
#endif
}
//javadoc: EM::trainM(samples, probs0, logLikelihoods, labels)
public bool trainM (Mat samples, Mat probs0, Mat logLikelihoods, Mat labels)
{
ThrowIfDisposed ();
if (samples != null)
samples.ThrowIfDisposed ();
if (probs0 != null)
probs0.ThrowIfDisposed ();
if (logLikelihoods != null)
logLikelihoods.ThrowIfDisposed ();
if (labels != null)
labels.ThrowIfDisposed ();
#if ((UNITY_ANDROID || UNITY_IOS || UNITY_WEBGL) && !UNITY_EDITOR) || UNITY_5 || UNITY_5_3_OR_NEWER
bool retVal = ml_EM_trainM_11 (nativeObj, samples.nativeObj, probs0.nativeObj, logLikelihoods.nativeObj, labels.nativeObj);
return retVal;
#else
return false;
#endif
}
//javadoc: EM::trainM(samples, probs0, logLikelihoods)
public bool trainM (Mat samples, Mat probs0, Mat logLikelihoods)
{
ThrowIfDisposed ();
if (samples != null)
samples.ThrowIfDisposed ();
if (probs0 != null)
probs0.ThrowIfDisposed ();
if (logLikelihoods != null)
logLikelihoods.ThrowIfDisposed ();
#if ((UNITY_ANDROID || UNITY_IOS || UNITY_WEBGL) && !UNITY_EDITOR) || UNITY_5 || UNITY_5_3_OR_NEWER
bool retVal = ml_EM_trainM_12 (nativeObj, samples.nativeObj, probs0.nativeObj, logLikelihoods.nativeObj);
return retVal;
#else
return false;
#endif
}
//javadoc: EM::trainM(samples, probs0)
public bool trainM (Mat samples, Mat probs0)
{
ThrowIfDisposed ();
if (samples != null)
samples.ThrowIfDisposed ();
if (probs0 != null)
probs0.ThrowIfDisposed ();
#if ((UNITY_ANDROID || UNITY_IOS || UNITY_WEBGL) && !UNITY_EDITOR) || UNITY_5 || UNITY_5_3_OR_NEWER
bool retVal = ml_EM_trainM_13 (nativeObj, samples.nativeObj, probs0.nativeObj);
return retVal;
#else
return false;
#endif
}
//
// C++: float cv::ml::EM::predict(Mat samples, Mat& results = Mat(), int flags = 0)
//
//javadoc: EM::predict(samples, results, flags)
public override float predict (Mat samples, Mat results, int flags)
{
ThrowIfDisposed ();
if (samples != null)
samples.ThrowIfDisposed ();
if (results != null)
results.ThrowIfDisposed ();
#if ((UNITY_ANDROID || UNITY_IOS || UNITY_WEBGL) && !UNITY_EDITOR) || UNITY_5 || UNITY_5_3_OR_NEWER
float retVal = ml_EM_predict_10 (nativeObj, samples.nativeObj, results.nativeObj, flags);
return retVal;
#else
return -1;
#endif
}
//javadoc: EM::predict(samples, results)
public override float predict (Mat samples, Mat results)
{
ThrowIfDisposed ();
if (samples != null)
samples.ThrowIfDisposed ();
if (results != null)
results.ThrowIfDisposed ();
#if ((UNITY_ANDROID || UNITY_IOS || UNITY_WEBGL) && !UNITY_EDITOR) || UNITY_5 || UNITY_5_3_OR_NEWER
float retVal = ml_EM_predict_11 (nativeObj, samples.nativeObj, results.nativeObj);
return retVal;
#else
return -1;
#endif
}
//javadoc: EM::predict(samples)
public override float predict (Mat samples)
{
ThrowIfDisposed ();
if (samples != null)
samples.ThrowIfDisposed ();
#if ((UNITY_ANDROID || UNITY_IOS || UNITY_WEBGL) && !UNITY_EDITOR) || UNITY_5 || UNITY_5_3_OR_NEWER
float retVal = ml_EM_predict_12 (nativeObj, samples.nativeObj);
return retVal;
#else
return -1;
#endif
}
//
// C++: int cv::ml::EM::getClustersNumber()
//
//javadoc: EM::getClustersNumber()
public int getClustersNumber ()
{
ThrowIfDisposed ();
#if ((UNITY_ANDROID || UNITY_IOS || UNITY_WEBGL) && !UNITY_EDITOR) || UNITY_5 || UNITY_5_3_OR_NEWER
int retVal = ml_EM_getClustersNumber_10 (nativeObj);
return retVal;
#else
return -1;
#endif
}
//
// C++: int cv::ml::EM::getCovarianceMatrixType()
//
//javadoc: EM::getCovarianceMatrixType()
public int getCovarianceMatrixType ()
{
ThrowIfDisposed ();
#if ((UNITY_ANDROID || UNITY_IOS || UNITY_WEBGL) && !UNITY_EDITOR) || UNITY_5 || UNITY_5_3_OR_NEWER
int retVal = ml_EM_getCovarianceMatrixType_10 (nativeObj);
return retVal;
#else
return -1;
#endif
}
//
// C++: void cv::ml::EM::getCovs(vector_Mat& covs)
//
//javadoc: EM::getCovs(covs)
public void getCovs (List<Mat> covs)
{
ThrowIfDisposed ();
#if ((UNITY_ANDROID || UNITY_IOS || UNITY_WEBGL) && !UNITY_EDITOR) || UNITY_5 || UNITY_5_3_OR_NEWER
Mat covs_mat = new Mat ();
ml_EM_getCovs_10 (nativeObj, covs_mat.nativeObj);
Converters.Mat_to_vector_Mat (covs_mat, covs);
covs_mat.release ();
return;
#else
return;
#endif
}
//
// C++: void cv::ml::EM::setClustersNumber(int val)
//
//javadoc: EM::setClustersNumber(val)
public void setClustersNumber (int val)
{
ThrowIfDisposed ();
#if ((UNITY_ANDROID || UNITY_IOS || UNITY_WEBGL) && !UNITY_EDITOR) || UNITY_5 || UNITY_5_3_OR_NEWER
ml_EM_setClustersNumber_10 (nativeObj, val);
return;
#else
return;
#endif
}
//
// C++: void cv::ml::EM::setCovarianceMatrixType(int val)
//
//javadoc: EM::setCovarianceMatrixType(val)
public void setCovarianceMatrixType (int val)
{
ThrowIfDisposed ();
#if ((UNITY_ANDROID || UNITY_IOS || UNITY_WEBGL) && !UNITY_EDITOR) || UNITY_5 || UNITY_5_3_OR_NEWER
ml_EM_setCovarianceMatrixType_10 (nativeObj, val);
return;
#else
return;
#endif
}
//
// C++: void cv::ml::EM::setTermCriteria(TermCriteria val)
//
//javadoc: EM::setTermCriteria(val)
public void setTermCriteria (TermCriteria val)
{
ThrowIfDisposed ();
#if ((UNITY_ANDROID || UNITY_IOS || UNITY_WEBGL) && !UNITY_EDITOR) || UNITY_5 || UNITY_5_3_OR_NEWER
ml_EM_setTermCriteria_10 (nativeObj, val.type, val.maxCount, val.epsilon);
return;
#else
return;
#endif
}
#if (UNITY_IOS || UNITY_WEBGL) && !UNITY_EDITOR
const string LIBNAME = "__Internal";
#else
const string LIBNAME = "opencvforunity";
#endif
// C++: Mat cv::ml::EM::getMeans()
[DllImport (LIBNAME)]
private static extern IntPtr ml_EM_getMeans_10 (IntPtr nativeObj);
// C++: Mat cv::ml::EM::getWeights()
[DllImport (LIBNAME)]
private static extern IntPtr ml_EM_getWeights_10 (IntPtr nativeObj);
// C++: static Ptr_EM cv::ml::EM::create()
[DllImport (LIBNAME)]
private static extern IntPtr ml_EM_create_10 ();
// C++: static Ptr_EM cv::ml::EM::load(String filepath, String nodeName = String())
[DllImport (LIBNAME)]
private static extern IntPtr ml_EM_load_10 (string filepath, string nodeName);
[DllImport (LIBNAME)]
private static extern IntPtr ml_EM_load_11 (string filepath);
// C++: TermCriteria cv::ml::EM::getTermCriteria()
[DllImport (LIBNAME)]
private static extern void ml_EM_getTermCriteria_10 (IntPtr nativeObj, double[] retVal);
// C++: Vec2d cv::ml::EM::predict2(Mat sample, Mat& probs)
[DllImport (LIBNAME)]
private static extern void ml_EM_predict2_10 (IntPtr nativeObj, IntPtr sample_nativeObj, IntPtr probs_nativeObj, double[] retVal);
// C++: bool cv::ml::EM::trainE(Mat samples, Mat means0, Mat covs0 = Mat(), Mat weights0 = Mat(), Mat& logLikelihoods = Mat(), Mat& labels = Mat(), Mat& probs = Mat())
[DllImport (LIBNAME)]
private static extern bool ml_EM_trainE_10 (IntPtr nativeObj, IntPtr samples_nativeObj, IntPtr means0_nativeObj, IntPtr covs0_nativeObj, IntPtr weights0_nativeObj, IntPtr logLikelihoods_nativeObj, IntPtr labels_nativeObj, IntPtr probs_nativeObj);
[DllImport (LIBNAME)]
private static extern bool ml_EM_trainE_11 (IntPtr nativeObj, IntPtr samples_nativeObj, IntPtr means0_nativeObj, IntPtr covs0_nativeObj, IntPtr weights0_nativeObj, IntPtr logLikelihoods_nativeObj, IntPtr labels_nativeObj);
[DllImport (LIBNAME)]
private static extern bool ml_EM_trainE_12 (IntPtr nativeObj, IntPtr samples_nativeObj, IntPtr means0_nativeObj, IntPtr covs0_nativeObj, IntPtr weights0_nativeObj, IntPtr logLikelihoods_nativeObj);
[DllImport (LIBNAME)]
private static extern bool ml_EM_trainE_13 (IntPtr nativeObj, IntPtr samples_nativeObj, IntPtr means0_nativeObj, IntPtr covs0_nativeObj, IntPtr weights0_nativeObj);
[DllImport (LIBNAME)]
private static extern bool ml_EM_trainE_14 (IntPtr nativeObj, IntPtr samples_nativeObj, IntPtr means0_nativeObj, IntPtr covs0_nativeObj);
[DllImport (LIBNAME)]
private static extern bool ml_EM_trainE_15 (IntPtr nativeObj, IntPtr samples_nativeObj, IntPtr means0_nativeObj);
// C++: bool cv::ml::EM::trainEM(Mat samples, Mat& logLikelihoods = Mat(), Mat& labels = Mat(), Mat& probs = Mat())
[DllImport (LIBNAME)]
private static extern bool ml_EM_trainEM_10 (IntPtr nativeObj, IntPtr samples_nativeObj, IntPtr logLikelihoods_nativeObj, IntPtr labels_nativeObj, IntPtr probs_nativeObj);
[DllImport (LIBNAME)]
private static extern bool ml_EM_trainEM_11 (IntPtr nativeObj, IntPtr samples_nativeObj, IntPtr logLikelihoods_nativeObj, IntPtr labels_nativeObj);
[DllImport (LIBNAME)]
private static extern bool ml_EM_trainEM_12 (IntPtr nativeObj, IntPtr samples_nativeObj, IntPtr logLikelihoods_nativeObj);
[DllImport (LIBNAME)]
private static extern bool ml_EM_trainEM_13 (IntPtr nativeObj, IntPtr samples_nativeObj);
// C++: bool cv::ml::EM::trainM(Mat samples, Mat probs0, Mat& logLikelihoods = Mat(), Mat& labels = Mat(), Mat& probs = Mat())
[DllImport (LIBNAME)]
private static extern bool ml_EM_trainM_10 (IntPtr nativeObj, IntPtr samples_nativeObj, IntPtr probs0_nativeObj, IntPtr logLikelihoods_nativeObj, IntPtr labels_nativeObj, IntPtr probs_nativeObj);
[DllImport (LIBNAME)]
private static extern bool ml_EM_trainM_11 (IntPtr nativeObj, IntPtr samples_nativeObj, IntPtr probs0_nativeObj, IntPtr logLikelihoods_nativeObj, IntPtr labels_nativeObj);
[DllImport (LIBNAME)]
private static extern bool ml_EM_trainM_12 (IntPtr nativeObj, IntPtr samples_nativeObj, IntPtr probs0_nativeObj, IntPtr logLikelihoods_nativeObj);
[DllImport (LIBNAME)]
private static extern bool ml_EM_trainM_13 (IntPtr nativeObj, IntPtr samples_nativeObj, IntPtr probs0_nativeObj);
// C++: float cv::ml::EM::predict(Mat samples, Mat& results = Mat(), int flags = 0)
[DllImport (LIBNAME)]
private static extern float ml_EM_predict_10 (IntPtr nativeObj, IntPtr samples_nativeObj, IntPtr results_nativeObj, int flags);
[DllImport (LIBNAME)]
private static extern float ml_EM_predict_11 (IntPtr nativeObj, IntPtr samples_nativeObj, IntPtr results_nativeObj);
[DllImport (LIBNAME)]
private static extern float ml_EM_predict_12 (IntPtr nativeObj, IntPtr samples_nativeObj);
// C++: int cv::ml::EM::getClustersNumber()
[DllImport (LIBNAME)]
private static extern int ml_EM_getClustersNumber_10 (IntPtr nativeObj);
// C++: int cv::ml::EM::getCovarianceMatrixType()
[DllImport (LIBNAME)]
private static extern int ml_EM_getCovarianceMatrixType_10 (IntPtr nativeObj);
// C++: void cv::ml::EM::getCovs(vector_Mat& covs)
[DllImport (LIBNAME)]
private static extern void ml_EM_getCovs_10 (IntPtr nativeObj, IntPtr covs_mat_nativeObj);
// C++: void cv::ml::EM::setClustersNumber(int val)
[DllImport (LIBNAME)]
private static extern void ml_EM_setClustersNumber_10 (IntPtr nativeObj, int val);
// C++: void cv::ml::EM::setCovarianceMatrixType(int val)
[DllImport (LIBNAME)]
private static extern void ml_EM_setCovarianceMatrixType_10 (IntPtr nativeObj, int val);
// C++: void cv::ml::EM::setTermCriteria(TermCriteria val)
[DllImport (LIBNAME)]
private static extern void ml_EM_setTermCriteria_10 (IntPtr nativeObj, int val_type, int val_maxCount, double val_epsilon);
// native support for java finalize()
[DllImport (LIBNAME)]
private static extern void ml_EM_delete (IntPtr nativeObj);
}
}