Hmm
This commit is contained in:
parent
bfe38a8a2d
commit
deb083224f
|
@ -1,7 +1,6 @@
|
|||
from __future__ import absolute_import, division, print_function, unicode_literals
|
||||
|
||||
import tensorflow as tf
|
||||
import tensorflow_datasets as tfds
|
||||
from tensorflow.python.keras import datasets, layers, models
|
||||
import glob
|
||||
import numpy as np
|
||||
|
|
|
@ -1,7 +1,6 @@
|
|||
from __future__ import absolute_import, division, print_function, unicode_literals
|
||||
|
||||
import tensorflow as tf
|
||||
import tensorflow_datasets as tfds
|
||||
from tensorflow.python.keras import datasets, layers, models
|
||||
import glob
|
||||
import numpy as np
|
||||
|
@ -30,11 +29,21 @@ for _ in range(10):
|
|||
training_img.append(cv2.cvtColor(cv2.imread(filename), cv2.COLOR_BGR2GRAY))
|
||||
training_labels.append(0)
|
||||
|
||||
for _ in range(10):
|
||||
for filename in glob.glob(f"../training_images/bishop/*_square/*.png")[:-50]:
|
||||
training_img.append(cv2.cvtColor(cv2.imread(filename), cv2.COLOR_BGR2GRAY))
|
||||
training_labels.append(2)
|
||||
|
||||
for _ in range(5):
|
||||
for filename in glob.glob(f"../training_images/rook/*_square/*.png")[-50:]:
|
||||
test_img.append(cv2.cvtColor(cv2.imread(filename), cv2.COLOR_BGR2GRAY))
|
||||
test_labels_.append(1)
|
||||
|
||||
for _ in range(5):
|
||||
for filename in glob.glob(f"../training_images/bishop/*_square/*.png")[-50:]:
|
||||
test_img.append(cv2.cvtColor(cv2.imread(filename), cv2.COLOR_BGR2GRAY))
|
||||
test_labels_.append(2)
|
||||
|
||||
for _ in range(5):
|
||||
for filename in glob.glob(f"../training_images/knight/*_square/*.png")[-50:]:
|
||||
test_img.append(cv2.cvtColor(cv2.imread(filename), cv2.COLOR_BGR2GRAY))
|
||||
|
@ -50,7 +59,9 @@ test_img = np.array(test_img).reshape((len(test_img),width, height, 1))
|
|||
train_images, test_images = training_img / 255.0, test_img / 255.0
|
||||
|
||||
model = models.Sequential()
|
||||
model.add(layers.Conv2D(32, (3, 3), activation='relu', input_shape=(width, height, 1)))
|
||||
model.add(layers.Conv2D(256, (3, 3), activation='relu', input_shape=(width, height, 1)))
|
||||
model.add(layers.MaxPooling2D((2, 2)))
|
||||
model.add(layers.Conv2D(128, (3, 3), activation='relu'))
|
||||
model.add(layers.MaxPooling2D((2, 2)))
|
||||
model.add(layers.Conv2D(64, (3, 3), activation='relu'))
|
||||
model.add(layers.MaxPooling2D((2, 2)))
|
||||
|
@ -58,7 +69,7 @@ model.add(layers.Conv2D(64, (3, 3), activation='relu'))
|
|||
|
||||
model.add(layers.Flatten())
|
||||
model.add(layers.Dense(64, activation='relu'))
|
||||
model.add(layers.Dense(2, activation='softmax'))
|
||||
model.add(layers.Dense(3, activation='softmax'))
|
||||
|
||||
model.summary()
|
||||
|
||||
|
@ -66,12 +77,12 @@ model.compile(optimizer='adam',
|
|||
loss='sparse_categorical_crossentropy',
|
||||
metrics=['accuracy'])
|
||||
|
||||
model.fit(train_images, training_labels, epochs=5)
|
||||
model.fit(train_images, training_labels, epochs=10)
|
||||
|
||||
test_loss, test_acc = model.evaluate(test_images, test_labels_)
|
||||
|
||||
print(test_acc)
|
||||
|
||||
# Save entire model to a HDF5 file
|
||||
model.save('test_chess_model.h5')
|
||||
model.save('chess_model_3_pieces.h5')
|
||||
|
||||
|
|
Loading…
Reference in New Issue
Block a user