Model builder

This commit is contained in:
Alexander Munch-Hansen 2019-04-10 22:37:46 +02:00
parent 2a9c9c06e4
commit bfe38a8a2d

77
tmp/tensor.py Normal file
View File

@ -0,0 +1,77 @@
from __future__ import absolute_import, division, print_function, unicode_literals
import tensorflow as tf
import tensorflow_datasets as tfds
from tensorflow.python.keras import datasets, layers, models
import glob
import numpy as np
import cv2
#(train_images, train_labels), (test_images, test_labels) = datasets.mnist.load_data()
#print(train_images[0])
#exit()
training_img = []
training_labels = []
test_img = []
test_labels_ = []
for _ in range(10):
for filename in glob.glob(f"../training_images/rook/*_square/*.png")[:-50]:
training_img.append(cv2.cvtColor(cv2.imread(filename), cv2.COLOR_BGR2GRAY))
training_labels.append(1)
for _ in range(10):
for filename in glob.glob(f"../training_images/knight/*_square/*.png")[:-50]:
training_img.append(cv2.cvtColor(cv2.imread(filename), cv2.COLOR_BGR2GRAY))
training_labels.append(0)
for _ in range(5):
for filename in glob.glob(f"../training_images/rook/*_square/*.png")[-50:]:
test_img.append(cv2.cvtColor(cv2.imread(filename), cv2.COLOR_BGR2GRAY))
test_labels_.append(1)
for _ in range(5):
for filename in glob.glob(f"../training_images/knight/*_square/*.png")[-50:]:
test_img.append(cv2.cvtColor(cv2.imread(filename), cv2.COLOR_BGR2GRAY))
test_labels_.append(0)
width, height = training_img[0].shape
training_img = np.array(training_img).reshape((len(training_img), width, height, 1))
test_img = np.array(test_img).reshape((len(test_img),width, height, 1))
# Normalize pixel values to be between 0 and 1
train_images, test_images = training_img / 255.0, test_img / 255.0
model = models.Sequential()
model.add(layers.Conv2D(32, (3, 3), activation='relu', input_shape=(width, height, 1)))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Conv2D(64, (3, 3), activation='relu'))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Conv2D(64, (3, 3), activation='relu'))
model.add(layers.Flatten())
model.add(layers.Dense(64, activation='relu'))
model.add(layers.Dense(2, activation='softmax'))
model.summary()
model.compile(optimizer='adam',
loss='sparse_categorical_crossentropy',
metrics=['accuracy'])
model.fit(train_images, training_labels, epochs=5)
test_loss, test_acc = model.evaluate(test_images, test_labels_)
print(test_acc)
# Save entire model to a HDF5 file
model.save('test_chess_model.h5')