pls
This commit is contained in:
parent
deb083224f
commit
2c94c9a2d5
BIN
chess_model_3_pieces.h5
Normal file
BIN
chess_model_3_pieces.h5
Normal file
Binary file not shown.
|
@ -1,4 +1,4 @@
|
||||||
from __future__ import absolute_import, division, print_function, unicode_literals
|
#from __future__ import absolute_import, division, print_function, unicode_literals
|
||||||
|
|
||||||
import tensorflow as tf
|
import tensorflow as tf
|
||||||
from tensorflow.python.keras import datasets, layers, models
|
from tensorflow.python.keras import datasets, layers, models
|
||||||
|
@ -10,7 +10,7 @@ import runner
|
||||||
from main import find_occupied_squares
|
from main import find_occupied_squares
|
||||||
from util import POSITION
|
from util import POSITION
|
||||||
|
|
||||||
new_model = models.load_model('test_chess_model.h5')
|
new_model = models.load_model('chess_model_3_pieces.h5')
|
||||||
new_model.summary()
|
new_model.summary()
|
||||||
|
|
||||||
#board = cv2.imread("whole_boards/boards_for_empty/board_1554286488.605142_rank_3.png")
|
#board = cv2.imread("whole_boards/boards_for_empty/board_1554286488.605142_rank_3.png")
|
||||||
|
@ -44,7 +44,7 @@ square_3 = square_3 / 255.0
|
||||||
square_4 = square_4 / 255.0
|
square_4 = square_4 / 255.0
|
||||||
|
|
||||||
|
|
||||||
pieces = ['knight', 'rook']
|
pieces = ['knight', 'rook', 'bishop']
|
||||||
|
|
||||||
for pos, square in occupied:
|
for pos, square in occupied:
|
||||||
square = cv2.cvtColor(square, cv2.COLOR_BGR2GRAY)
|
square = cv2.cvtColor(square, cv2.COLOR_BGR2GRAY)
|
||||||
|
@ -54,7 +54,7 @@ for pos, square in occupied:
|
||||||
text_color = 255
|
text_color = 255
|
||||||
cv2.putText(square, f"{pos} {pieces[int(np.argmax(test))]}", (0, 50), cv2.FONT_HERSHEY_SIMPLEX, fontScale=1,
|
cv2.putText(square, f"{pos} {pieces[int(np.argmax(test))]}", (0, 50), cv2.FONT_HERSHEY_SIMPLEX, fontScale=1,
|
||||||
color=(text_color,) * 3, thickness=3)
|
color=(text_color,) * 3, thickness=3)
|
||||||
cv2.imshow(f"{pos}", square)
|
cv2.imwrite("lel", square)
|
||||||
|
|
||||||
cv2.waitKey(0)
|
cv2.waitKey(0)
|
||||||
|
|
||||||
|
|
|
@ -1,7 +1,6 @@
|
||||||
from __future__ import absolute_import, division, print_function, unicode_literals
|
from __future__ import absolute_import, division, print_function, unicode_literals
|
||||||
|
|
||||||
import tensorflow as tf
|
import tensorflow as tf
|
||||||
from tensorflow.python.keras import datasets, layers, models
|
|
||||||
import glob
|
import glob
|
||||||
import numpy as np
|
import numpy as np
|
||||||
import cv2
|
import cv2
|
||||||
|
@ -58,18 +57,18 @@ test_img = np.array(test_img).reshape((len(test_img),width, height, 1))
|
||||||
# Normalize pixel values to be between 0 and 1
|
# Normalize pixel values to be between 0 and 1
|
||||||
train_images, test_images = training_img / 255.0, test_img / 255.0
|
train_images, test_images = training_img / 255.0, test_img / 255.0
|
||||||
|
|
||||||
model = models.Sequential()
|
model = tf.keras.models.Sequential()
|
||||||
model.add(layers.Conv2D(256, (3, 3), activation='relu', input_shape=(width, height, 1)))
|
model.add(tf.keras.layers.Conv2D(256, (3, 3), activation='relu', input_shape=(width, height, 1)))
|
||||||
model.add(layers.MaxPooling2D((2, 2)))
|
model.add(tf.keras.layers.MaxPooling2D((2, 2)))
|
||||||
model.add(layers.Conv2D(128, (3, 3), activation='relu'))
|
model.add(tf.keras.layers.Conv2D(128, (3, 3), activation='relu'))
|
||||||
model.add(layers.MaxPooling2D((2, 2)))
|
model.add(tf.keras.layers.MaxPooling2D((2, 2)))
|
||||||
model.add(layers.Conv2D(64, (3, 3), activation='relu'))
|
model.add(tf.keras.layers.Conv2D(64, (3, 3), activation='relu'))
|
||||||
model.add(layers.MaxPooling2D((2, 2)))
|
model.add(tf.keras.layers.MaxPooling2D((2, 2)))
|
||||||
model.add(layers.Conv2D(64, (3, 3), activation='relu'))
|
model.add(tf.keras.layers.Conv2D(64, (3, 3), activation='relu'))
|
||||||
|
|
||||||
model.add(layers.Flatten())
|
model.add(tf.keras.layers.Flatten())
|
||||||
model.add(layers.Dense(64, activation='relu'))
|
model.add(tf.keras.layers.Dense(64, activation='relu'))
|
||||||
model.add(layers.Dense(3, activation='softmax'))
|
model.add(tf.keras.layers.Dense(3, activation='softmax'))
|
||||||
|
|
||||||
model.summary()
|
model.summary()
|
||||||
|
|
||||||
|
@ -77,7 +76,7 @@ model.compile(optimizer='adam',
|
||||||
loss='sparse_categorical_crossentropy',
|
loss='sparse_categorical_crossentropy',
|
||||||
metrics=['accuracy'])
|
metrics=['accuracy'])
|
||||||
|
|
||||||
model.fit(train_images, training_labels, epochs=10)
|
model.fit(train_images, training_labels, epochs=3)
|
||||||
|
|
||||||
test_loss, test_acc = model.evaluate(test_images, test_labels_)
|
test_loss, test_acc = model.evaluate(test_images, test_labels_)
|
||||||
|
|
||||||
|
|
Loading…
Reference in New Issue
Block a user