adm-pres/pres.tex
2019-11-04 12:36:01 +01:00

207 lines
5.8 KiB
TeX

\documentclass{beamer}
\usetheme[progressbar=frametitle]{metropolis}
% g \in G is explanation as a model
% f is the model we're trying to explain
% does, being model agnostic, means we do not care about specifics of f.
% We use Locally Weighted Square Loss as L, where I suspect pi is the weight and we thus estimate the difference between the actual model
% and our explanation, and multiply this with the proximity of the data point z, to x.
% Spørg lige Lasse hvorfor min(L(f,g,pi_x(z)) + omega(g)) bliver intractable, når omega(g) er en konstant!
\usepackage{setspace}
\usepackage[T1]{fontenc}
\usepackage[sfdefault,scaled=.85]{FiraSans}
%\usepackage{newtxsf}
\usepackage[ruled, linesnumbered]{algorithm2e}
\SetKwInput{kwRequire}{Require}
\SetKw{kwExpl}{explain}
\title{Why Should I Trust You?}
\subtitle{Explaining the Predictions of Any Classifier}
\author{Casper Vestergaard Kristensen \and Alexander Munch-Hansen}
\institute{Aarhus University}
\date{\today}
\begin{document}
\begin{frame}
\titlepage
\end{frame}
\begin{frame}
\setbeamertemplate{section in toc}[sections numbered]
\frametitle{Outline}
\setstretch{0.5}
\tableofcontents
\end{frame}
\section{Meta information}
%\subsection{Authors}
\begin{frame}
\frametitle{Authors}
\begin{itemize}
\item Marco Tulio Ribeiro
\item Sameer Singh
\item Carlos Guestrin
\end{itemize}
\end{frame}
%\subsection{Publishing}
\begin{frame}[fragile]{Metropolis}
\frametitle{Publishing}
\begin{itemize}
\item Conference Paper, Research
\item KDD '16 Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
\begin{itemize}
\item A premier interdisciplinary conference, brings together researchers and practitioners from data science, data mining, knowledge discovery, large-scale data analytics, and big data.
\item Sigkdd has the highest h5 index of any conference involving databases or data in general
\item Highly trusted source
\end{itemize}
\end{itemize}
\end{frame}
\section{Article}
%\subsection{Problem}
\begin{frame}
\frametitle{Problem definition}
\begin{itemize}
\item People often use Machine Learning models for predictions
\item Blindly trusting a prediction can lead to poor decision making
\item We seek to understand the reasons behind predictions
\begin{itemize}
\item As well as the model doing the predictions
\end{itemize}
\end{itemize}
\end{frame}
%\subsection{Previous Solutions}
\begin{frame}
\frametitle{Previous Solutions}
\begin{itemize}
\item Relying on accuracy based on validation set
\end{itemize}
\end{frame}
\begin{frame}
\frametitle{A look into two predictions}
\includegraphics[scale=0.25]{graphics/christ_vs_atheism.png}
\end{frame}
\begin{frame}
\frametitle{A look into two predictions}
\includegraphics[scale=0.25]{graphics/christ_vs_atheism_annotated_1.png}
\end{frame}
\begin{frame}
\frametitle{A look into two predictions}
\includegraphics[scale=0.25]{graphics/christ_vs_atheism_annotated_2.png}
\end{frame}
\subsection{The LIME framework}
\begin{frame}
\frametitle{LIME}
\begin{itemize}
\item The algorithm created
\item Explains the predictions of \emph{any} classifier or regressor in a faithful way, by approximating it locally with an \emph{interpretable} model.
\end{itemize}
\end{frame}
\begin{frame}
\frametitle{Intepretability}
\end{frame}
\begin{frame}
\frametitle{Fidelity}
\end{frame}
\subsection{Explaining Predictions}
% \subsubsection{Examples}
\begin{frame}
% \frametitle{Sparse Linear Explanations}
\frametitle{Explaining an individual prediction}
\begin{algorithm}[H]
\setstretch{0.9}
\SetAlgoLined
\kwRequire{Classifier $f$, Number of samples $N$}
\kwRequire{Instance $x$, and its intepretable version $x^{\prime}$}
\kwRequire{Similarity kernel $\pi_x$, Length of explanation $K$}
\Indp
$\mathcal{Z} \leftarrow \{\}$ \\
\For{$i \in \{1,2,3,\dots, N\}$}{
$z_i^{\prime} \leftarrow sample\_around(x^{\prime})$ \\
$\mathcal{Z} \leftarrow \mathcal{Z} \cup \langle z_i^{\prime}, f(z_i), \pi_{x}(z_i) \rangle$ \\
}
$w \leftarrow \text{K-Lasso}(\mathcal{Z},K) \vartriangleright \text{with } z_i^{\prime} \text{ as features, } f(z) \text{ as target}$ \\
\Return $w$
\caption{Sparse Linear Explanations using LIME}
\end{algorithm}
% This algorithm approximates the minimization problem of computing a single individual explanation of a prediction.
% K-Lasso is the procedure of learning the weights via least squares. Wtf are these weights???
\end{frame}
\begin{frame}
\frametitle{Text Classification}
\end{frame}
\begin{frame}
\frametitle{Deep Networks for Images}
\end{frame}
\subsection{Explaining Models}
\begin{frame}
\frametitle{Submodular Picks}
\begin{algorithm}[H]
\setstretch{0.9}
\SetAlgoLined
\kwRequire{Instances $X$, Budget $B$}
\Indp
\ForAll{$x_i \in X$}{
$W_i \leftarrow \mathbf{explain}(x_i, x_i^{\prime})$ \qquad \qquad $\vartriangleright$ Using Algorithm 1
}
\For{$j \in \{1\dots d^{\prime}$} {
$I_j \leftarrow \sqrt{\sum_{i=1}^n |W_{ij}|}$ \qquad \qquad \quad $\vartriangleright$ Compute feature importances
}
$V \leftarrow \{\}$ \\
\While(\qquad \qquad \qquad \quad \ \ $\vartriangleright$ Greedy optimisation of Eq 4){$|V| < B$} {
$V \leftarrow V \cup \text{argmax}_i \ c(V \cup \{i\}, W, i)$
}
\Return $V$
\caption{Submodular pick (SP) algorithm}
\end{algorithm}
\end{frame}
\section{Experiments}
%\subsection{Simulated User Experiments}
%\subsubsection{Setup}
\begin{frame}
\frametitle{Setup}
\end{frame}
%\subsection{Human Subjects}
\section{Conclusion}
\begin{frame}
\frametitle{Conclusion}
\end{frame}
\section{Recap}
\begin{frame}
\frametitle{Recap}
\end{frame}
\end{document}