\documentclass{beamer} \usetheme[progressbar=frametitle]{metropolis} % g \in G is explanation as a model % f is the model we're trying to explain % does, being model agnostic, means we do not care about specifics of f. % We use Locally Weighted Square Loss as L, where I suspect pi is the weight and we thus estimate the difference between the actual model % and our explanation, and multiply this with the proximity of the data point z, to x. % Spørg lige Lasse hvorfor min(L(f,g,pi_x(z)) + omega(g)) bliver intractable, når omega(g) er en konstant! \usepackage{setspace} \usepackage[T1]{fontenc} \usepackage[sfdefault,scaled=.85]{FiraSans} %\usepackage{newtxsf} \usepackage[ruled, linesnumbered]{algorithm2e} \SetKwInput{kwRequire}{Require} \SetKw{kwExpl}{explain} \title{Why Should I Trust You?} \subtitle{Explaining the Predictions of Any Classifier} \author{Casper Vestergaard Kristensen \and Alexander Munch-Hansen} \institute{Aarhus University} \date{\today} \begin{document} \begin{frame} \titlepage \end{frame} \begin{frame} \setbeamertemplate{section in toc}[sections numbered] \frametitle{Outline} \setstretch{0.5} \tableofcontents \end{frame} \section{Meta information} %\subsection{Authors} \begin{frame} \frametitle{Authors} \begin{itemize} \item Marco Tulio Ribeiro \item Sameer Singh \item Carlos Guestrin \end{itemize} \end{frame} %\subsection{Publishing} \begin{frame}[fragile]{Metropolis} \frametitle{Publishing} \begin{itemize} \item Conference Paper, Research \item KDD '16 Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining \begin{itemize} \item A premier interdisciplinary conference, brings together researchers and practitioners from data science, data mining, knowledge discovery, large-scale data analytics, and big data. \item Sigkdd has the highest h5 index of any conference involving databases or data in general \item Highly trusted source \end{itemize} \end{itemize} \end{frame} \section{Article} %\subsection{Problem} \begin{frame} \frametitle{Problem definition} \begin{itemize} \item People often use Machine Learning models for predictions \item Blindly trusting a prediction can lead to poor decision making \item We seek to understand the reasons behind predictions \begin{itemize} \item As well as the model doing the predictions \end{itemize} \end{itemize} \end{frame} %\subsection{Previous Solutions} \begin{frame} \frametitle{Previous Solutions} \begin{itemize} \item Relying on accuracy based on validation set \end{itemize} \end{frame} \begin{frame} \frametitle{A look into two predictions} \includegraphics[scale=0.25]{graphics/christ_vs_atheism.png} \end{frame} \begin{frame} \frametitle{A look into two predictions} \includegraphics[scale=0.25]{graphics/christ_vs_atheism_annotated_1.png} \end{frame} \begin{frame} \frametitle{A look into two predictions} \includegraphics[scale=0.25]{graphics/christ_vs_atheism_annotated_2.png} \end{frame} \subsection{The LIME framework} \begin{frame} \frametitle{LIME} \begin{itemize} \item The algorithm created \item Explains the predictions of \emph{any} classifier or regressor in a faithful way, by approximating it locally with an \emph{interpretable} model. \end{itemize} \end{frame} \begin{frame} \frametitle{Intepretability} \end{frame} \begin{frame} \frametitle{Fidelity} \end{frame} \subsection{Explaining Predictions} % \subsubsection{Examples} \begin{frame} % \frametitle{Sparse Linear Explanations} \frametitle{Explaining an individual prediction} \begin{algorithm}[H] \setstretch{0.9} \SetAlgoLined \kwRequire{Classifier $f$, Number of samples $N$} \kwRequire{Instance $x$, and its intepretable version $x^{\prime}$} \kwRequire{Similarity kernel $\pi_x$, Length of explanation $K$} \Indp $\mathcal{Z} \leftarrow \{\}$ \\ \For{$i \in \{1,2,3,\dots, N\}$}{ $z_i^{\prime} \leftarrow sample\_around(x^{\prime})$ \\ $\mathcal{Z} \leftarrow \mathcal{Z} \cup \langle z_i^{\prime}, f(z_i), \pi_{x}(z_i) \rangle$ \\ } $w \leftarrow \text{K-Lasso}(\mathcal{Z},K) \vartriangleright \text{with } z_i^{\prime} \text{ as features, } f(z) \text{ as target}$ \\ \Return $w$ \caption{Sparse Linear Explanations using LIME} \end{algorithm} % This algorithm approximates the minimization problem of computing a single individual explanation of a prediction. % K-Lasso is the procedure of learning the weights via least squares. Wtf are these weights??? \end{frame} \begin{frame} \frametitle{Text Classification} \end{frame} \begin{frame} \frametitle{Deep Networks for Images} \end{frame} \subsection{Explaining Models} \begin{frame} \frametitle{Submodular Picks} \begin{algorithm}[H] \setstretch{0.9} \SetAlgoLined \kwRequire{Instances $X$, Budget $B$} \Indp \ForAll{$x_i \in X$}{ $W_i \leftarrow \mathbf{explain}(x_i, x_i^{\prime})$ \qquad \qquad $\vartriangleright$ Using Algorithm 1 } \For{$j \in \{1\dots d^{\prime}$} { $I_j \leftarrow \sqrt{\sum_{i=1}^n |W_{ij}|}$ \qquad \qquad \quad $\vartriangleright$ Compute feature importances } $V \leftarrow \{\}$ \\ \While(\qquad \qquad \qquad \quad \ \ $\vartriangleright$ Greedy optimisation of Eq 4){$|V| < B$} { $V \leftarrow V \cup \text{argmax}_i \ c(V \cup \{i\}, W, i)$ } \Return $V$ \caption{Submodular pick (SP) algorithm} \end{algorithm} \end{frame} \section{Experiments} %\subsection{Simulated User Experiments} %\subsubsection{Setup} \begin{frame} \frametitle{Setup} \end{frame} %\subsection{Human Subjects} \section{Conclusion} \begin{frame} \frametitle{Conclusion} \end{frame} \section{Recap} \begin{frame} \frametitle{Recap} \end{frame} \end{document}