Init
This commit is contained in:
commit
dfbfe94134
BIN
graphics/.DS_Store
vendored
Normal file
BIN
graphics/.DS_Store
vendored
Normal file
Binary file not shown.
BIN
graphics/christ_vs_atheism.png
Normal file
BIN
graphics/christ_vs_atheism.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 806 KiB |
BIN
graphics/christ_vs_atheism_annotated_1.png
Normal file
BIN
graphics/christ_vs_atheism_annotated_1.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 838 KiB |
BIN
graphics/christ_vs_atheism_annotated_2.png
Normal file
BIN
graphics/christ_vs_atheism_annotated_2.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 845 KiB |
BIN
graphics/doctor_pred.png
Normal file
BIN
graphics/doctor_pred.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 229 KiB |
206
pres.tex
Normal file
206
pres.tex
Normal file
|
@ -0,0 +1,206 @@
|
|||
\documentclass{beamer}
|
||||
\usetheme[progressbar=frametitle]{metropolis}
|
||||
|
||||
% g \in G is explanation as a model
|
||||
% f is the model we're trying to explain
|
||||
% does, being model agnostic, means we do not care about specifics of f.
|
||||
% We use Locally Weighted Square Loss as L, where I suspect pi is the weight and we thus estimate the difference between the actual model
|
||||
% and our explanation, and multiply this with the proximity of the data point z, to x.
|
||||
% Spørg lige Lasse hvorfor min(L(f,g,pi_x(z)) + omega(g)) bliver intractable, når omega(g) er en konstant!
|
||||
|
||||
|
||||
|
||||
|
||||
\usepackage{setspace}
|
||||
\usepackage[T1]{fontenc}
|
||||
\usepackage[sfdefault,scaled=.85]{FiraSans}
|
||||
%\usepackage{newtxsf}
|
||||
\usepackage[ruled, linesnumbered]{algorithm2e}
|
||||
\SetKwInput{kwRequire}{Require}
|
||||
\SetKw{kwExpl}{explain}
|
||||
|
||||
\title{Why Should I Trust You?}
|
||||
\subtitle{Explaining the Predictions of Any Classifier}
|
||||
\author{Casper Vestergaard Kristensen \and Alexander Munch-Hansen}
|
||||
\institute{Aarhus University}
|
||||
\date{\today}
|
||||
|
||||
\begin{document}
|
||||
\begin{frame}
|
||||
\titlepage
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}
|
||||
\setbeamertemplate{section in toc}[sections numbered]
|
||||
\frametitle{Outline}
|
||||
\setstretch{0.5}
|
||||
\tableofcontents
|
||||
|
||||
\end{frame}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
\section{Meta information}
|
||||
%\subsection{Authors}
|
||||
|
||||
\begin{frame}
|
||||
\frametitle{Authors}
|
||||
\begin{itemize}
|
||||
\item Marco Tulio Ribeiro
|
||||
\item Sameer Singh
|
||||
\item Carlos Guestrin
|
||||
\end{itemize}
|
||||
\end{frame}
|
||||
|
||||
%\subsection{Publishing}
|
||||
|
||||
\begin{frame}[fragile]{Metropolis}
|
||||
\frametitle{Publishing}
|
||||
|
||||
\begin{itemize}
|
||||
\item Conference Paper, Research
|
||||
\item KDD '16 Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
|
||||
\begin{itemize}
|
||||
\item A premier interdisciplinary conference, brings together researchers and practitioners from data science, data mining, knowledge discovery, large-scale data analytics, and big data.
|
||||
\item Sigkdd has the highest h5 index of any conference involving databases or data in general
|
||||
\item Highly trusted source
|
||||
\end{itemize}
|
||||
\end{itemize}
|
||||
\end{frame}
|
||||
|
||||
\section{Article}
|
||||
|
||||
%\subsection{Problem}
|
||||
|
||||
\begin{frame}
|
||||
\frametitle{Problem definition}
|
||||
\begin{itemize}
|
||||
\item People often use Machine Learning models for predictions
|
||||
\item Blindly trusting a prediction can lead to poor decision making
|
||||
\item We seek to understand the reasons behind predictions
|
||||
\begin{itemize}
|
||||
\item As well as the model doing the predictions
|
||||
\end{itemize}
|
||||
\end{itemize}
|
||||
\end{frame}
|
||||
|
||||
%\subsection{Previous Solutions}
|
||||
\begin{frame}
|
||||
\frametitle{Previous Solutions}
|
||||
\begin{itemize}
|
||||
\item Relying on accuracy based on validation set
|
||||
\end{itemize}
|
||||
\end{frame}
|
||||
|
||||
|
||||
\begin{frame}
|
||||
\frametitle{A look into two predictions}
|
||||
\includegraphics[scale=0.25]{graphics/christ_vs_atheism.png}
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}
|
||||
\frametitle{A look into two predictions}
|
||||
\includegraphics[scale=0.25]{graphics/christ_vs_atheism_annotated_1.png}
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}
|
||||
\frametitle{A look into two predictions}
|
||||
\includegraphics[scale=0.25]{graphics/christ_vs_atheism_annotated_2.png}
|
||||
\end{frame}
|
||||
|
||||
\subsection{The LIME framework}
|
||||
\begin{frame}
|
||||
\frametitle{LIME}
|
||||
\begin{itemize}
|
||||
\item The algorithm created
|
||||
\item Explains the predictions of \emph{any} classifier or regressor in a faithful way, by approximating it locally with an \emph{interpretable} model.
|
||||
\end{itemize}
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}
|
||||
\frametitle{Intepretability}
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}
|
||||
\frametitle{Fidelity}
|
||||
\end{frame}
|
||||
|
||||
|
||||
\subsection{Explaining Predictions}
|
||||
% \subsubsection{Examples}
|
||||
\begin{frame}
|
||||
% \frametitle{Sparse Linear Explanations}
|
||||
\frametitle{Explaining an individual prediction}
|
||||
\begin{algorithm}[H]
|
||||
\setstretch{0.9}
|
||||
\SetAlgoLined
|
||||
\kwRequire{Classifier $f$, Number of samples $N$}
|
||||
\kwRequire{Instance $x$, and its intepretable version $x^{\prime}$}
|
||||
\kwRequire{Similarity kernel $\pi_x$, Length of explanation $K$}
|
||||
\Indp
|
||||
$\mathcal{Z} \leftarrow \{\}$ \\
|
||||
\For{$i \in \{1,2,3,\dots, N\}$}{
|
||||
$z_i^{\prime} \leftarrow sample\_around(x^{\prime})$ \\
|
||||
$\mathcal{Z} \leftarrow \mathcal{Z} \cup \langle z_i^{\prime}, f(z_i), \pi_{x}(z_i) \rangle$ \\
|
||||
}
|
||||
$w \leftarrow \text{K-Lasso}(\mathcal{Z},K) \vartriangleright \text{with } z_i^{\prime} \text{ as features, } f(z) \text{ as target}$ \\
|
||||
\Return $w$
|
||||
\caption{Sparse Linear Explanations using LIME}
|
||||
\end{algorithm}
|
||||
% This algorithm approximates the minimization problem of computing a single individual explanation of a prediction.
|
||||
% K-Lasso is the procedure of learning the weights via least squares. Wtf are these weights???
|
||||
\end{frame}
|
||||
|
||||
|
||||
\begin{frame}
|
||||
\frametitle{Text Classification}
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}
|
||||
\frametitle{Deep Networks for Images}
|
||||
\end{frame}
|
||||
\subsection{Explaining Models}
|
||||
|
||||
\begin{frame}
|
||||
\frametitle{Submodular Picks}
|
||||
\begin{algorithm}[H]
|
||||
\setstretch{0.9}
|
||||
\SetAlgoLined
|
||||
\kwRequire{Instances $X$, Budget $B$}
|
||||
\Indp
|
||||
\ForAll{$x_i \in X$}{
|
||||
$W_i \leftarrow \mathbf{explain}(x_i, x_i^{\prime})$ \qquad \qquad $\vartriangleright$ Using Algorithm 1
|
||||
}
|
||||
\For{$j \in \{1\dots d^{\prime}$} {
|
||||
$I_j \leftarrow \sqrt{\sum_{i=1}^n |W_{ij}|}$ \qquad \qquad \quad $\vartriangleright$ Compute feature importances
|
||||
}
|
||||
$V \leftarrow \{\}$ \\
|
||||
\While(\qquad \qquad \qquad \quad \ \ $\vartriangleright$ Greedy optimisation of Eq 4){$|V| < B$} {
|
||||
$V \leftarrow V \cup \text{argmax}_i \ c(V \cup \{i\}, W, i)$
|
||||
}
|
||||
\Return $V$
|
||||
\caption{Submodular pick (SP) algorithm}
|
||||
\end{algorithm}
|
||||
\end{frame}
|
||||
|
||||
\section{Experiments}
|
||||
%\subsection{Simulated User Experiments}
|
||||
%\subsubsection{Setup}
|
||||
\begin{frame}
|
||||
\frametitle{Setup}
|
||||
\end{frame}
|
||||
%\subsection{Human Subjects}
|
||||
|
||||
\section{Conclusion}
|
||||
|
||||
\begin{frame}
|
||||
\frametitle{Conclusion}
|
||||
\end{frame}
|
||||
|
||||
\section{Recap}
|
||||
\begin{frame}
|
||||
\frametitle{Recap}
|
||||
\end{frame}
|
||||
\end{document}
|
Loading…
Reference in New Issue
Block a user