halvvejs færdig med emne 5
This commit is contained in:
parent
ac3215e746
commit
44d89c801d
231
beviser.lyx
231
beviser.lyx
|
@ -1921,7 +1921,11 @@ Hvis
|
|||
|
||||
kan
|
||||
\emph on
|
||||
udvides
|
||||
ud
|
||||
\emph default
|
||||
koordinattransformationsmatricer
|
||||
\emph on
|
||||
vides
|
||||
\emph default
|
||||
til en basis for
|
||||
\begin_inset Formula $V$
|
||||
|
@ -2249,5 +2253,230 @@ Noter
|
|||
Overvej at droppe Lemma 7.2 fra dispositionen.
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
\begin_inset Newpage newpage
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Section
|
||||
Matrixrepræsentationer
|
||||
\end_layout
|
||||
|
||||
\begin_layout Subsection
|
||||
Definition 8.3 (
|
||||
\emph on
|
||||
Koordinatvektor
|
||||
\emph default
|
||||
)
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
\begin_inset Formula $\mathcal{V}=(\boldsymbol{v}_{1},\boldsymbol{v}_{2},\dots,\boldsymbol{v}_{n})$
|
||||
\end_inset
|
||||
|
||||
er en basis for et
|
||||
\begin_inset Formula $\mathbb{F}$
|
||||
\end_inset
|
||||
|
||||
-vektorrum
|
||||
\begin_inset Formula $V$
|
||||
\end_inset
|
||||
|
||||
.
|
||||
|
||||
\emph on
|
||||
Koordinatvektoren
|
||||
\emph default
|
||||
for et element
|
||||
\begin_inset Formula $\boldsymbol{v}\in V$
|
||||
\end_inset
|
||||
|
||||
mht.
|
||||
basen
|
||||
\begin_inset Formula $\mathcal{V}$
|
||||
\end_inset
|
||||
|
||||
menes elementet
|
||||
\begin_inset Formula $L_{\mathcal{V}}^{-1}(\boldsymbol{v})\in\mathbb{F}^{n}$
|
||||
\end_inset
|
||||
|
||||
.
|
||||
Koordinatvektoren kan også betegnes med
|
||||
\begin_inset Formula $\left[\boldsymbol{v}\right]_{\mathcal{V}}$
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
Koordinatvektoren er den vektor
|
||||
\begin_inset Formula
|
||||
\[
|
||||
\begin{pmatrix}\alpha_{1}\\
|
||||
\alpha_{2}\\
|
||||
\vdots\\
|
||||
\alpha_{n}
|
||||
\end{pmatrix}\in\mathbb{F}^{n}
|
||||
\]
|
||||
|
||||
\end_inset
|
||||
|
||||
som opfylder relationen
|
||||
\begin_inset Formula
|
||||
\[
|
||||
\boldsymbol{v}=\alpha_{1}\cdot\boldsymbol{v}_{1}+\alpha_{2}\cdot\boldsymbol{v}_{2}+\cdots+\alpha_{n}\cdot\boldsymbol{v}_{n}.
|
||||
\]
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Subsection
|
||||
Definition 8.6 (
|
||||
\emph on
|
||||
Koordinattransformationsmatricen
|
||||
\emph default
|
||||
)
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
Lad
|
||||
\begin_inset Formula $\mathcal{V}=(\boldsymbol{v}_{1},\boldsymbol{v}_{2},\dots,\boldsymbol{v}_{n})$
|
||||
\end_inset
|
||||
|
||||
og
|
||||
\begin_inset Formula $\mathcal{W}=(\boldsymbol{w}_{1},\boldsymbol{w}_{2},\dots,\boldsymbol{w}_{n})$
|
||||
\end_inset
|
||||
|
||||
være baser for det samme
|
||||
\begin_inset Formula $\mathbb{F}$
|
||||
\end_inset
|
||||
|
||||
-vektorrum
|
||||
\begin_inset Formula $V$
|
||||
\end_inset
|
||||
|
||||
.
|
||||
|
||||
\emph on
|
||||
Koordinattransformationsmatricen for overgangen fra
|
||||
\begin_inset Formula $\mathcal{W}$
|
||||
\end_inset
|
||||
|
||||
-basen til
|
||||
\begin_inset Formula $\mathcal{V}$
|
||||
\end_inset
|
||||
|
||||
-basen defineres som matricen
|
||||
\begin_inset Formula
|
||||
\[
|
||||
_{\underset{til}{\underbrace{\mathcal{V}}}}\left[\boxempty\right]_{\underset{fra}{\underbrace{\mathcal{W}}}}=\begin{pmatrix}\vline & \vline & & \vline\\
|
||||
\left[\boldsymbol{w}_{1}\right]_{\mathcal{V}} & \left[\boldsymbol{w}_{2}\right]_{\mathcal{V}} & \cdots & \left[\boldsymbol{w}_{n}\right]_{\mathcal{V}}\\
|
||||
\vline & \vline & & \vline
|
||||
\end{pmatrix}\in{\rm Mat_{n}(\mathbb{F})}
|
||||
\]
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Subsection
|
||||
Definition 8.9 (
|
||||
\emph on
|
||||
Matrixrepræsentation
|
||||
\emph default
|
||||
)
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
Lad
|
||||
\begin_inset Formula $L:\:W\rightarrow V$
|
||||
\end_inset
|
||||
|
||||
betegne en lineær afbildning mellem
|
||||
\begin_inset Formula $\mathbb{F}$
|
||||
\end_inset
|
||||
|
||||
-vektorrum
|
||||
\begin_inset Formula $W$
|
||||
\end_inset
|
||||
|
||||
og
|
||||
\begin_inset Formula $V$
|
||||
\end_inset
|
||||
|
||||
med baser hhv.
|
||||
|
||||
\begin_inset Formula $\mathcal{W}=(\boldsymbol{w}_{1},\boldsymbol{w}_{2},\dots,\boldsymbol{w}_{n})$
|
||||
\end_inset
|
||||
|
||||
og
|
||||
\begin_inset Formula $\mathcal{V}=(\boldsymbol{v}_{1},\boldsymbol{v}_{2},\dots,\boldsymbol{v}_{n})$
|
||||
\end_inset
|
||||
|
||||
.
|
||||
|
||||
\emph on
|
||||
Matrixrepræsentationen
|
||||
\emph default
|
||||
for
|
||||
\begin_inset Formula $L$
|
||||
\end_inset
|
||||
|
||||
mht.
|
||||
til baserne
|
||||
\begin_inset Formula $\mathcal{W}$
|
||||
\end_inset
|
||||
|
||||
og
|
||||
\begin_inset Formula $\mathcal{V}$
|
||||
\end_inset
|
||||
|
||||
defineres da som matricen
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
|
||||
\emph on
|
||||
\begin_inset Formula
|
||||
\[
|
||||
_{\underset{til}{\underbrace{\mathcal{V}}}}\left[L\right]_{\underset{fra}{\underbrace{\mathcal{W}}}}=\begin{pmatrix}\vline & \vline & & \vline\\
|
||||
\left[L(\boldsymbol{w}_{1})\right]_{\mathcal{V}} & \left[L(\boldsymbol{w}_{2})\right]_{\mathcal{V}} & \cdots & \left[(\boldsymbol{w}_{n})\right]_{\mathcal{V}}\\
|
||||
\vline & \vline & & \vline
|
||||
\end{pmatrix}\in{\rm Mat_{n}(\mathbb{F})}
|
||||
\]
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Subsection
|
||||
Proposition 8.10(1) (Matrixrepræsentationer og koordinatvektorer)
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
\begin_inset Formula
|
||||
\[
|
||||
\left[L(\boldsymbol{v})\right]_{\mathcal{W}}={}_{\mathcal{V}}\left[L\right]_{\mathcal{W}}\cdot\left[\boldsymbol{v}\right]_{\mathcal{V}}.
|
||||
\]
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Subsection
|
||||
Lemma 8.19
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
|
||||
\end_layout
|
||||
|
||||
\end_body
|
||||
\end_document
|
||||
|
|
Loading…
Reference in New Issue
Block a user