From 44ca71b66f5c0a00807c126618e7cae36b5cc4f9 Mon Sep 17 00:00:00 2001 From: Pownie Date: Sat, 10 Jun 2017 11:11:16 +0200 Subject: [PATCH] Did stuff --- beviser.lyx | 1028 ++++++++++++++++++++++++++++++++++++++++++++++++++- 1 file changed, 1027 insertions(+), 1 deletion(-) diff --git a/beviser.lyx b/beviser.lyx index 6261979..1afc185 100644 --- a/beviser.lyx +++ b/beviser.lyx @@ -2460,9 +2460,39 @@ Proposition 8.10(1) (Matrixrepræsentationer og koordinatvektorer) \end_layout \begin_layout Standard +Lad +\begin_inset Formula $L:\:V\rightarrow W$ +\end_inset + + betegne en lineær afbildning mellem +\begin_inset Formula $\mathbb{F}-vektorrum$ +\end_inset + + +\begin_inset Formula $V$ +\end_inset + + og +\begin_inset Formula $W$ +\end_inset + + med baser hhv. + +\begin_inset Formula $\mathcal{V}$ +\end_inset + + og +\begin_inset Formula $\mathcal{W}$ +\end_inset + +, så gælder: +\end_layout + +\begin_layout Standard +(1) \begin_inset Formula \[ -\left[L(\boldsymbol{v})\right]_{\mathcal{W}}={}_{\mathcal{V}}\left[L\right]_{\mathcal{W}}\cdot\left[\boldsymbol{v}\right]_{\mathcal{V}}. +\left[L(\boldsymbol{v})\right]_{\mathcal{W}}={}_{\mathcal{W}}\left[L\right]_{\mathcal{V}}\cdot\left[\boldsymbol{v}\right]_{\mathcal{V}}. \] \end_inset @@ -2470,12 +2500,1008 @@ Proposition 8.10(1) (Matrixrepræsentationer og koordinatvektorer) \end_layout +\begin_layout Standard +(2) Hvis +\begin_inset Formula $A\,\in\text{Mat}_{m,n}(\mathbb{F})$ +\end_inset + + opfylder relationen +\begin_inset Formula $\left[L(\boldsymbol{v})\right]_{\mathcal{W}}=A\cdot\left[\boldsymbol{v}\right]_{\mathcal{V}}$ +\end_inset + + for alle +\begin_inset Formula $\boldsymbol{v}\,\in V$ +\end_inset + +, så er +\begin_inset Formula $A=_{\mathcal{W}}\left[L\right]_{\mathcal{V}}$ +\end_inset + + +\end_layout + +\begin_layout Standard + +\series bold +Bevis: +\end_layout + +\begin_layout Standard +(1) +\end_layout + +\begin_layout Standard +Lad +\begin_inset Formula $\mathcal{V}$ +\end_inset + + og +\begin_inset Formula $\mathcal{W}$ +\end_inset + + være givet ved hhv. + +\begin_inset Formula $\mathcal{V}=(\boldsymbol{v_{1}},\boldsymbol{v_{2},\dots,v}_{n})$ +\end_inset + + og +\begin_inset Formula $\mathcal{W}=(\boldsymbol{w_{1}},\boldsymbol{w_{2},\dots,w}_{n})$ +\end_inset + +. + Eftersom +\begin_inset Formula $\mathcal{V}$ +\end_inset + + er en basis for +\begin_inset Formula $V$ +\end_inset + + så kan alle elementer +\begin_inset Formula $\boldsymbol{v}\,\in V$ +\end_inset + + beskrives som en linearkombination af basen +\begin_inset Formula $\mathcal{V}$ +\end_inset + +: +\begin_inset Formula +\[ +\boldsymbol{v}=\alpha_{1}\cdot\boldsymbol{v}_{1}+\alpha_{2}\cdot\boldsymbol{v}_{2}+\cdots+\alpha_{n}\cdot\boldsymbol{v}_{n} +\] + +\end_inset + + +\end_layout + +\begin_layout Standard +og specielt vil +\begin_inset Formula +\[ +L(\boldsymbol{v})=\alpha_{1}\cdot L(\boldsymbol{v})_{1}+\alpha_{2}\cdot L(\boldsymbol{v})_{2}+\cdots+\alpha_{n}\cdot L(\boldsymbol{v})_{n} +\] + +\end_inset + + +\end_layout + +\begin_layout Standard +grundet +\series bold +Definition 6.1(b) +\series default +. + Ligeledes, grundet egenskaberne ved koordinatvektorer beskrevet i prop + 8.4, så kan følgende konkluderes: +\end_layout + +\begin_layout Standard +\begin_inset Formula +\[ +[L(\boldsymbol{v})]_{\mathcal{W}}=\alpha_{1}\cdot[L(\boldsymbol{v})_{1}]_{\mathcal{W}}+\alpha_{2}\cdot[L(\boldsymbol{v})_{2}]_{\mathcal{W}}+\cdots+\alpha_{n}\cdot[L(\boldsymbol{v})_{n}]_{\mathcal{W}} +\] + +\end_inset + + +\end_layout + +\begin_layout Standard +Hvilket kan opskrives som et produkt jf. + med formel 5.25 +\begin_inset Formula +\[ +_{\mathcal{W}}\left[L\right]_{\mathcal{V}}\cdot\begin{pmatrix}\alpha_{1}\\ +\alpha_{2}\\ +\vdots\\ +\alpha_{n} +\end{pmatrix}={}_{\mathcal{W}}\left[L\right]_{\mathcal{V}}\cdot\left[\boldsymbol{v}\right]_{\mathcal{V}} +\] + +\end_inset + + +\end_layout + +\begin_layout Standard +Hvilket viser udsagn (1). +\end_layout + +\begin_layout Standard +(2) +\end_layout + +\begin_layout Standard +Antag at en matrix +\begin_inset Formula $A\in{\rm Mat}_{m,n}(\mathbb{F})$ +\end_inset + + opfylder egenskaben beskrevet i (2), så vil der gælde: +\end_layout + +\begin_layout Standard +\begin_inset Formula +\[ +[L(\boldsymbol{v}_{i})]_{\mathcal{W}}=A\cdot[\boldsymbol{v}_{i}]_{\mathcal{V}}=A\cdot\boldsymbol{e}_{i}\,\,\,\,for\,\,ethvert\,i=1,2,\dots,n +\] + +\end_inset + + +\end_layout + +\begin_layout Standard +Hvori højresiden er må være lig den i'te søjle i +\begin_inset Formula $A$ +\end_inset + +, men venstresiden er lig den i'te søjle i +\begin_inset Formula $_{\mathcal{W}}\left[L\right]_{\mathcal{V}}$ +\end_inset + + og altså må de to være ens, som påstået i udsagn (2). +\end_layout + \begin_layout Subsection Lemma 8.19 \end_layout \begin_layout Standard +Lad +\begin_inset Formula $L:\:V\rightarrow W$ +\end_inset + betegne en lineær afbildning, og lad +\begin_inset Formula $\mathcal{V}$ +\end_inset + + og +\begin_inset Formula $\mathcal{W}$ +\end_inset + + betegne baser for hhv. + +\begin_inset Formula $V$ +\end_inset + + og +\begin_inset Formula $W$ +\end_inset + +. + Så gælder: +\end_layout + +\begin_layout Standard +(1) Et element +\begin_inset Formula $\boldsymbol{v}\in V$ +\end_inset + + tilhører kernen ker( +\begin_inset Formula $L$ +\end_inset + +) for +\begin_inset Formula $L$ +\end_inset + + hvis og kun hvis den tilsvarende koordinatvektor +\begin_inset Formula $[\boldsymbol{v}]_{\mathcal{V}}$ +\end_inset + + er et element i nulrummet +\begin_inset Formula $N(_{\mathcal{W}}\left[L\right]_{\mathcal{V}})$ +\end_inset + + for matrixrepræsentationen +\begin_inset Formula $_{\mathcal{W}}\left[L\right]_{\mathcal{V}}$ +\end_inset + +. + +\end_layout + +\begin_layout Standard +(2) Et element +\begin_inset Formula $\boldsymbol{w\in}W$ +\end_inset + + tilhører billedet af +\begin_inset Formula $L$ +\end_inset + + hvis og kun hvis den tilsvarende koordinatvektor +\begin_inset Formula $[\boldsymbol{w}]_{\mathcal{W}}$ +\end_inset + + er et element i søjlerummet +\begin_inset Formula $R(_{\mathcal{W}}\left[L\right]_{\mathcal{V}})$ +\end_inset + + til matrixrepræsentation +\begin_inset Formula $_{\mathcal{W}}\left[L\right]_{\mathcal{V}}$ +\end_inset + + +\end_layout + +\begin_layout Standard + +\series bold +Bevis +\end_layout + +\begin_layout Standard +(1) +\end_layout + +\begin_layout Standard +Idet +\begin_inset Formula $L_{\mathcal{W}}$ +\end_inset + + er en isomorfi (der findes en invers funktion, matrixrepræsentationens + inverse), så er +\begin_inset Formula $\boldsymbol{v}\in V$ +\end_inset + + et element i ker( +\begin_inset Formula $L$ +\end_inset + +) hvis og kun hvis +\end_layout + +\begin_layout Standard +\begin_inset Formula +\[ +L_{\mathcal{W}}^{-1}(L(\boldsymbol{v}))=0 +\] + +\end_inset + +Venstresiden af dette er dog lig +\begin_inset Formula $[L(\boldsymbol{v})]_{\mathcal{W}}$ +\end_inset + + hvilket kan skrives som: +\end_layout + +\begin_layout Standard +\begin_inset Formula +\[ +[L(\boldsymbol{v})]_{\mathcal{W}}={}_{\mathcal{W}}\left[L\right]_{\mathcal{V}}\cdot\left[\boldsymbol{v}\right]_{\mathcal{V}} +\] + +\end_inset + + +\end_layout + +\begin_layout Standard +hvoraf det er oplagt at koordinatvektoren +\begin_inset Formula $[\boldsymbol{v}]_{\mathcal{V}}$ +\end_inset + + skal være i nulrummet. +\end_layout + +\begin_layout Standard +(2) +\end_layout + +\begin_layout Standard +Lad nu +\begin_inset Formula $\boldsymbol{w}\in W$ +\end_inset + +. + Hvis +\begin_inset Formula $\boldsymbol{w}$ +\end_inset + + er i billedet +\begin_inset Formula $L(V)$ +\end_inset + + så eksisterer der et +\begin_inset Formula $\boldsymbol{v}\in V$ +\end_inset + +, således at +\begin_inset Formula $\boldsymbol{w}=L(\boldsymbol{v}).$ +\end_inset + + Dette leder til følgende sammenhæng: +\end_layout + +\begin_layout Standard +\begin_inset Formula +\[ +[\boldsymbol{w}]_{\mathcal{W}}=[L(\boldsymbol{v})]_{\mathcal{W}}={}_{\mathcal{W}}\left[L\right]_{\mathcal{V}}\cdot\left[\boldsymbol{v}\right]_{\mathcal{V}} +\] + +\end_inset + + +\end_layout + +\begin_layout Standard +Hvilket betyder at +\begin_inset Formula $[\boldsymbol{w}]_{\mathcal{W}}$ +\end_inset + + må være et element i søjlerummet til +\begin_inset Formula $_{\mathcal{W}}\left[L\right]_{\mathcal{V}}$ +\end_inset + +. + Hvis omvendt +\begin_inset Formula $[\boldsymbol{w}]_{\mathcal{W}}$ +\end_inset + + er et element i søjlerummet til +\begin_inset Formula $_{\mathcal{W}}\left[L\right]_{\mathcal{V}}$ +\end_inset + +, så må der findes en vektor +\begin_inset Formula $\boldsymbol{a}\in\mathbb{F}^{n}$ +\end_inset + + hvor +\begin_inset Formula $n$ +\end_inset + + beskriver dimensionen af +\begin_inset Formula $V$ +\end_inset + +, så: +\end_layout + +\begin_layout Standard +\begin_inset Formula +\[ +[\boldsymbol{w}]_{\mathcal{W}}={}_{\mathcal{W}}\left[L\right]_{\mathcal{V}}\cdot\boldsymbol{a} +\] + +\end_inset + + +\end_layout + +\begin_layout Standard +Hvis +\begin_inset Formula $\boldsymbol{v}=L_{\mathcal{V}}(\boldsymbol{a})$ +\end_inset + + så: +\end_layout + +\begin_layout Standard +\begin_inset Formula +\begin{align*} +[L(\boldsymbol{v})]_{\mathcal{W}} & =_{\mathcal{W}}\left[L\right]_{\mathcal{V}}\cdot\left[\boldsymbol{v}\right]_{\mathcal{V}}\\ + & =_{\mathcal{W}}\left[L\right]_{\mathcal{V}}\cdot\boldsymbol{a}\\ + & =[\boldsymbol{w}]_{\mathcal{W}} +\end{align*} + +\end_inset + + +\end_layout + +\begin_layout Standard +Idet +\begin_inset Formula $L_{\mathcal{W}}$ +\end_inset + + er en isomorfi, så følger det at +\begin_inset Formula $\boldsymbol{w}=L(\boldsymbol{v})$ +\end_inset + + og +\begin_inset Formula $\boldsymbol{w}$ +\end_inset + + er derfor et element i billedet af +\begin_inset Formula $L$ +\end_inset + +. +\end_layout + +\begin_layout Subsection +Lemma 8.20 +\end_layout + +\begin_layout Standard +Lad +\begin_inset Formula $L\,:\,V\rightarrow W$ +\end_inset + + betegne en lineær afbildning og lad +\begin_inset Formula $\mathcal{V}$ +\end_inset + + og +\begin_inset Formula $\mathcal{W}$ +\end_inset + + betegne baser for hhv. + +\begin_inset Formula $V$ +\end_inset + + og +\begin_inset Formula $W$ +\end_inset + +. + Lad +\begin_inset Formula $r$ +\end_inset + + betegne rangen af matrixrepræsentationen +\begin_inset Formula $_{\mathcal{W}}\left[L\right]_{\mathcal{V}}$ +\end_inset + +. + Så gælder: +\end_layout + +\begin_layout Standard +(1) Billedet af +\begin_inset Formula $L_{\mathcal{V}}(N({}_{\mathcal{W}}\left[L\right]_{\mathcal{V}}))$ +\end_inset + + af nulrummet til +\begin_inset Formula $_{\mathcal{W}}\left[L\right]_{\mathcal{V}}$ +\end_inset + + under isormorfien +\begin_inset Formula $L_{\mathcal{V}}$ +\end_inset + + er lig kernen ker +\begin_inset Formula $(L)$ +\end_inset + +. + Specielt inducerer +\begin_inset Formula $L_{\mathcal{V}}$ +\end_inset + + en isomorfi: +\end_layout + +\begin_layout Standard +\begin_inset Formula +\begin{align*} +N(_{\mathcal{W}}\left[L\right]_{\mathcal{V}}) & \rightarrow ker\,L\\ + & \boldsymbol{a\mapsto}L_{\mathcal{V}}(\boldsymbol{a}) +\end{align*} + +\end_inset + + +\end_layout + +\begin_layout Standard +Og vi har derfor: dim(ker( +\begin_inset Formula $L$ +\end_inset + +)) +\begin_inset Formula $=\text{dim}(V)-r$ +\end_inset + +. +\end_layout + +\begin_layout Standard +(2) Billedet +\begin_inset Formula $L_{\mathcal{W}}(R(_{W}[L]_{\mathcal{V}}))$ +\end_inset + + af søjlerummet til +\begin_inset Formula $_{\mathcal{W}}[L]_{\mathcal{V}}$ +\end_inset + + under +\begin_inset Formula $L_{\mathcal{W}}$ +\end_inset + + er lig billedet +\begin_inset Formula $L(V)$ +\end_inset + +. + Specielt inducerer +\begin_inset Formula $L_{\mathcal{W}}$ +\end_inset + + en isomorfi +\end_layout + +\begin_layout Standard +\begin_inset Formula +\begin{align*} +R(_{\mathcal{W}}[L]_{\mathcal{V}}) & \rightarrow L(V),\\ + & \boldsymbol{b}\mapsto L_{\mathcal{W}}(\boldsymbol{b}) +\end{align*} + +\end_inset + + +\end_layout + +\begin_layout Standard +Og derfor har vi: +\begin_inset Formula $\text{dim}(L(V))=r$ +\end_inset + + +\end_layout + +\begin_layout Section +Determinanter +\end_layout + +\begin_layout Subsection +Noget med definitionen på en determinant +\end_layout + +\begin_layout Subsection +Sætning 11.18 +\end_layout + +\begin_layout Standard +Lad +\begin_inset Formula $A,\,B\in\text{Mat}_{n}(\mathbb{F})$ +\end_inset + +, så er +\begin_inset Formula +\[ +\text{Det}(A\cdot B)=\text{Det}(A)\cdot\text{Det}(B) +\] + +\end_inset + + +\end_layout + +\begin_layout Standard + +\series bold +Bevis +\end_layout + +\begin_layout Standard +Antag at +\begin_inset Formula $A$ +\end_inset + + er singulær, altså den har ingen invers. + Der påstås at dette betyder at +\begin_inset Formula $A\cdot B$ +\end_inset + + er singulær, da +\begin_inset Formula $B\cdot(A\cdot B)^{-1}$ +\end_inset + + ellers ville være en invers til +\begin_inset Formula $A$ +\end_inset + +, eftersom +\end_layout + +\begin_layout Standard +\begin_inset Formula +\[ +A\cdot(B\cdot(A\cdot B)^{-1})=(A\cdot B)\cdot(A\cdot B)^{-1}={\rm {\rm I}} +\] + +\end_inset + + +\end_layout + +\begin_layout Standard +Hvilket er umuligt, da +\begin_inset Formula $A$ +\end_inset + + per antagelse er singulær. + Eftersom +\begin_inset Formula $A$ +\end_inset + + er singulær, må +\begin_inset Formula $\text{Det}(A)=0$ +\end_inset + +, da dette, jf. + prop 11.17, betyder at +\begin_inset Formula $A$ +\end_inset + + ikke er invertibel. + Derfor gælder følgende: +\end_layout + +\begin_layout Standard +\begin_inset Formula +\[ +\text{Det}(A\cdot B)=\text{Det}(A)=\boldsymbol{0} +\] + +\end_inset + + +\end_layout + +\begin_layout Standard +Hvilket opfylder det oprindelige, da alt ganget med 0, vil give 0 og det + derfor ikke gør nogen forskel, hvad B er. + Desuden er produktet af +\begin_inset Formula $A\cdot B$ +\end_inset + + også en singulær kvadratisk matrice og dermed er +\begin_inset Formula $\text{Det}(A\cdot B)=0$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Antag så at +\begin_inset Formula $A$ +\end_inset + + er invertibel og dermed rækkeækvivalent med identitetsmatricen. + Dette betyder at den opdelte matrix +\begin_inset Formula $(A\,\vline\,A\cdot B)$ +\end_inset + + er rækkeækvivalent med +\begin_inset Formula $({\rm I}\,\vline\,C)$ +\end_inset + + jf. + prop 4.6, for en passende matric +\begin_inset Formula $C$ +\end_inset + +, i dette tilfælde noget der er rækkeækvivalent med +\begin_inset Formula $A\cdot B$ +\end_inset + +. + +\end_layout + +\begin_layout Standard +Dette resultat betyder, at der jf. + Lemma 11.16 eksisterer en skalar +\begin_inset Formula $\alpha\in\mathbb{F}$ +\end_inset + +, så +\begin_inset Formula +\[ +\text{Det}(A)=\alpha\cdot\text{Det}({\rm I}) +\] + +\end_inset + + +\end_layout + +\begin_layout Standard +og dermed også +\begin_inset Formula +\[ +\text{Det}(A\cdot B)=\alpha\cdot\text{Det}(C) +\] + +\end_inset + + +\end_layout + +\begin_layout Standard +Men jf. + prop 11.17, så implicerer ovenstående at +\begin_inset Formula $\text{Det}(A)=\alpha$ +\end_inset + + og hvis dette indsættes i sidstnævnte formel, så opnås følgende: +\end_layout + +\begin_layout Standard +\begin_inset Formula +\[ +\text{Det}(A\cdot B)=\text{Det}(A)\cdot\text{Det}(C) +\] + +\end_inset + + +\end_layout + +\begin_layout Standard +Hvori C er lig +\begin_inset Formula +\[ +C=A^{-1}\cdot(A\cdot B)=B +\] + +\end_inset + + +\end_layout + +\begin_layout Standard +jf. + prop 4.12, der siger at da +\begin_inset Formula $A\cdot B$ +\end_inset + + er rækkeækvivalent med +\begin_inset Formula $C$ +\end_inset + +, så gælder ovenstående formel. +\end_layout + +\begin_layout Subsection +Proposition 11.30 +\end_layout + +\begin_layout Standard +Lad +\begin_inset Formula $A\in\text{Mat}_{n}(\mathbb{F})$ +\end_inset + +. + Så er +\begin_inset Formula +\[ +\text{adj}(A)\cdot A=\text{Det}(A)\cdot{\rm I}=A\cdot\text{adj}(A) +\] + +\end_inset + + +\end_layout + +\begin_layout Standard +hvori +\begin_inset Formula ${\rm I}\in\text{Mat}_{n}(\mathbb{F})$ +\end_inset + + betegner identitetsmatricen. +\end_layout + +\begin_layout Standard + +\series bold +Bevis +\end_layout + +\begin_layout Standard +Jf. + deinitionen på matrixproduktet, så kan den +\begin_inset Formula $(i,j)$ +\end_inset + +'te indgang i produktet +\begin_inset Formula $A\cdot\text{adj}(A)$ +\end_inset + + beskrives som +\begin_inset Formula +\[ +\sum_{r=1}^{n}a_{i,r}A_{j,r} +\] + +\end_inset + + +\end_layout + +\begin_layout Standard +Husk at hver indgang +\begin_inset Formula $(i,j)$ +\end_inset + + i +\begin_inset Formula $\text{adj}(A)$ +\end_inset + + består af kofaktorer og derfor er +\begin_inset Formula $A_{i,j}$ +\end_inset + + et tal og ikke en matrice. + Ovenstående formel beskriver jf. + prop 11.26 også determinaten af matricen, der kan fremkomme ved at udskifte + den +\begin_inset Formula $j$ +\end_inset + +'te række i +\begin_inset Formula $A$ +\end_inset + + med den +\begin_inset Formula $i$ +\end_inset + +'te række i +\begin_inset Formula $A$ +\end_inset + +. + Såfremt +\begin_inset Formula $i\neq j$ +\end_inset + +, så er determinanten lig 0, jf. + Lemma 11.13, da der isåfald vil være to ens rækker, men hvis +\begin_inset Formula $i=j$ +\end_inset + +, så er determinanten lig +\begin_inset Formula $\text{Det}(A)$ +\end_inset + +. + Derfor gælder identiteten +\begin_inset Formula +\[ +\text{Det}(A)\cdot{\rm I}=A\cdot\text{adj}(A) +\] + +\end_inset + + +\end_layout + +\begin_layout Standard +Den resterende del af den oprindelige proposition, følger ved at anvende + ovenstående på matricen +\begin_inset Formula $A^{T}$ +\end_inset + +: +\end_layout + +\begin_layout Standard +\begin_inset Formula +\[ +\text{Det}(A^{T})\cdot{\rm I}=A^{T}\cdot\text{adj}(A^{T})=A^{T}\cdot\text{adj}(A)^{T} +\] + +\end_inset + + +\end_layout + +\begin_layout Standard +Hvor det sidste lighedstegn følger af Lemma 11.29. + Dermed jf. + Lemma 11.20, vil: +\end_layout + +\begin_layout Standard +\begin_inset Formula +\[ +\text{Det}(A)\cdot{\rm I}=A^{T}\cdot\text{adj}(A)^{T} +\] + +\end_inset + + +\end_layout + +\begin_layout Standard +hvilket implicerer +\begin_inset Formula +\[ +\text{adj}(A)\cdot A=(A^{T}\cdot\text{adj}(A)^{T})^{T}=(\text{Det}(A)\cdot{\rm I)^{T}=\text{Det}(A)\cdot{\rm I}} +\] + +\end_inset + + +\end_layout + +\begin_layout Standard +hvori det sidste lighedstegn følger, da +\begin_inset Formula $\text{Det}(A)\cdot{\rm I}$ +\end_inset + + er diagonal. + Hermed er beviset afsluttet. +\end_layout + +\begin_layout Subsection +Korollar 13.32 +\end_layout + +\begin_layout Standard +Lad +\begin_inset Formula $A\in\text{Mat}_{n}(\mathbb{F})$ +\end_inset + + med +\begin_inset Formula $n>1$ +\end_inset + +. + For +\begin_inset Formula $i\le i\le n$ +\end_inset + + gælder +\begin_inset Formula +\[ +\text{Det}(A)=\sum_{j=1}^{n}a_{i,j}\cdot A_{i,j} +\] + +\end_inset + + +\end_layout + +\begin_layout Standard +Tilsvarende gælder der, for +\begin_inset Formula $1\leq j\leq n$ +\end_inset + +, at +\begin_inset Formula +\[ +\text{\text{Det}(A)=\sum_{i=1}^{n}a_{i,j}\cdot A_{i,j}} +\] + +\end_inset + + +\end_layout + +\begin_layout Standard +Disse kan relateres til prop 11.30 og dermed bruges til at beskrive henholdsvis + udvikling af række og søjle. \end_layout \end_body