From 3222965c31602df51b3b80c3699b1fd82607361a Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Christoffer=20M=C3=BCller=20Madsen?= Date: Sat, 10 Jun 2017 12:23:23 +0200 Subject: [PATCH] halvvejs med emne 7 --- beviser.lyx | 149 +++++++++++++++++++++++++++++++++++++++++++++++++++- 1 file changed, 147 insertions(+), 2 deletions(-) diff --git a/beviser.lyx b/beviser.lyx index 1afc185..bbc85fb 100644 --- a/beviser.lyx +++ b/beviser.lyx @@ -3065,6 +3065,13 @@ Og derfor har vi: \end_inset +\end_layout + +\begin_layout Standard +\begin_inset Newpage newpage +\end_inset + + \end_layout \begin_layout Section @@ -3353,8 +3360,8 @@ Husk at hver indgang et tal og ikke en matrice. Ovenstående formel beskriver jf. - prop 11.26 også determinaten af matricen, der kan fremkomme ved at udskifte - den + Proposition 11.26 også determinaten af matricen, der kan fremkomme ved at + udskifte den \begin_inset Formula $j$ \end_inset @@ -3504,5 +3511,143 @@ Disse kan relateres til prop 11.30 og dermed bruges til at beskrive henholdsvis udvikling af række og søjle. \end_layout +\begin_layout Section +Indre produkt +\end_layout + +\begin_layout Subsection +Definition 9.1 +\end_layout + +\begin_layout Standard +Afbildningen +\begin_inset Formula +\[ +\left\langle \cdot,\cdot\right\rangle :V\times V\rightarrow\mathbb{K} +\] + +\end_inset + +benævnes som det +\emph on +indre produkt +\emph default + hvis der for alle +\begin_inset Formula $\boldsymbol{u},\boldsymbol{v},\boldsymbol{w}\in V$ +\end_inset + + og skalarer +\begin_inset Formula $\alpha,\beta\in\mathbb{K}$ +\end_inset + + gælder at: +\end_layout + +\begin_layout Enumerate +Skalaren +\begin_inset Formula $\left\langle \boldsymbol{v},\boldsymbol{v}\right\rangle $ +\end_inset + + er et reelt tal, der er større end eller lig med nul. +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $\left\langle \boldsymbol{v},\boldsymbol{v}\right\rangle =0\implies\boldsymbol{v}=\boldsymbol{0}$ +\end_inset + + +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $\left\langle \boldsymbol{v},\boldsymbol{w}\right\rangle =\overline{\left\langle \boldsymbol{w},\boldsymbol{v}\right\rangle }$ +\end_inset + + +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $\left\langle \alpha\cdot\boldsymbol{u}+\beta\cdot\boldsymbol{v},\boldsymbol{w}\right\rangle =\alpha\cdot\left\langle \boldsymbol{u},\boldsymbol{w}\right\rangle +\beta\cdot\left\langle \boldsymbol{v},\boldsymbol{w}\right\rangle $ +\end_inset + + +\end_layout + +\begin_layout Subsection +Bemærkning 9.4 (Naiv definition af komplekst skalarprodukt) +\end_layout + +\begin_layout Subsection +Definition 9.5 (Norm) +\end_layout + +\begin_layout Standard + +\emph on +Normen +\emph default + af et element +\begin_inset Formula $\boldsymbol{v}$ +\end_inset + + i et indre produkt rum +\begin_inset Formula $V$ +\end_inset + + defineres som +\begin_inset Formula +\[ +\left\Vert \boldsymbol{v}\right\Vert =\sqrt{\left\langle \boldsymbol{v},\boldsymbol{v}\right\rangle }\in\mathbb{R}_{\geq0} +\] + +\end_inset + + +\end_layout + +\begin_layout Subsection +Definition 9.7 (Ortogonalitet) +\end_layout + +\begin_layout Standard +To elementer +\begin_inset Formula $\boldsymbol{v}$ +\end_inset + + og +\begin_inset Formula $\boldsymbol{w}$ +\end_inset + + i et indre produkt rum kaldes +\emph on +ortogonale +\emph default + hvis +\begin_inset Formula +\[ +\left\langle \boldsymbol{v},\boldsymbol{w}\right\rangle =0 +\] + +\end_inset + +dette skrives også som +\begin_inset Formula +\[ +\boldsymbol{v}\perp\boldsymbol{w}. +\] + +\end_inset + +Denne betingelse er oplagt symmetrisk (betingelse 3 (c) i definitionen af + indre produkt) således at +\begin_inset Formula +\[ +\boldsymbol{v}\perp\boldsymbol{w}\iff\boldsymbol{w}\perp\boldsymbol{v} +\] + +\end_inset + + +\end_layout + \end_body \end_document