84 lines
3.0 KiB
Python
84 lines
3.0 KiB
Python
import calendar
|
|
from datetime import datetime, timedelta
|
|
|
|
import json
|
|
|
|
import requests
|
|
|
|
from .strat_utils import determine_month
|
|
from ..util import Context, Prediction
|
|
|
|
|
|
def is_tide(context: Context) -> Prediction:
|
|
"""
|
|
Determine whether or not it is night in Aarhus based no the current water level and which month we are in, based
|
|
on number of cars driving across The Storbæltsbro.
|
|
"""
|
|
|
|
p = Prediction()
|
|
|
|
month, cur_year_total_cars, last_year_total_cars = determine_month()
|
|
month = int(month)
|
|
p.reasons.append(f"Because the month is f{calendar.month_name[month]}")
|
|
p.reasons.append(f"Because the number of cars having driven on the Storbæltsbro is f{cur_year_total_cars}")
|
|
p.reasons.append(f"And because the number of cars having driven over it in the last year is f{last_year_total_cars}")
|
|
|
|
|
|
|
|
tide_data = requests.get('https://www.dmi.dk/fileadmin/user_upload/Bruger_upload/Tidevand/2019/Aarhus.t.txt')
|
|
lines = tide_data.text[570:].split('\n')
|
|
tuples = [x.split('\t') for x in lines]
|
|
lel = [[datetime.strptime(x[0], '%Y%m%d%H%M'), x[1]] for x in tuples[:-1]]
|
|
|
|
matches = [[x[0], int(x[1])] for x in lel if x[0].month == month]
|
|
|
|
all_the_data = requests.get('https://www.dmi.dk/NinJo2DmiDk/ninjo2dmidk?cmd=odj&stations=22331&datatype=obs')
|
|
current_water_level = json.loads(all_the_data.content)[0]['values'][-1]['value']
|
|
|
|
# Generate average of when the water is high
|
|
last_match = matches[0]
|
|
moments = []
|
|
for idx, water_level in enumerate(matches[1:]):
|
|
#print(last_match[1], water_level[1])
|
|
diff = abs(last_match[1]) + abs(water_level[1])
|
|
time_diff = (water_level[0] - last_match[0]).seconds
|
|
|
|
average_inc = time_diff/diff
|
|
average_delta = timedelta(seconds=average_inc)
|
|
|
|
|
|
if last_match[1] < 0 and last_match[1] < current_water_level: # Increasing
|
|
time = last_match
|
|
while time[1] != current_water_level:
|
|
time[0] += average_delta
|
|
time[1] += 1
|
|
|
|
elif last_match[1] < 0 and last_match[1] > current_water_level:
|
|
time = last_match
|
|
while time[1] != current_water_level:
|
|
time[0] += average_delta
|
|
time[1] -= 1
|
|
|
|
elif last_match[1] > 0 and last_match[1] > current_water_level: # Decreasing
|
|
time = last_match
|
|
while time[1] != current_water_level:
|
|
time[0] += average_delta
|
|
time[1] -= 1
|
|
|
|
elif last_match[1] > 0 and last_match[1] < current_water_level:
|
|
time = last_match
|
|
while time[1] != current_water_level:
|
|
time[0] += average_delta
|
|
time[1] += 1
|
|
|
|
last_match = water_level
|
|
moments.append(time[0])
|
|
|
|
night = sum([1 for x in moments if 6 >= x.hour or x.hour >= 22])
|
|
|
|
p.reasons.append(f"And because the number of times the water is at the current level at nighttime is: {night}, compared to the total amount of times in {calendar.month_name[month]}, being {len(moments)}")
|
|
|
|
p.probability = night / len(moments)
|
|
|
|
return p
|