68 lines
1.8 KiB
Python
68 lines
1.8 KiB
Python
from datetime import datetime
|
|
from pathlib import Path
|
|
import requests
|
|
|
|
import cv2
|
|
from pytz import timezone
|
|
|
|
from ..util import Context, Prediction
|
|
|
|
|
|
def camImgStrat(context : Context) -> Prediction:
|
|
"""
|
|
The contents of the camera image
|
|
"""
|
|
img = cv2.imread(str(Path(__file__).parent.joinpath("night.jpg")), 0)
|
|
average = img.mean(axis=0).mean(axis=0)
|
|
p = Prediction()
|
|
p.weight = 0.7
|
|
|
|
if average < 100:
|
|
p.probability = 1.0
|
|
p.reasons.append('Image was dark')
|
|
else:
|
|
p.reasons.append('Image was light')
|
|
p.probability = 0.0
|
|
return p
|
|
|
|
|
|
def australiaStrat(context : Context) -> Prediction:
|
|
"""
|
|
Using time in Australia
|
|
"""
|
|
australia = timezone('Australia/Melbourne')
|
|
t = datetime.now().astimezone(australia)
|
|
hour = t.hour
|
|
p = Prediction()
|
|
|
|
if hour > 22 or hour < 6:
|
|
p.probability = 0.0
|
|
p.reasons.append('It\'s night-time in Australia')
|
|
else:
|
|
p.probability = 1.0
|
|
p.reasons.append('It\'s day-time in Australia')
|
|
return p
|
|
|
|
def tv2newsStrat(context : Context) -> Prediction:
|
|
r = requests.get('http://mpx.services.tv2.dk/api/latest')
|
|
data = r.json()
|
|
publish_dates = [(x['pubDate'])//1000 for x in data][:10]
|
|
delta_times = []
|
|
for i in range(len(publish_dates)):
|
|
if i == 0 : continue
|
|
delta_times.append(publish_dates[i-1] - publish_dates[i])
|
|
|
|
avg_delta = 0
|
|
for d in delta_times:
|
|
avg_delta += d
|
|
avg_timestamp = avg_delta // len(delta_times) // 60
|
|
p = Prediction()
|
|
if avg_timestamp < 0:
|
|
p.weight = 0.0
|
|
else:
|
|
p.weight = 0.7
|
|
p.probability = 1.0 if avg_timestamp > 50 else 0.0
|
|
p.reasons.append('There were ' + ('few' if avg_timestamp > 50 else 'many') + ' recent articles on TV2 News')
|
|
return p
|
|
|