183 lines
4.7 KiB
Python
183 lines
4.7 KiB
Python
|
#!/usr/bin/env python3
|
||
|
import math
|
||
|
import random
|
||
|
from itertools import combinations
|
||
|
|
||
|
|
||
|
def euclid(a, b):
|
||
|
"""returns the Greatest Common Divisor of a and b"""
|
||
|
a = abs(a)
|
||
|
b = abs(b)
|
||
|
if a < b:
|
||
|
a, b = b, a
|
||
|
while b != 0:
|
||
|
a, b = b, a % b
|
||
|
return a
|
||
|
|
||
|
|
||
|
def coPrime(l):
|
||
|
"""returns 'True' if the values in the list L are all co-prime
|
||
|
otherwise, it returns 'False'. """
|
||
|
for i, j in combinations(l, 2):
|
||
|
if euclid(i, j) != 1:
|
||
|
return False
|
||
|
return True
|
||
|
|
||
|
|
||
|
def extendedEuclid(a, b):
|
||
|
"""return a tuple of three values: x, y and z, such that x is
|
||
|
the GCD of a and b, and x = y * a + z * b"""
|
||
|
if a == 0:
|
||
|
return b, 0, 1
|
||
|
else:
|
||
|
g, y, x = extendedEuclid(b % a, a)
|
||
|
return g, x - (b // a) * y, y
|
||
|
|
||
|
|
||
|
def modInv(a, m):
|
||
|
"""returns the multiplicative inverse of a in modulo m as a
|
||
|
positive value between zero and m-1"""
|
||
|
# notice that a and m need to co-prime to each other.
|
||
|
if coPrime([a, m]):
|
||
|
linearCombination = extendedEuclid(a, m)
|
||
|
return linearCombination[1] % m
|
||
|
else:
|
||
|
return 0
|
||
|
|
||
|
|
||
|
def extractTwos(m):
|
||
|
"""m is a positive integer. A tuple (s, d) of integers is returned
|
||
|
such that m = (2 ** s) * d."""
|
||
|
# the problem can be reduced to counting how many '0's there are in
|
||
|
# the end of bin(m). This can be done this way: m & a stretch of '1's
|
||
|
# which can be represent as (2 ** n) - 1.
|
||
|
assert m >= 0
|
||
|
i = 0
|
||
|
while m & (2 ** i) == 0:
|
||
|
i += 1
|
||
|
return i, m >> i
|
||
|
|
||
|
|
||
|
def int2baseTwo(x):
|
||
|
"""x is a positive integer. Convert it to base two as a list of integers
|
||
|
in reverse order as a list."""
|
||
|
# repeating x >>= 1 and x & 1 will do the trick
|
||
|
assert x >= 0
|
||
|
bitInverse = []
|
||
|
while x != 0:
|
||
|
bitInverse.append(x & 1)
|
||
|
x >>= 1
|
||
|
return bitInverse
|
||
|
|
||
|
|
||
|
def millerRabin(n, k):
|
||
|
"""
|
||
|
Miller Rabin pseudo-prime test
|
||
|
return True means likely a prime, (how sure about that, depending on k)
|
||
|
return False means definitely a composite.
|
||
|
Raise assertion error when n, k are not positive integers
|
||
|
and n is not 1
|
||
|
"""
|
||
|
assert n >= 1
|
||
|
# ensure n is bigger than 1
|
||
|
assert k > 0
|
||
|
# ensure k is a positive integer so everything down here makes sense
|
||
|
|
||
|
if n == 2:
|
||
|
return True
|
||
|
# make sure to return True if n == 2
|
||
|
|
||
|
if n % 2 == 0:
|
||
|
return False
|
||
|
# immediately return False for all the even numbers bigger than 2
|
||
|
|
||
|
extract2 = extractTwos(n - 1)
|
||
|
s = extract2[0]
|
||
|
d = extract2[1]
|
||
|
assert 2 ** s * d == n - 1
|
||
|
|
||
|
def tryComposite(a):
|
||
|
"""Inner function which will inspect whether a given witness
|
||
|
will reveal the true identity of n. Will only be called within
|
||
|
millerRabin"""
|
||
|
x = pow(a,d,n)
|
||
|
if x == 1 or x == n - 1:
|
||
|
return None
|
||
|
else:
|
||
|
for j in range(1, s):
|
||
|
x = pow(x,2,n)
|
||
|
if x == 1:
|
||
|
return False
|
||
|
elif x == n - 1:
|
||
|
return None
|
||
|
return False
|
||
|
|
||
|
for i in range(0, k):
|
||
|
a = random.randint(2, n - 2)
|
||
|
if tryComposite(a) == False:
|
||
|
return False
|
||
|
return True # actually, we should return probably true.
|
||
|
|
||
|
|
||
|
def findAPrime(a, b, k):
|
||
|
"""Return a pseudo prime number roughly between a and b,
|
||
|
(could be larger than b). Raise ValueError if cannot find a
|
||
|
pseudo prime after 10 * ln(x) + 3 tries. """
|
||
|
x = random.randint(a, b)
|
||
|
for i in range(0, int(10 * math.log(x) + 3)):
|
||
|
if millerRabin(x, k):
|
||
|
return x
|
||
|
else:
|
||
|
x += 1
|
||
|
raise ValueError
|
||
|
|
||
|
|
||
|
def newKey(a, b, k):
|
||
|
""" Try to find two large pseudo primes roughly between a and b.
|
||
|
Generate public and private keys for RSA encryption.
|
||
|
Raises ValueError if it fails to find one"""
|
||
|
try:
|
||
|
p = findAPrime(a, b, k)
|
||
|
while True:
|
||
|
q = findAPrime(a, b, k)
|
||
|
if q != p:
|
||
|
break
|
||
|
except:
|
||
|
raise ValueError
|
||
|
|
||
|
n = p * q
|
||
|
m = (p - 1) * (q - 1)
|
||
|
|
||
|
while True:
|
||
|
e = random.randint(1, m)
|
||
|
if coPrime([e, m]):
|
||
|
break
|
||
|
|
||
|
d = modInv(e, m)
|
||
|
return (n, e, d)
|
||
|
|
||
|
|
||
|
def encrypt(message, modN, e, blockSize):
|
||
|
"""given a string message, public keys and blockSize, encrypt using
|
||
|
RSA algorithms."""
|
||
|
return pow(message, e, modN)
|
||
|
|
||
|
|
||
|
def decrypt(secret, modN, d, blockSize):
|
||
|
"""reverse function of encrypt"""
|
||
|
return pow(secret, d, modN)
|
||
|
|
||
|
if __name__ == '__main__':
|
||
|
|
||
|
n, e, d = newKey(10 ** 100, 10 ** 101, 50)
|
||
|
message = 35274764
|
||
|
|
||
|
print("original message is {}".format(message))
|
||
|
print("-"*80)
|
||
|
cipher = encrypt(message, n, e, 15)
|
||
|
print("cipher text is {}".format(cipher))
|
||
|
print("-"*80)
|
||
|
deciphered = decrypt(cipher, n, d, 15)
|
||
|
print("decrypted message is {}".format(deciphered))
|
||
|
|