simplersa/main.py

183 lines
4.7 KiB
Python
Raw Normal View History

2021-02-23 23:16:40 +00:00
#!/usr/bin/env python3
import math
import random
from itertools import combinations
def euclid(a, b):
"""returns the Greatest Common Divisor of a and b"""
a = abs(a)
b = abs(b)
if a < b:
a, b = b, a
while b != 0:
a, b = b, a % b
return a
def coPrime(l):
"""returns 'True' if the values in the list L are all co-prime
otherwise, it returns 'False'. """
for i, j in combinations(l, 2):
if euclid(i, j) != 1:
return False
return True
def extendedEuclid(a, b):
"""return a tuple of three values: x, y and z, such that x is
the GCD of a and b, and x = y * a + z * b"""
if a == 0:
return b, 0, 1
else:
g, y, x = extendedEuclid(b % a, a)
return g, x - (b // a) * y, y
def modInv(a, m):
"""returns the multiplicative inverse of a in modulo m as a
positive value between zero and m-1"""
# notice that a and m need to co-prime to each other.
if coPrime([a, m]):
linearCombination = extendedEuclid(a, m)
return linearCombination[1] % m
else:
return 0
def extractTwos(m):
"""m is a positive integer. A tuple (s, d) of integers is returned
such that m = (2 ** s) * d."""
# the problem can be reduced to counting how many '0's there are in
# the end of bin(m). This can be done this way: m & a stretch of '1's
# which can be represent as (2 ** n) - 1.
assert m >= 0
i = 0
while m & (2 ** i) == 0:
i += 1
return i, m >> i
def int2baseTwo(x):
"""x is a positive integer. Convert it to base two as a list of integers
in reverse order as a list."""
# repeating x >>= 1 and x & 1 will do the trick
assert x >= 0
bitInverse = []
while x != 0:
bitInverse.append(x & 1)
x >>= 1
return bitInverse
def millerRabin(n, k):
"""
Miller Rabin pseudo-prime test
return True means likely a prime, (how sure about that, depending on k)
return False means definitely a composite.
Raise assertion error when n, k are not positive integers
and n is not 1
"""
assert n >= 1
# ensure n is bigger than 1
assert k > 0
# ensure k is a positive integer so everything down here makes sense
if n == 2:
return True
# make sure to return True if n == 2
if n % 2 == 0:
return False
# immediately return False for all the even numbers bigger than 2
extract2 = extractTwos(n - 1)
s = extract2[0]
d = extract2[1]
assert 2 ** s * d == n - 1
def tryComposite(a):
"""Inner function which will inspect whether a given witness
will reveal the true identity of n. Will only be called within
millerRabin"""
x = pow(a,d,n)
if x == 1 or x == n - 1:
return None
else:
for j in range(1, s):
x = pow(x,2,n)
if x == 1:
return False
elif x == n - 1:
return None
return False
for i in range(0, k):
a = random.randint(2, n - 2)
if tryComposite(a) == False:
return False
return True # actually, we should return probably true.
def findAPrime(a, b, k):
"""Return a pseudo prime number roughly between a and b,
(could be larger than b). Raise ValueError if cannot find a
pseudo prime after 10 * ln(x) + 3 tries. """
x = random.randint(a, b)
for i in range(0, int(10 * math.log(x) + 3)):
if millerRabin(x, k):
return x
else:
x += 1
raise ValueError
def newKey(a, b, k):
""" Try to find two large pseudo primes roughly between a and b.
Generate public and private keys for RSA encryption.
Raises ValueError if it fails to find one"""
try:
p = findAPrime(a, b, k)
while True:
q = findAPrime(a, b, k)
if q != p:
break
except:
raise ValueError
n = p * q
m = (p - 1) * (q - 1)
while True:
e = random.randint(1, m)
if coPrime([e, m]):
break
d = modInv(e, m)
return (n, e, d)
def encrypt(message, modN, e, blockSize):
"""given a string message, public keys and blockSize, encrypt using
RSA algorithms."""
return pow(message, e, modN)
def decrypt(secret, modN, d, blockSize):
"""reverse function of encrypt"""
return pow(secret, d, modN)
if __name__ == '__main__':
n, e, d = newKey(10 ** 100, 10 ** 101, 50)
message = 35274764
print("original message is {}".format(message))
print("-"*80)
cipher = encrypt(message, n, e, 15)
print("cipher text is {}".format(cipher))
print("-"*80)
deciphered = decrypt(cipher, n, d, 15)
print("decrypted message is {}".format(deciphered))