
8

Corollary 3 (Generic Security). For any probabilistic algorithm A that to-
talizes of at most qG queries to the oracles performing the group operations in
G1, G2, GT and the bilinear map e (·, ·),

Advmse-ddh(!, m, t,A) ≤
(qG + 4(! + t) + 6m + 4)2 · d

2p

with d = 4(! + t) + 6m + 2.

4 Our Construction

4.1 Description

In this section we present our new dynamic threshold public-key encryption
(DT PKE), with constant size ciphertexts. Basically, the encryption algorithm
specifies the authorized-user set with an inclusion technique as in the broadcast
encryption schemes [8, 13]. Moreover this authorized set is combined with a set
of dummy users, in order to be consistent with the value of the threshold (this is
a well-known technique in threshold encryption). We make use of the Aggregate
algorithm (over GT) described in [14] to combine the decryption shares. The
Aggregate algorithm simply exploits the fact that a product of inverses of coprime
polynomials can be written as a sum of inverses of affine polynomials. Thus
given some elements in GT of the right form, one can combine the exponents
using some group operations. We provide below a description of the case which
interests us and refer to [14] for more details.

Setup(λ). Given the security parameter λ, a system with groups and a bilinear
map B = (p, G1, G2, GT , e (·, ·)) is constructed such that |p| = λ. Also, two
generators g ∈ G1 and h ∈ G2 are randomly selected as well as two secret
values γ and α ∈ Z!

p. Finally, a set D = {di}
m−1
i=1 of values in Zp is randomly

selected, where m is the maximal size of an authorized set. This corresponds
to a set of dummy users, that will be used to complete a set of authorized
users.
B constitutes the system parameters. The master secret key is defined as

MK = (g, γ, α). The encryption key is EK =
(

m, u, v, hα, {hα.γi
}2m−1

i=1 ,D
)

,

and the combining key is CK =
(

m, h, {hγi
}m−2

i=1 ,D
)

, where u = gα.γ, and

v = e (g, h)α. In the following, we denote by Di the i first elements of D.
Note that DK = ∅, since no general data are needed for partial decryption.
Furthermore, this version of the scheme does not provide robustness, we thus
do not define VK yet. Robustness will be studied later.

Join(MK, ID). Given MK = (g, γ, α), and an identity ID, it randomly chooses
x ∈ Z!

p (different from all previous ones, included dummy users data in D),
and outputs the user’s keys (usk, upk) with:

upk = x , usk = g
1

γ+x .

9

The private key usk is privately given to the user, whereas upk is widely
published, in an authentic way (again, since robustness is not dealt with
here, we do not set uvk yet).

Encrypt(EK,S, t). Given the encryption key EK, a set S of users, which is iden-
tified to S = {upk1 = x1, . . . , upks = xs} and a threshold t (with t ≤ s =
|S| ≤ m), Encrypt randomly picks k ∈ Z!

p, and computes Hdr = (C1, C2) and
K, where

C1 = u−k , C2 = h
k·α·

Q
xi∈S(γ+xi)·

Q
x∈Dm+t−s−1

(γ+x)
, K = vk .

Encrypt then outputs the full header (S, t, Hdr = (C1, C2)) and the secret
key K, which will be used to encrypt the message. The crucial point is that
Encrypt includes a set of m + t − s − 1 dummy users, in order to obtain
a polynomial of degree exactly m + t − 1 in the exponent of h. This way,
exploiting the cooperation of t authorized users together with a combining

key that contains
(

h, {hγi
}m−2

i=1

)

is sufficient to decrypt a ciphertext (see the

Combine algorithm).

ValidateCT(EK,S, t, Hdr). Given the encryption key EK and a full header (S, t)
and Hdr = (C1, C2)), as above, one can compute

C ′
1 = u−1 , C ′

2 = h
α·

Q
x∈S∪Dm+t−s−1

(γ+x)
.

One should notice that a header Hdr = (C1, C2) is valid with respect to S
if and only if there exists a scalar k such that C1 = C ′

1
k and C2 = C ′

2
k.

Moreover, one can note that in such a header, a correct S contains at least
t keys of some users. As a consequence, ValidateCT simply checks whether
e (C1, C ′

2) = e (C ′
1, C2) and S is correct, or not.

ShareDecrypt(ID, usk, Hdr). In order to retrieve a share σ of a decryption key
encapsulated in the header Hdr = (C1, C2), user with identity ID and the

corresponding public key upk and private key usk = g
1

γ+x computes

σ = e (usk, C2) = e (g, h)
k·α·

Q
xi∈S∪Dm+t−s−1

(γ+xi)

γ+x .

Combine(CK, C, T, Σ). Given S, t, Hdr = (C1, C2), CK, a subset T of t users
(T ⊆ S) and Σ the corresponding decryption shares, outputs

K =
(

e
(

C1, h
p(T,S)(γ)

)

· Aggregate(GT , Σ)
)

1
c(T,S) ,

with c(T,S) a constant in Zp and p(T,S) a polynomial of degree m − 2, that
both allow to cancel a part corresponding to the m − 1 decryption shares
(over m + t− 1) that are not in the input. Note that since p(T,S) is of degree

10

m− 2, hp(T,S)(γ) is computable from CK. More precisely, we have:

p(T,S)(γ) =
1

γ
·





∏

x∈S∪Dm+t−s−1−T

(γ + x)− c(T,S)



 ,

c(T,S) =
∏

x∈S∪Dm+t−s−1−T

x ,

Aggregate(GT , Σ) = Aggregate
(

GT ,
{

e (g, C2)
1

γ+x

}

x∈T

)

= e (g, C2)
1Q

x∈T (γ+x)

= e (g, h)
k·α·

Q
xi∈S∪Dm+t−s−1−T (γ+xi)

Correctness. Assuming C is well-formed, and Σ is correct:

K ′ = e
(

C1, h
p(T,S)(γ)

)

· Aggregate(GT , Σ)

= e
(

g−k·α·γ, hp(T,S)(γ)
)

· e (g, C2)
1Q

x∈T (γ+x)

= e (g, h)−k·α·γ·p(T,S)(γ) · e (g, h)
k·α·

Q
x∈S∪Dm+t−s−1−T (γ+x)

= e (g, h)k·α·c(T,S) = Kc(T,S).

Thus K
′ 1
c(T,S) = K.

Efficiency. In our construction, ciphertexts remain constant (plus the authorized
set S that contains the xi’s of the authorized users only, which is unavoidable
and thus optimal). Moreover, our Encrypt algorithm is very efficient, since it does
not need any pairing computation, whereas in [11], 3(s−t) pairing computations
are needed, with s the size of the authorized set. Furthermore, any additional
encryption for the same target set only require 3 exponentiations.

4.2 Aggregation of 1-degree terms: Aggregate

The Combine algorithm requires the computation of

L = e (g, C2)
1

(γ+x1)...(γ+xt) ∈ GT

given Σ = {σj = e (g, C2)
1

γ+xj }t
j=1 where the xj ’s are pairwise distinct. We

recall how Aggregate(GT , · · ·) allows to compute L from the xj’s and the σj ’s,
as described in [14].
Description. Given x1, . . . , xt and σj for 1 ≤ j ≤ t, let us define for any (j, !)
such that 1 ≤ j < ! ≤ r,

Lj,$ = σ$

1
Qj

κ=1(γ+xκ) = e (g, C2)
1

(γ+x$)
· 1

Qj
κ=1(γ+xκ) .

The Aggregate algorithm consists in computing sequentially Lj,$ for j = 1, . . . , t−
1 and ! = j + 1, . . . , t using the induction

Lj,$ =

(

Lj−1,j

Lj−1,$

)
1

x$−xj

and posing L0,$ = σ$ for ! = 1, . . . , t. The algorithm finally outputs Lt = Lt−1,t.

