
Decrypt: Let C = �U, V � ∈ C be a ciphertext encrypted using the public key ID. To decrypt C using
the private key dID ∈ G∗

1 compute:
V ⊕ H2(ê(dID, U)) = M

This completes the description of BasicIdent. We first verify consistency. When everything is computed
as above we have:
1. During encryption M is bitwise exclusive-ored with the hash of: gr

ID.
2. During decryption V is bitwise exclusive-ored with the hash of: ê(d ID, U).
These masks used during encryption and decryption are the same since:

ê(dID, U) = ê(sQID, rP) = ê(QID, P)sr = ê(QID, Ppub)r = gr
ID

Thus, applying decryption after encryption produces the original message M as required. Performance
considerations of BasicIdent are discussed in Section 5. Note that the value of g ID in Algorithm Encrypt
is independent of the message to be encrypted. Hence there is no need to recompute g ID on subsequent
encryptions to the same public key ID.

Security. Next, we study the security of this basic scheme. The following theorem shows that
BasicIdent is a semantically secure identity based encryption scheme (IND-ID-CPA) assuming BDH is
hard in groups generated by G.
Theorem 4.1. Suppose the hash functions H1, H2 are random oracles. Then BasicIdent is a semanti-
cally secure identity based encryption scheme (IND-ID-CPA) assuming BDH is hard in groups generated
by G. Concretely, suppose there is an IND-ID-CPA adversary A that has advantage �(k) against the
scheme BasicIdent. Suppose A makes at most qE > 0 private key extraction queries and qH2

> 0 hash
queries to H2. Then there is an algorithm B that solves BDH in groups generated by G with advantage
at least:

AdvG,B(k) ≥ 2�(k)
e(1 + qE) · qH2

Here e ≈ 2.71 is the base of the natural logarithm. The running time of B is O(time(A)).

To prove the theorem we first define a related Public Key Encryption scheme (not an identity based
scheme), called BasicPub. BasicPub is described by three algorithms: keygen, encrypt, decrypt.

keygen: Given a security parameter k ∈ Z+, the algorithm works as follows:
Step 1: Run G on input k to generate two prime order groups G1, G2 and a bilinear map ê : G1×G1 →

G2. Let q be the order of G1, G2. Choose a random generator P ∈ G1.
Step 2: Pick a random s ∈ Z∗

q and set Ppub = sP . Pick a random QID ∈ G∗
1.

Step 3: Choose a cryptographic hash function H2 : G2 → {0, 1}n for some n.
Step 4: The public key is �q, G1, G2, ê, n, P, Ppub, QID, H2�. The private key is dID = sQID ∈ G∗

1.
encrypt: To encrypt M ∈ {0, 1}n choose a random r ∈ Z∗

q and set the ciphertext to be:

C = �rP, M ⊕ H2(gr)� where g = ê(QID, Ppub) ∈ G∗
2

decrypt: Let C = �U, V � be a ciphertext created using the public key �q, G1, G2, ê, n, P, Ppub, QID, H2�.
To decrypt C using the private key dID ∈ G∗

1 compute:

V ⊕ H2(ê(dID, U)) = M

10

Alexander Munch-hansen

This completes the description of BasicPub. We now prove Theorem 4.1 in two steps. We first show
that an IND-ID-CPA attack on BasicIdent can be converted to a IND-CPA attack on BasicPub. This
step shows that private key extraction queries do not help the adversary. We then show that BasicPub
is IND-CPA secure if the BDH assumption holds.
Lemma 4.2. Let H1 be a random oracle from {0, 1}∗ to G∗

1. Let A be an IND-ID-CPA adversary that
has advantage �(k) against BasicIdent. Suppose A makes at most qE > 0 private key extraction queries.
Then there is a IND-CPA adversary B that has advantage at least �(k)/e(1 + qE) against BasicPub. Its
running time is O(time(A)).

Proof. We show how to construct an IND-CPA adversary B that uses A to gain advantage �/e(1+qE)
against BasicPub. The game between the challenger and the adversary B starts with the challenger
first generating a random public key by running algorithm keygen of BasicPub. The result is a public
key Kpub = �q, G1, G2, ê, n, P, Ppub, QID, H2� and a private key dID = sQID. As usual, q is the order of
G1, G2. The challenger gives Kpub to algorithm B. Algorithm B is supposed to output two messages
M0 and M1 and expects to receive back the BasicPub encryption of Mb under Kpub where b ∈ {0, 1}.
Then algorithm B outputs its guess b� ∈ {0, 1} for b.

Algorithm B works by interacting with A in an IND-ID-CPA game as follows (B simulates the challenger
for A):

Setup: Algorithm B gives A the BasicIdent system parameters �q, G1, G2, ê, n, P, Ppub, H1, H2�. Here
q, G1,G2, ê, n, P , Ppub, H2 are taken from Kpub, and H1 is a random oracle controlled by B as
described below.

H1-queries: At any time algorithm A can query the random oracle H1. To respond to these queries
algorithm B maintains a list of tuples �IDj , Qj , bj , cj� as explained below. We refer to this list as the
H list

1 . The list is initially empty. When A queries the oracle H1 at a point IDi algorithm B responds
as follows:
1. If the query IDi already appears on the H list

1 in a tuple �IDi, Qi, bi, ci� then Algorithm B responds
with H1(IDi) = Qi ∈ G∗

1.
2. Otherwise, B generates a random coin ∈ {0, 1} so that Pr[coin = 0] = δ for some δ that will be

determined later.
3. Algorithm B picks a random b ∈ Z∗

q .
If coin = 0 compute Qi = bP ∈ G∗

1. If coin = 1 compute Qi = bQID ∈ G∗
1.

4. Algorithm B adds the tuple �IDi, Qi, b, coin� to the H list
1 and responds to A with H1(IDi) = Qi.

Note that either way Qi is uniform in G∗
1 and is independent of A’s current view as required.

Phase 1: Let IDi be a private key extraction query issued by algorithm A. Algorithm B responds to
this query as follows:
1. Run the above algorithm for responding to H1-queries to obtain a Qi ∈ G∗

1 such that H1(IDi) = Qi.
Let �IDi, Qi, bi, coini� be the corresponding tuple on the H list

1 . If coini = 1 then B reports failure
and terminates. The attack on BasicPub failed.

2. We know coini = 0 and hence Qi = biP . Define di = biPpub ∈ G∗
1. Observe that di = sQi and

therefore di is the private key associated to the public key IDi. Give di to algorithm A.

Challenge: Once algorithm A decides that Phase 1 is over it outputs a public key IDch and two
messages M0, M1 on which it wishes to be challenged. Algorithm B responds as follows:
1. Algorithm B gives its challenger the messages M0, M1. The challenger responds with a BasicPub

ciphertext C = �U, V � such that C is the encryption of Mc for a random c ∈ {0, 1}.
2. Next, B runs the algorithm for responding to H1-queries to obtain a Q ∈ G∗

1 such that H1(IDch) =

11

Q. Let �IDch, Q, b, coin� be the corresponding tuple on the H list
1 . If coin = 0 then B reports failure

and terminates. The attack on BasicPub failed.
3. We know coin = 1 and therefore Q = bQID. Recall that when C = �U, V � we have U ∈ G∗

1.
Set C � = �b−1U, V �, where b−1 is the inverse of b mod q. Algorithm B responds to A with the
challenge ciphertext C �. Note that C � is a proper BasicIdent encryption of Mc under the public key
IDch as required. To see this first observe that, since H1(IDch) = Q, the private key corresponding
to IDch is dch = sQ. Second, observe that

ê(b−1U, dch) = ê(b−1U, sQ) = ê(U, sb−1Q) = ê(U, sQID) = ê(U, dID).

Hence, the BasicIdent decryption of C � using dch is the same as the BasicPub decryption of C using
dID.

Phase 2: Algorithm B responds to private key extraction queries as in Phase 1.

Guess: Eventually algorithm A outputs a guess c� for c. Algorithm B outputs c� as its guess for c.

Claim: If algorithm B does not abort during the simulation then algorithm A’s view is identical to
its view in the real attack. Furthermore, if B does not abort then |Pr[c = c �]− 1

2 | ≥ �. The probability
is over the random bits used by A,B and the challenger.

Proof of claim. The responses to H1-queries are as in the real attack since each response is uniformly
and independently distributed in G∗

1. All responses to private key extraction queries are valid. Finally,
the challenge ciphertext C � given to A is the BasicIdent encryption of Mc for some random c ∈ {0, 1}.
Therefore, by definition of algorithm A we have that |Pr[c = c�] − 1

2 | ≥ �. �

To complete the proof of Lemma 4.2 it remains to calculate the probability that algorithm B aborts
during the simulation. Suppose A makes a total of qE private key extraction queries. Then the prob-
ability that B does not abort in phases 1 or 2 is δqE . The probability that it does not abort during
the challenge step is 1 − δ. Therefore, the probability that B does not abort during the simulation
is δqE (1 − δ). This value is maximized at δopt = 1 − 1/(qE + 1). Using δopt, the probability that B
does not abort is at least 1/e(1+qE). This shows that B’s advantage is at least �/e(1+qE) as required. �

The analysis used in the proof of Lemma 4.2 uses a similar technique to Coron’s analysis of the
Full Domain Hash signature scheme [9]. Next, we show that BasicPub is a semantically secure public
key system if the BDH assumption holds.
Lemma 4.3. Let H2 be a random oracle from G2 to {0, 1}n. Let A be an IND-CPA adversary that has
advantage �(k) against BasicPub. Suppose A makes a total of qH2

> 0 queries to H2. Then there is an
algorithm B that solves the BDH problem for G with advantage at least 2�(k)/qH2

and a running time
O(time(A)).

Proof. Algorithm B is given as input the BDH parameters �q, G1, G2, ê� produced by G and a
random instance �P, aP, bP, cP � = �P, P1, P2, P3� of the BDH problem for these parameters, i.e. P is
random in G∗

1 and a, b, c are random in Z∗
q where q is the order of G1, G2. Let D = ê(P, P)abc ∈ G2 be

the solution to this BDH problem. Algorithm B finds D by interacting with A as follows:

Setup: Algorithm B creates the BasicPub public key Kpub = �q, G1, G2, ê, n, P, Ppub, QID, H2� by setting
Ppub = P1 and QID = P2. Here H2 is a random oracle controlled by B as described below. Algorithm
B gives A the BasicPub public key Kpub. Observe that the (unknown) private key associated to Kpub

is dID = aQID = abP .

12

H2-queries: At any time algorithm A may issue queries to the random oracle H2. To respond to
these queries B maintains a list of tuples called the H list

2 . Each entry in the list is a tuple of the form
�Xj , Hj�. Initially the list is empty. To respond to query Xi algorithm B does the following:
1. If the query Xi already appears on the H list

2 in a tuple �Xi, Hi� then respond with H2(Xi) = Hi.
2. Otherwise, B just picks a random string Hi ∈ {0, 1}n and adds the tuple �Xi, Hi� to the H list

2 . It
responds to A with H2(Xi) = Hi.

Challenge: Algorithm A outputs two messages M0, M1 on which it wishes to be challenged. Al-
gorithm B picks a random string R ∈ {0, 1}n and defines C to be the ciphertext C = �P3, R�.
Algorithm B gives C as the challenge to A. Observe that, by definition, the decryption of C is
R ⊕ H2(ê(P3, dID)) = R ⊕ H2(D).

Guess: Algorithm A outputs its guess c� ∈ {0, 1}. At this point B picks a random tuple �Xj , Hj� from
the H list

2 and outputs Xj as the solution to the given instance of BDH.

Algorithm B is simulating a real attack environment for algorithm A (it simulates the challenger and
the oracle for H2). We show that algorithm B outputs the correct answer D with probability at least
2�/qH2

as required. The proof is based on comparing A’s behavior in the simulation to its behavior in
a real IND-CPA attack game (against a real challenger and a real random oracle for H2).

Let H be the event that algorithm A issues a query for H2(D) at some point during the simulation
above (this implies that at the end of the simulation D appears in some tuple on the H list

2). We show
that Pr[H] ≥ 2�. This will prove that algorithm B outputs D with probability at least 2�/qH2

. We
also study event H in the real attack game, namely the event that A issues a query for H2(D) when
communicating with a real challenger and a real random oracle for H2.

Claim 1: Pr[H] in the simulation above is equal to Pr[H] in the real attack.

Proof of claim. Let H� be the event that A makes a query for H2(D) in one of its first � queries to
the H2 oracle. We prove by induction on � that Pr[H�] in the real attack is equal to Pr[H�] in the
simulation for all � ≥ 0. Clearly Pr[H0] = 0 in both the simulation and in the real attack. Now suppose
that for some � > 0 we have that Pr[H�−1] in the simulation is equal to Pr[H�−1] in the real attack.
We show that the same holds for H�. We know that:

Pr[H�] = Pr[H� |H�−1] Pr[H�−1] + Pr[H� | ¬H�−1] Pr[¬H�−1] (1)

= Pr[H�−1] + Pr[H� | ¬H�−1] Pr[¬H�−1]

We argue that Pr[H� | ¬H�−1] in the simulation is equal to Pr[H� | ¬H�−1] in the real attack. To see
this observe that as long as A does not issue a query for H2(D) its view during the simulation is
identical to its view in the real attack (against a real challenger and a real random oracle for H2).
Indeed, the public-key and the challenge are distributed as in the real attack. Similarly, all responses
to H2-queries are uniform and independent in {0, 1}n. Therefore, Pr[H� | ¬H�−1] in the simulation is
equal to Pr[H� | ¬H�−1] in the real attack. It follows by (1) and the inductive hypothesis that Pr[H�]
in the real attack is equal to Pr[H�] in the simulation. By induction on � we obtain that Pr[H] in the
real attack is equal to Pr[H] in the simulation. �

Claim 2: In the real attack we have Pr[H] ≥ 2�.

Proof of claim. In the real attack, if A never issues a query for H2(D) then the decryption of C
is independent of A’s view (since H2(D) is independent of A’s view). Therefore, in the real attack
Pr[c = c� | ¬H] = 1/2. By definition of A, we know that in the real attack |Pr[c = c �] − 1/2| ≥ �.

13

We show that these two facts imply that Pr[H] ≥ 2�. To do so we first derive simple upper and lower
bounds on Pr[c = c�]:

Pr[c = c�] = Pr[c = c�|¬H] Pr[¬H] + Pr[c = c�|H] Pr[H] ≤
≤ Pr[c = c�|¬H] Pr[¬H] + Pr[H] =

1
2

Pr[¬H] + Pr[H] =
1
2

+
1
2

Pr[H]

Pr[c = c�] ≥ Pr[c = c�|¬H] Pr[¬H] =
1
2
− 1

2
Pr[H]

It follows that � ≤ |Pr[c = c�] − 1/2| ≤ 1
2 Pr[H]. Therefore, in the real attack Pr[H] ≥ 2�. �

To complete the proof of Lemma 4.3 observe that by Claims 1 and 2 we know that Pr[H] ≥ 2� in
the simulation above. Hence, at the end of the simulation, D appears in some tuple on the H list

2 with
probability at least 2�. It follows that B produces the correct answer with probability at least 2�/qH2

as required. �

We note that one can slightly vary the reduction in the proof above to obtain different bounds.
For example, in the ‘Guess’ step above one can avoid having to pick a random element from the H list

2

by using the random self reduction of the BDH problem. This requires running algorithm A multiple
times (as in Theorem 7 of [42]). The success probability for solving the given BDH problem increases
at the cost of also increasing the running time.

Proof of Theorem 4.1. The theorem follows directly from Lemma 4.2 and Lemma 4.3. Composing
both reductions shows that an IND-ID-CPA adversary on BasicIdent with advantage �(k) gives a BDH
algorithm for G with advantage at least 2�(k)/e(1 + qE)qH2

, as required. �

4.2 Identity-Based Encryption with Chosen Ciphertext Security

We use a technique due to Fujisaki-Okamoto [16] to convert the BasicIdent scheme of the previous
section into a chosen ciphertext secure IBE system (in the sense of Section 2) in the random oracle
model. Let E be a probabilistic public key encryption scheme. We denote by Epk(M ; r) the encryption
of M using the random bits r under the public key pk. Fujisaki-Okamoto define the hybrid scheme E hy

as:
Ehy

pk (M) =
�
Epk(σ; H3(σ, M)), H4(σ) ⊕ M

�

Here σ is generated at random and H3, H4 are cryptographic hash functions. Fujisaki-Okamoto show
that if E is a one-way encryption scheme then Ehy is a chosen ciphertext secure system (IND-CCA) in the
random oracle model (assuming Epk satisfies some natural constraints). We note that semantic security
implies one-way encryption and hence the Fujisaki-Okamoto result also applies if E is semantically
secure (IND-CPA).

We apply the Fujisaki-Okamoto transformation to BasicIdent and show that the resulting IBE
system is IND-ID-CCA secure. We obtain the following IBE scheme which we call FullIdent. Recall that
n is the length of the message to be encrypted.

Setup: As in the BasicIdent scheme. In addition, we pick a hash function H3 : {0, 1}n ×{0, 1}n → Z∗
q ,

and a hash function H4 : {0, 1}n → {0, 1}n.

Extract: As in the BasicIdent scheme.

14

Alexander Munch-hansen

