Security. Next, we study the security of this basic scheme. The following theorem shows that BasicIdent is a semantically secure identity based encryption scheme (IND-ID-CPA) assuming BDH is hard in groups generated by \mathcal{G} .

Theorem 4.1. Suppose the hash functions H_1 , H_2 are random oracles. Then BasicIdent is a semantically secure identity based encryption scheme (IND-ID-CPA) assuming BDH is hard in groups generated by \mathcal{G} . Concretely, suppose there is an IND-ID-CPA adversary \mathcal{A} that has advantage $\epsilon(k)$ against the scheme BasicIdent. Suppose \mathcal{A} makes at most $q_E > 0$ private key extraction queries and $q_{H_2} > 0$ hash queries to H_2 . Then there is an algorithm \mathcal{B} that solves BDH in groups generated by \mathcal{G} with advantage at least:

$$Adv_{\mathcal{G},\mathcal{B}}(k) \ge \frac{2\epsilon(k)}{e(1+q_E)\cdot q_{H_2}}$$

Here $e \approx 2.71$ is the base of the natural logarithm. The running time of \mathcal{B} is $O(time(\mathcal{A}))$.

To prove the theorem we first define a related Public Key Encryption scheme (not an identity based scheme), called BasicPub. BasicPub is described by three algorithms: keygen, encrypt, decrypt.

keygen: Given a security parameter $k \in \mathbb{Z}^+$, the algorithm works as follows:

Step 1: Run \mathcal{G} on input k to generate two prime order groups $\mathbb{G}_1, \mathbb{G}_2$ and a bilinear map $\hat{e} : \mathbb{G}_1 \times \mathbb{G}_1 \to \mathbb{G}_2$. Let q be the order of $\mathbb{G}_1, \mathbb{G}_2$. Choose a random generator $P \in \mathbb{G}_1$.

Step 2: Pick a random $s \in \mathbb{Z}_q^*$ and set $P_{pub} = sP$. Pick a random $Q_{\mathsf{ID}} \in \mathbb{G}_1^*$.

Step 3: Choose a cryptographic hash function $H_2: \mathbb{G}_2 \to \{0,1\}^n$ for some n.

Step 4: The public key is $\langle q, \mathbb{G}_1, \mathbb{G}_2, \hat{e}, n, P, P_{pub}, Q_{ID}, H_2 \rangle$. The private key is $d_{ID} = sQ_{ID} \in \mathbb{G}_1^*$.

encrypt: To encrypt $M \in \{0,1\}^n$ choose a random $r \in \mathbb{Z}_q^*$ and set the ciphertext to be:

$$C = \langle rP, M \oplus H_2(g^r) \rangle$$
 where $g = \hat{e}(Q_{\mathsf{ID}}, P_{pub}) \in \mathbb{G}_2^*$

decrypt: Let $C = \langle U, V \rangle$ be a ciphertext created using the public key $\langle q, \mathbb{G}_1, \mathbb{G}_2, \hat{e}, n, P, P_{pub}, Q_{\mathsf{ID}}, H_2 \rangle$. To decrypt C using the private key $d_{\mathsf{ID}} \in \mathbb{G}_1^*$ compute:

$$V \oplus H_2(\hat{e}(d_{\mathsf{ID}}, U)) = M$$

This completes the description of BasicPub. We now prove Theorem 4.1 in two steps. We first show that an IND-ID-CPA attack on BasicPub can be converted to a IND-CPA attack on BasicPub. This step shows that private key extraction queries do not help the adversary. We then show that BasicPub is IND-CPA secure if the BDH assumption holds.

Lemma 4.2. Let H_1 be a random oracle from $\{0,1\}^*$ to \mathbb{G}_1^* . Let \mathcal{A} be an IND-ID-CPA adversary that has advantage $\epsilon(k)$ against BasicIdent. Suppose \mathcal{A} makes at most $q_E > 0$ private key extraction queries. Then there is a IND-CPA adversary \mathcal{B} that has advantage at least $\epsilon(k)/e(1+q_E)$ against BasicPub. Its running time is $O(time(\mathcal{A}))$.

Proof. We show how to construct an IND-CPA adversary \mathcal{B} that uses \mathcal{A} to gain advantage $\epsilon/e(1+q_E)$ against BasicPub. The game between the challenger and the adversary \mathcal{B} starts with the challenger first generating a random public key by running algorithm keygen of BasicPub. The result is a public key $K_{pub} = \langle q, \mathbb{G}_1, \mathbb{G}_2, \hat{e}, n, P, P_{pub}, Q_{\text{ID}}, H_2 \rangle$ and a private key $d_{\text{ID}} = sQ_{\text{ID}}$. As usual, q is the order of $\mathbb{G}_1, \mathbb{G}_2$. The challenger gives K_{pub} to algorithm \mathcal{B} . Algorithm \mathcal{B} is supposed to output two messages M_0 and M_1 and expects to receive back the BasicPub encryption of M_b under K_{pub} where $b \in \{0,1\}$. Then algorithm \mathcal{B} outputs its guess $b' \in \{0,1\}$ for b.

Algorithm \mathcal{B} works by interacting with \mathcal{A} in an IND-ID-CPA game as follows (\mathcal{B} simulates the challenger for \mathcal{A}):

Setup: Algorithm \mathcal{B} gives \mathcal{A} the Basicldent system parameters $\langle q, \mathbb{G}_1, \mathbb{G}_2, \hat{e}, n, P, P_{pub}, H_1, H_2 \rangle$. Here $q, \mathbb{G}_1, \mathbb{G}_2, \hat{e}, n, P, P_{pub}, H_2$ are taken from K_{pub} , and H_1 is a random oracle controlled by \mathcal{B} as described below.

 H_1 -queries: At any time algorithm \mathcal{A} can query the random oracle H_1 . To respond to these queries algorithm \mathcal{B} maintains a list of tuples $\langle \mathsf{ID}_j, Q_j, b_j, c_j \rangle$ as explained below. We refer to this list as the H_1^{list} . The list is initially empty. When \mathcal{A} queries the oracle H_1 at a point ID_i algorithm \mathcal{B} responds as follows:

- 1. If the query ID_i already appears on the H_1^{list} in a tuple $\langle \mathsf{ID}_i, Q_i, b_i, c_i \rangle$ then Algorithm $\mathcal B$ responds with $H_1(\mathsf{ID}_i) = Q_i \in \mathbb G_1^*$.
- 2. Otherwise, \mathcal{B} generates a random $coin \in \{0,1\}$ so that $\Pr[coin = 0] = \delta$ for some δ that will be determined later.
- 3. Algorithm \mathcal{B} picks a random $b \in \mathbb{Z}_q^*$. If coin = 0 compute $Q_i = bP \in \mathbb{G}_1^*$. If coin = 1 compute $Q_i = bQ_{\mathsf{ID}} \in \mathbb{G}_1^*$.
- 4. Algorithm \mathcal{B} adds the tuple $\langle \mathsf{ID}_i, Q_i, b, coin \rangle$ to the H_1^{list} and responds to \mathcal{A} with $H_1(\mathsf{ID}_i) = Q_i$. Note that either way Q_i is uniform in \mathbb{G}_1^* and is independent of \mathcal{A} 's current view as required.

Phase 1: Let ID_i be a private key extraction query issued by algorithm \mathcal{A} . Algorithm \mathcal{B} responds to this query as follows:

- 1. Run the above algorithm for responding to H_1 -queries to obtain a $Q_i \in \mathbb{G}_1^*$ such that $H_1(\mathsf{ID}_i) = Q_i$. Let $\langle \mathsf{ID}_i, Q_i, b_i, coin_i \rangle$ be the corresponding tuple on the H_1^{list} . If $coin_i = 1$ then \mathcal{B} reports failure and terminates. The attack on BasicPub failed.
- 2. We know $coin_i = 0$ and hence $Q_i = b_i P$. Define $d_i = b_i P_{pub} \in \mathbb{G}_1^*$. Observe that $d_i = sQ_i$ and therefore d_i is the private key associated to the public key ID_i . Give d_i to algorithm \mathcal{A} .

Challenge: Once algorithm \mathcal{A} decides that Phase 1 is over it outputs a public key ID_{ch} and two messages M_0, M_1 on which it wishes to be challenged. Algorithm \mathcal{B} responds as follows:

- 1. Algorithm \mathcal{B} gives its challenger the messages M_0, M_1 . The challenger responds with a BasicPub ciphertext $C = \langle U, V \rangle$ such that C is the encryption of M_c for a random $c \in \{0, 1\}$.
- 2. Next, \mathcal{B} runs the algorithm for responding to H_1 -queries to obtain a $Q \in \mathbb{G}_1^*$ such that $H_1(\mathsf{ID}_{ch}) =$

- Q. Let $\langle \mathsf{ID}_{ch}, Q, b, coin \rangle$ be the corresponding tuple on the H_1^{list} . If coin = 0 then \mathcal{B} reports failure and terminates. The attack on BasicPub failed.
- 3. We know coin = 1 and therefore $Q = bQ_{\mathsf{ID}}$. Recall that when $C = \langle U, V \rangle$ we have $U \in \mathbb{G}_1^*$. Set $C' = \langle b^{-1}U, V \rangle$, where b^{-1} is the inverse of $b \bmod q$. Algorithm \mathcal{B} responds to \mathcal{A} with the challenge ciphertext C'. Note that C' is a proper Basicldent encryption of M_c under the public key ID_{ch} as required. To see this first observe that, since $H_1(\mathsf{ID}_{ch}) = Q$, the private key corresponding to ID_{ch} is $d_{ch} = sQ$. Second, observe that

$$\hat{e}(b^{-1}U,d_{ch}) = \hat{e}(b^{-1}U,sQ) = \hat{e}(U,sb^{-1}Q) = \hat{e}(U,sQ_{\mathrm{ID}}) = \hat{e}(U,d_{\mathrm{ID}}).$$

Hence, the Basic dent decryption of C' using d_{ch} is the same as the Basic Pub decryption of C using d_{lD} .

Phase 2: Algorithm \mathcal{B} responds to private key extraction queries as in Phase 1.

Guess: Eventually algorithm \mathcal{A} outputs a guess c' for c. Algorithm \mathcal{B} outputs c' as its guess for c.

Claim: If algorithm \mathcal{B} does not abort during the simulation then algorithm \mathcal{A} 's view is identical to its view in the real attack. Furthermore, if \mathcal{B} does not abort then $|\Pr[c=c'] - \frac{1}{2}| \geq \epsilon$. The probability is over the random bits used by \mathcal{A}, \mathcal{B} and the challenger.

Proof of claim. The responses to H_1 -queries are as in the real attack since each response is uniformly and independently distributed in \mathbb{G}_1^* . All responses to private key extraction queries are valid. Finally, the challenge ciphertext C' given to \mathcal{A} is the Basicldent encryption of M_c for some random $c \in \{0, 1\}$. Therefore, by definition of algorithm \mathcal{A} we have that $|\Pr[c = c'] - \frac{1}{2}| \geq \epsilon$.

To complete the proof of Lemma 4.2 it remains to calculate the probability that algorithm \mathcal{B} aborts during the simulation. Suppose \mathcal{A} makes a total of q_E private key extraction queries. Then the probability that \mathcal{B} does not abort in phases 1 or 2 is δ^{q_E} . The probability that it does not abort during the challenge step is $1 - \delta$. Therefore, the probability that \mathcal{B} does not abort during the simulation is $\delta^{q_E}(1-\delta)$. This value is maximized at $\delta_{opt} = 1 - 1/(q_E + 1)$. Using δ_{opt} , the probability that \mathcal{B} does not abort is at least $1/e(1+q_E)$. This shows that \mathcal{B} 's advantage is at least $\epsilon/e(1+q_E)$ as required. \square

The analysis used in the proof of Lemma 4.2 uses a similar technique to Coron's analysis of the Full Domain Hash signature scheme [9]. Next, we show that BasicPub is a semantically secure public key system if the BDH assumption holds.

Lemma 4.3. Let H_2 be a random oracle from \mathbb{G}_2 to $\{0,1\}^n$. Let \mathcal{A} be an IND-CPA adversary that has advantage $\epsilon(k)$ against BasicPub. Suppose \mathcal{A} makes a total of $q_{H_2} > 0$ queries to H_2 . Then there is an algorithm \mathcal{B} that solves the BDH problem for \mathcal{G} with advantage at least $2\epsilon(k)/q_{H_2}$ and a running time $O(time(\mathcal{A}))$.

Proof. Algorithm \mathcal{B} is given as input the BDH parameters $\langle q, \mathbb{G}_1, \mathbb{G}_2, \hat{e} \rangle$ produced by \mathcal{G} and a random instance $\langle P, aP, bP, cP \rangle = \langle P, P_1, P_2, P_3 \rangle$ of the BDH problem for these parameters, i.e. P is random in \mathbb{G}_1^* and a, b, c are random in \mathbb{Z}_q^* where q is the order of $\mathbb{G}_1, \mathbb{G}_2$. Let $D = \hat{e}(P, P)^{abc} \in \mathbb{G}_2$ be the solution to this BDH problem. Algorithm \mathcal{B} finds D by interacting with \mathcal{A} as follows:

Setup: Algorithm \mathcal{B} creates the BasicPub public key $K_{pub} = \langle q, \mathbb{G}_1, \mathbb{G}_2, \hat{e}, n, P, P_{pub}, Q_{\text{ID}}, H_2 \rangle$ by setting $P_{pub} = P_1$ and $Q_{\text{ID}} = P_2$. Here H_2 is a random oracle controlled by \mathcal{B} as described below. Algorithm \mathcal{B} gives \mathcal{A} the BasicPub public key K_{pub} . Observe that the (unknown) private key associated to K_{pub} is $d_{\text{ID}} = aQ_{\text{ID}} = abP$.

 H_2 -queries: At any time algorithm \mathcal{A} may issue queries to the random oracle H_2 . To respond to these queries \mathcal{B} maintains a list of tuples called the H_2^{list} . Each entry in the list is a tuple of the form $\langle X_j, H_j \rangle$. Initially the list is empty. To respond to query X_i algorithm \mathcal{B} does the following:

- 1. If the query X_i already appears on the H_2^{list} in a tuple $\langle X_i, H_i \rangle$ then respond with $H_2(X_i) = H_i$.
- 2. Otherwise, \mathcal{B} just picks a random string $H_i \in \{0,1\}^n$ and adds the tuple $\langle X_i, H_i \rangle$ to the H_2^{list} . It responds to \mathcal{A} with $H_2(X_i) = H_i$.

Challenge: Algorithm \mathcal{A} outputs two messages M_0, M_1 on which it wishes to be challenged. Algorithm \mathcal{B} picks a random string $R \in \{0,1\}^n$ and defines C to be the ciphertext $C = \langle P_3, R \rangle$. Algorithm \mathcal{B} gives C as the challenge to \mathcal{A} . Observe that, by definition, the decryption of C is $R \oplus H_2(\hat{e}(P_3, d_{\text{ID}})) = R \oplus H_2(D)$.

Guess: Algorithm \mathcal{A} outputs its guess $c' \in \{0,1\}$. At this point \mathcal{B} picks a random tuple $\langle X_j, H_j \rangle$ from the H_2^{list} and outputs X_j as the solution to the given instance of BDH.

Algorithm \mathcal{B} is simulating a real attack environment for algorithm \mathcal{A} (it simulates the challenger and the oracle for H_2). We show that algorithm \mathcal{B} outputs the correct answer D with probability at least $2\epsilon/q_{H_2}$ as required. The proof is based on comparing \mathcal{A} 's behavior in the simulation to its behavior in a real IND-CPA attack game (against a real challenger and a real random oracle for H_2).

Let \mathcal{H} be the event that algorithm \mathcal{A} issues a query for $H_2(D)$ at some point during the simulation above (this implies that at the end of the simulation D appears in some tuple on the H_2^{list}). We show that $\Pr[\mathcal{H}] \geq 2\epsilon$. This will prove that algorithm \mathcal{B} outputs D with probability at least $2\epsilon/q_{H_2}$. We also study event \mathcal{H} in the real attack game, namely the event that \mathcal{A} issues a query for $H_2(D)$ when communicating with a real challenger and a real random oracle for H_2 .

Claim 1: $Pr[\mathcal{H}]$ in the simulation above is equal to $Pr[\mathcal{H}]$ in the real attack.

Proof of claim. Let \mathcal{H}_{ℓ} be the event that \mathcal{A} makes a query for $H_2(D)$ in one of its first ℓ queries to the H_2 oracle. We prove by induction on ℓ that $\Pr[\mathcal{H}_{\ell}]$ in the real attack is equal to $\Pr[\mathcal{H}_{\ell}]$ in the simulation for all $\ell \geq 0$. Clearly $\Pr[\mathcal{H}_0] = 0$ in both the simulation and in the real attack. Now suppose that for some $\ell > 0$ we have that $\Pr[\mathcal{H}_{\ell-1}]$ in the simulation is equal to $\Pr[\mathcal{H}_{\ell-1}]$ in the real attack. We show that the same holds for \mathcal{H}_{ℓ} . We know that:

$$\Pr[\mathcal{H}_{\ell}] = \Pr[\mathcal{H}_{\ell} \mid \mathcal{H}_{\ell-1}] \Pr[\mathcal{H}_{\ell-1}] + \Pr[\mathcal{H}_{\ell} \mid \neg \mathcal{H}_{\ell-1}] \Pr[\neg \mathcal{H}_{\ell-1}]$$

$$= \Pr[\mathcal{H}_{\ell-1}] + \Pr[\mathcal{H}_{\ell} \mid \neg \mathcal{H}_{\ell-1}] \Pr[\neg \mathcal{H}_{\ell-1}]$$
(1)

We argue that $\Pr[\mathcal{H}_{\ell} \mid \neg \mathcal{H}_{\ell-1}]$ in the simulation is equal to $\Pr[\mathcal{H}_{\ell} \mid \neg \mathcal{H}_{\ell-1}]$ in the real attack. To see this observe that as long as \mathcal{A} does not issue a query for $H_2(D)$ its view during the simulation is identical to its view in the real attack (against a real challenger and a real random oracle for H_2). Indeed, the public-key and the challenge are distributed as in the real attack. Similarly, all responses to H_2 -queries are uniform and independent in $\{0,1\}^n$. Therefore, $\Pr[\mathcal{H}_{\ell} \mid \neg \mathcal{H}_{\ell-1}]$ in the simulation is equal to $\Pr[\mathcal{H}_{\ell} \mid \neg \mathcal{H}_{\ell-1}]$ in the real attack. It follows by (1) and the inductive hypothesis that $\Pr[\mathcal{H}_{\ell}]$ in the real attack is equal to $\Pr[\mathcal{H}_{\ell}]$ in the simulation. By induction on ℓ we obtain that $\Pr[\mathcal{H}]$ in the real attack is equal to $\Pr[\mathcal{H}]$ in the simulation.

Claim 2: In the real attack we have $Pr[\mathcal{H}] \geq 2\epsilon$.

Proof of claim. In the real attack, if \mathcal{A} never issues a query for $H_2(D)$ then the decryption of C is independent of \mathcal{A} 's view (since $H_2(D)$ is independent of \mathcal{A} 's view). Therefore, in the real attack $\Pr[c = c' \mid \neg \mathcal{H}] = 1/2$. By definition of \mathcal{A} , we know that in the real attack $|\Pr[c = c'] - 1/2| \geq \epsilon$.

We show that these two facts imply that $\Pr[\mathcal{H}] \geq 2\epsilon$. To do so we first derive simple upper and lower bounds on $\Pr[c = c']$:

$$\begin{split} \Pr[c = c'] &= \Pr[c = c' | \neg \mathcal{H}] \Pr[\neg \mathcal{H}] + \Pr[c = c' | \mathcal{H}] \Pr[\mathcal{H}] \leq \\ &\leq \Pr[c = c' | \neg \mathcal{H}] \Pr[\neg \mathcal{H}] + \Pr[\mathcal{H}] = \frac{1}{2} \Pr[\neg \mathcal{H}] + \Pr[\mathcal{H}] = \frac{1}{2} + \frac{1}{2} \Pr[\mathcal{H}] \\ \Pr[c = c'] &\geq \Pr[c = c' | \neg \mathcal{H}] \Pr[\neg \mathcal{H}] = \frac{1}{2} - \frac{1}{2} \Pr[\mathcal{H}] \end{split}$$

It follows that $\epsilon \leq |\Pr[c = c'] - 1/2| \leq \frac{1}{2}\Pr[\mathcal{H}]$. Therefore, in the real attack $\Pr[\mathcal{H}] \geq 2\epsilon$.

To complete the proof of Lemma 4.3 observe that by Claims 1 and 2 we know that $\Pr[\mathcal{H}] \geq 2\epsilon$ in the simulation above. Hence, at the end of the simulation, D appears in some tuple on the H_2^{list} with probability at least 2ϵ . It follows that \mathcal{B} produces the correct answer with probability at least $2\epsilon/q_{H_2}$ as required.

We note that one can slightly vary the reduction in the proof above to obtain different bounds. For example, in the 'Guess' step above one can avoid having to pick a random element from the H_2^{list} by using the random self reduction of the BDH problem. This requires running algorithm \mathcal{A} multiple times (as in Theorem 7 of [42]). The success probability for solving the given BDH problem increases at the cost of also increasing the running time.

Proof of Theorem 4.1. The theorem follows directly from Lemma 4.2 and Lemma 4.3. Composing both reductions shows that an IND-ID-CPA adversary on BasicIdent with advantage $\epsilon(k)$ gives a BDH algorithm for \mathcal{G} with advantage at least $2\epsilon(k)/e(1+q_E)q_{H_2}$, as required.