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ABSTRACT
Existing broadcast encryption (BE) requires a trusted dealer
to generate and distribute secret keys to all users. The appli-
cations in ad hoc networks, peer-to-peer networks, and on-
the-fly data sharing call for confidential broadcast channel
without relying on a dealer. To cater for such applications,
Wu et al. recently introduced the primitive of asymmetric
group key agreement and realized a one-round scheme. How-
ever, their solution is only suitable for static case in which
the group members are assumed to keep unchanged for a
long period.

This paper resolves the main open question left in Wu et
al.’s work by providing rational solutions to fully dynam-
ic case. To meet the end, we first introduce a new notion
referred to as ad hoc broadcast encryption (AHBE). In an
AHBE system, each user possesses a public key; seeing the
public keys of the users, a sender can securely broadcast
to any subset of the users; only the user in the receiver
set can decrypt. Then we propose a generic transforma-
tion from any key homomorphic BE scheme to an AHBE
scheme, and implement a concrete AHBE by showing that
the recent Gentry-Waters BE scheme is key-homomorphic.
This AHBE scheme enjoys non-interactive decryption and
sub-linear complexity, comparable to up-to-date broadcast
systems which have also sub-linear complexity but require a
trusted dealer to initialize the system. Lastly, observing the
inherent sub-linear complexity of AHBE converted from reg-
ular BE schemes, we propose a direct construction of AHBE
which has constant complexity, at a cost of a one-round in-
teraction for decryption. As to security, both schemes are
shown to be adaptively secure in the standard model under
well-studied assumptions.
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1. INTRODUCTION
Broadcasting is one of the most useful, versatile, and well-

studied communication primitive in distributed computing
with many applications. Existing broadcast encryption (BE)
systems [2, 16, 18] require a trusted dealer to produce and
distribute secret keys to each user. Such systems provide ef-
ficient solutions to applications such as pay-TV and priced
video distribution. However, the existing BE systems are
not suitable for applications where the trusted dealer is u-
navailable. For instance, in ad hoc/peer-to-peer networks
emerging in recent years, it is difficult to find an entity who
can play the role of a trusted dealer to deploy a BE system.
As a second example, let us consider the following scenario
in the traditional Internet. A company provides remote da-
ta storage services to registered users; users wish to be able
to share their private files with some other registered user-
s but do not want the company to see the contents of the
shared files. In both scenarios, it is needed to build BE sys-
tems without requiring a trusted dealer. A trivial solution
can be achieved with any public cryptosystems, but suffers
from long ciphertexts and heavy encryption overhead. The
challenge is to design solutions with short ciphertexts and
efficient encryption.

1.1 Related Work
Public key cryptosystems. As mentioned above, any pub-

lic key cryptosystem, e.g., the known RSA cryptosystem [23]
and the ElGamal cryptosystem [15], can be used to imple-
ment a trivial AHBE/BE scheme. In such a construction,
each user has a public/private key pair; to broadcast a secret
message, the sender uses the respective public keys of the
users in the receiver set to encrypt the message; the result-
ing ciphertext is the concatenation of the ciphertexts under
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each public key; each receiver can select out her piece of
ciphertext and then recover the message by invoking the de-
cryption algorithms of the underlying public key cryptosys-
tems. Unfortunately, this trivial construction suffers from
O(n) ciphertexts and O(n) encryption operations, where n
is the maximum number of allowable receivers.

Conventional broadcast cryptosystems. Conventional pub-
lic key broadcast encryption is a cryptographic primitive
more related to our AHBE systems. In a broadcast encryp-
tion scheme [16], a trusted dealer generates and distributes
private keys to n users; a sender can send a message to a
dynamically chosen subset of receivers R ⊆ {1, · · · , n} of
users such that only users in R can decrypt the ciphertex-
t; the sender can then safely transmit this ciphertext over
a broadcast channel to all users, assuming that the public
key of dealer is authentic. It is desirable if the system is
public-key so that anybody can encrypt, allows stateless re-
ceivers who do not need to update their private keys, and
has collusion resistance in the sense that even if all user-
s outside R collude, they cannot decrypt. Similarly to our
AHBE systems, the main challenge in building broadcast
cryptosystems is to encrypt messages with short ciphertexts
and efficient encryption.

The earlier broadcast encryption systems have relied on
combinatorial techniques. Such systems include a collusion
bound t. if an adversary compromises more than t keys, the
system would no longer guarantee security even for encryp-
tions solely sent to uncompromised users. Fiat and Naor
[16] were the first to formally explore broadcast encryption.
Further improvements [20, 21] reduce the private key size.
Dodis and Fazio [14] extend the subtree difference method
into a public key broadcast system for a small size public key.
Wallner et al. [25] and Wong [26] independently discovered
the logical-tree-hierarchy scheme for group multicast. The
parameters of the original schemes are improved in further
work [12, 13, 24].

Recently, more efficient broadcast systems have been re-
alized from bilinear pairings. Boneh et al. [2] proposed two
efficient broadcast encryption schemes proven to be secure.
Their basic scheme has linear public keys but constant se-
cret keys and ciphertexts. After a tradeoff, they achieve a
scheme with O(

√
n) public keys, private keys, and cipher-

texts. However, they use a static model of security in which
an adversary declares the target set R∗ of his challenge ci-
phertext before even seeing the system parameters. The
subsequent efforts [18, 4, 5] have been devoted to improve
security, but the sub-linear barrier O(

√
n) has been not bro-

ken in existing conventional BE schemes.
These conventional BE schemes are not suitable for the

applications motivated at the beginning of this paper. In ex-
isting broadcast schemes, a trusted dealer is required to gen-
erate the system parameters, the public key. The dealer is
also required to produce the secret decryption keys and dis-
tribute them to each user, which implies that (i) confidential
channels from the dealer to each user have to be established
before distributing decryption keys of the broadcast scheme,
and (ii) the privileged dealer knows all the decryption keys
and must be fully trusted by all users. These features are
not always desirable in practice. If such a trusted party does
not exist or some users do not trust the dealer, e.g., in ad
hoc networks, then the existing schemes cannot work.

Group key exchanges. Another related area to our work
is group key exchanges (GKE). A number of GKE proto-

cols have been proposed [6, 7, 8, 9, 10, 11]. In such sys-
tems, via open networks, a group of users can negotiate a
common secret key shared among the group members; any
group member can broadcast messages encrypted with the
shared key to other members such that only the group mem-
bers can decrypt. Note that the up-to-date GKE protocols
requires at least two rounds and the negotiated secret key
can only be shared among group members. GKE protocols
do not provide efficient solutions to our motivated applica-
tions, because whenever a sender wants to send a message
to a group of receivers, she has to firstly join the group of
receivers and run a GKE protocol to obtain a secret encryp-
tion key. Since the sender can be potentially anyone even
if the receivers keep unchanged, the solution is not efficien-
t. To address the above limitations, asymmetric group key
agreement [27] has been proposed in which a public encryp-
tion key is negotiated. However, the protocol can only deal
with static case where the group of receivers cannot be cho-
sen by the sender. Indeed, it is left open in that work [27]
to construct a protocol allowing the sender to dynamically
broadcast to any subset of potential receivers. We solve this
problem with efficient AHBE proposals.

1.2 Our Contribution
In this paper we consider the problem of dynamic broad-

casting to ad hoc groups where a trusted dealer is unavail-
able. A new primitive referred to as ad hoc broadcast en-
cryption (AHBE) is proposed to cater for such applications.
In an AHBE system, each user has a public/private key pair;
knowing the public keys of the users, a sender can choose any
subset of the users to broadcast, provided that the number
of the receivers is less than n; only the users in the receiv-
er set can decrypt. We define an adaptive security notion
in AHBE systems where the attacker adaptively corrupts
users before choosing the receiver set to attack. It is easy
to see that any regular public key encryption system im-
plies an ad hoc broadcast encryption system in which, for n
receivers, O(n) encryption operations and O(n) ciphertexts
are required. The challenge is to design AHBE systems with
short ciphertexts and efficient encryption.

This paper focuses on addressing the above challenge. We
present the notion of key homomorphic broadcast encryption
(KHBE) in which the public keys and decryption keys of d-
ifferent KHBE instances have a key homomorphic relation-
ship. The decryption keys of different KHBE instances can
be aggregated as the according decryption keys correspond-
ing to the public key from aggregation of the public keys of
the underlying KHBE instances. By exploiting KHBE, we
propose a generic construction of AHBE and instantiate a
concrete AHBE scheme, by showing that the recent Gentry-
Waters BE scheme [18] is key-homomorphic. The proposed
scheme is shown to be adaptively secure in the standard
model under the decision bilinear Diffie-Hellman exponenti-
ation (BDHE) assumption [18, 27]. Our basic construction
has O(n) size private keys and O(n2) size public keys but
constant size ciphertexts. To decrypt, each receiver does
not need the help from other receivers and the decryption
is non-interactive, provided that the public keys of other
receivers are known. Observing that a system with O(n2)
public keys cannot be deployed for a practical scale of AHBE
in practice, we provide a tradeoff between ciphertexts and
public keys. The resulting AHBE enjoys sub-linear complex-
ity O(n2/3) regarding both public keys and ciphertexts and

2



O(n1/3) private keys. Our result is comparable to up-to-date
regular broadcast systems, in which each receiver has also
sub-linear overhead (i.e., O(

√
n)) regarding public/private

keys and/or ciphertexts but require a fully trusted dealer.

1.3 Paper Organization
Section 2 reviews background information pertaining to

our constructions. In Section 3, we formalize the definition
of AHBE systems. Section 4 proposes an AHBE scheme
with sub-linear complexity and non-interactive decryption.
An AHBE scheme with constant complexity is instantiated
in Section ??. Section 5 is a conclusion.

2. PRELIMINARY

2.1 Notations
We summarize some notations used throughout the paper.

N is the number of all potential users, and n is the maximum
number of receivers in a broadcast system. In regular BE,
it usually happens that N = n. In AHBE, N might be very
large up to millions but n is usually very small. R is the
receiver set in a broadcast. a ← A represents to sample a
random point from a space A and assign its value to a. If
A is a probabilistic algorithm, it means that a is the output
of an independent run of A. |A| denotes the cardinality of
set A. PPT represents probabilistic polynomial time. Hdr
is said to be a header of k under 〈R, PK〉 in a broadcast
if Hdr is the ciphertext of k encrypted with the public key
PK and only the receivers in R can extract k.

2.2 Bilinear Maps
We briefly review a few facts related to groups with ef-

ficiently computable bilinear maps [3, 17]. Let PairGen be
a PPT algorithm that, on input a security parameter 1λ,
outputs a tuple Υ = (p,G,GT , e), where G and GT have the
same prime order p, and e : G×G→ GT is a bilinear map.
The bilinear map e satisfies the following properties.

1. Non-degeneracy. e(g, g) 6= 1 for any generator g of G.

2. Bilinearity. For all u, v ∈ Z, it holds that e(gu, gv) =
e(g, g)uv.

We say that G is a bilinear map if the group operations
in G and the bilinear map e : G × G → GT are both effi-
ciently computable. Note that the map e is symmetric since
e(gu, gv) = e(g, g)uv = e(gv, gu).

2.3 Complexity Assumptions
We recall the Decision Bilinear Diffie-Hellman (DBDH)

assumption [1] and the decision n-Bilinear Diffie-Hellman
Exponentiation (BDHE) assumption [18, 27] in the following
definitions.

Definition 1. (DBDH Assumption.) Let G be bilinear
group of prime order p as defined above and g be a gener-
ator of G. In the DBDH game, an attacker A(·) is given

g, gx, gy, gz, e(g, g)bxyz+(1−b)δ, where x, y, z, δ are randomly
chosen from Z∗p and b is randomly chosen from {0, 1}; A is
required to output a bit b′ and wins if b′ = b. The DBDH
assumption states that for any polynomial time attacker A,
her advantage AdvA = |Pr(A wins)− 1

2
| is negligible in λ.

Definition 2. (Decision n-BDHE Assumption.) Let
G be bilinear group of prime order p as defined above and
g, h two independent generators of G. Denote −→y g,α,n =

(g1, · · · , gn, gn+2, · · · , g2n) ∈ G2n−1, where gi = gα
i

for
some unknown α ∈ Z∗p. Randomly select b ← {0, 1}. If
b = 0, set Z = e(gn+1, h); else if b = 1, randomly choose
Z ← GT . An attacker A is provided with (g, h,−→y g,α,n, Z)
and required to output a bit b′. The attacker wins if b′ =
b. The decision n-BDHE assumption states that for any
polynomial time attacker A, her advantage AdvA = |Pr(A
wins)− 1

2
| is negligible in λ.

2.4 BE Systems
In a conventional BE system, a dealer first setups the

system parameters including a public/secret key pair. All
these parameters are publicly accessible except that the sys-
tem secret key is kept confidential by the dealer. Then the
dealer generate a decryption key for each possible user and
distribute the decryption key to each subscriber. Finally,
any sender who knows the system public key can broadcast
confidential messages to any subset of the subscribers. Only
the subscribers in the subset chosen by the sender can de-
crypt. More formally, a BE system consists of the following
probabilistic (interactive) algorithms [18].

BSetup(n,N) Takes as input the number of receivers N
and the maximal size n of a broadcast recipient group.
It outputs a BE public/secret key pair 〈PK,SK〉. Here,
for simplicity, we leave another input, the input secu-
rity parameter λ, implicitly.

BKeyGen(i, SK) Takes as input an index i ∈ {1, · · · , n}
and the secret key SK. It outputs a private key di for
user i.

BEnc(R, PK) It takes as input a recipient set R ⊆ {1, · · · , N}
and the public key PK. If |R| ≤ n, it outputs a pair
〈Hdr, k〉 where Hdr is called the header and k ∈ K is
the message encryption key.

BDec(R, i, di, Hdr, PK) This algorithm allows each receiv-
er to decrypt the message encryption key k hidden in
the header. It takes as input the receiver set R, an
index i ∈ {1, · · · , N}, the receiver’s secret key di, a
headerHdr, the public key PK. If |R| ≤ n, i ∈ R, then
the algorithm outputs the message encryption key k.

A BE system is correct if for all R ⊆ {1, · · · , N} and all i ∈
R, if 〈PK,SK〉 ← BSetup(n,N), di ← BKeyGen(i, SK), and
〈Hdr, k〉 ← BEnc(R, PK), then BDec(R, i, di, Hdr, PK) =
k.

We define security in broadcast encryption by using the
following game between an attacker A and a challenger CH.

BSetup. The attacker commits to a set R̃ ⊆ {1, · · · , N}.
The challenger runs BSetup(n,N) to obtain the the
public key PK, which is given to the attacker.

BCorruption. Attacker A adaptively issues private key
queries for some indices i ∈ {1, · · · , N} \ R̃.

BChallenge. At some point, the attacker then specifies a
challenge set R∗ ⊆ R̃. Note that for the private key of
any user i queried in BCorruption we have that i /∈ R∗.
The challenger sets 〈Hdr∗, k0〉 ← BEnc(R∗, PK) and
k1 ← K. It sets b ← {0, 1} and gives (Hdr∗, kb) to
attacker A.
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BGuess. Attacker A outputs a guess bit b′ ∈ {0, 1} for b
and wins the game if b = b′.

We define A’s advantage in attacking the BE system with
system parameters (n,N) and security parameter λ as

AdvBEA,n,N (1λ) = |Pr[b = b′]− 1

2
|

Definition 3. We say that a BE system has semi-static
adaptive security if for all polynomial time algorithms A we
have that AdvBE

A,n,N (1λ) is negligible in λ, and a BE system

has adaptive security if A does not need to commit to R̃
in the BSetup stage, and in the BChallenge state, any index
i ∈ R∗ has not been queried in the BCorruption stage.

3. MODELING AHBE
We present the model of AHBE systems and then formal-

ize the security definitions.

3.1 AHBE Systems
Compared to regular BE, AHBE eliminates the require-

ment of a fully trusted dealer. In AHBE, each user publish
a public key so that any potential sender and other possible
users can access. Then a sender can encrypt any confiden-
tial message to any chosen group of users, provided that the
group size is less than n. Finally, only users in the group
chosen by the sender can decrypt. The challenge is to guar-
antee that the encryption is efficient and the ciphertext is
short. AHBE is also conceptually simple, compared to group
key exchanges which usually require multiple rounds and a
sender has to first join the group to which she wants to
broadcast a message.

For clarity, we define AHBE as a key encapsulation mech-
anism. An AHBE system consists of the following proba-
bilistic (interactive) algorithms:

KeyGen(i, n,N) Let N be the number of potential re-
ceivers, and n ≤ N be the maximal size of an ad hoc
broadcast recipient group. This key generation algo-
rithm is run by each user i ∈ {1, · · · , N} to generate
her public/private key pair. A user takes as input the
system parameters n,N and her index i ∈ {1, · · · , N},
and outputs 〈pki, ski〉 as her public/secret key pair.
Denote {〈pki, ski〉|i ∈ R ⊆ {1, · · · , N}} by 〈pki, ski〉R
and similarly, {〈pki〉|i ∈ R ⊆ {1, · · · , N}} by 〈pki〉R.
Here, similarly to the BE definition, we also leave the
input security parameter λ, implicitly.

AHBEnc(R, 〈pki〉R) This is the ad hoc broadcast encryp-
tion algorithm. It is run by any sender who may or
may not be in {1, · · · , N}, provided that the sender
knows the public keys of the potential receivers. It
takes as input a recipient set R ⊆ {1, · · · , N} and the
public key pki for i ∈ R. If |R| ≤ n, it outputs a pair
〈Hdr, k〉 where Hdr is called the header and k is the
message encryption key.

Let Esym be a symmetric encryption scheme with key-
space K, and E(·) and D(·) be the encryption and
decryption algorithms, respectively. Let M be a mes-
sage to be broadcasted to the set R, and let C =
E(M,k) be the encryption of M under the symmet-
ric key k ∈ K. The broadcast to users in R consists

of (R, Hdr, C). The definition of the ad hoc broad-
cast encryption procedure implies that this procedure
is only used to generate the message encryption key,
but it is non-interactive in the sense that, the sender
can broadcast to an ad hoc group once she knows the
receivers’ public keys.

AHBDec(R, j, skj , Hdr, 〈pki〉R) This algorithm allows each
receiver to decrypt the message encryption key k hid-
den in the header. It may be a non-interactive (or an
interactive) algorithm if each receiver does not need
(or needs) other receivers’ help to extract her decryp-
tion key. It takes as input the receiver set R, an index
j ∈ {1, · · · , N}, the receiver’s secret key skj , a header
Hdr, the public/private key pairs of receivers in the
recipient set R. If |R| ≤ n, j ∈ R, then the algorithm
outputs the message encryption key k. The key k can
then be used to decrypt C to obtain M by computing
M = D(C, k).

3.2 Security Definitions
For purpose of focusing on the functionality of confiden-

tiality, we implicitly assume that the public keys of users are
authentic without distractions to authenticate the public key
of each user. In traditional Internet, the authentication can
be achieved with certificates by employing existing public
key infrastructure. In newly emerging mobile ad hoc net-
works, it might rely on a web of trust because the users may
meet in person.

As usual, we first define the correctness of an AHBE
scheme. It states that any user in the receiver set can de-
crypt a valid header. Formally, it is defined as follows.

Definition 4. (Correctness.)Assume the same setting as
the previous section. An AHBE scheme is correct if for
{〈pki, ski〉} ← KeyGen(i, n,N), all R ⊆ {1, · · · , N}(|R| ≤ n)
and all i ∈ R, 〈Hdr, k〉 ← AHBEnc(R, 〈pki〉R), then it holds
that AHBDec(R, j, skj , Hdr, 〈pki〉R) = k for any j ∈ R.

We only define security against chosen plaintext attacks.
However, our definition can readily be extended to capture
chosen ciphertext attacks.

In an adaptively secure ad hoc broadcast encryption sys-
tem, the adversary is allowed to see the public keys of all the
receivers and then ask for several secret keys before choosing
the set of indices that it wishes to attack.

Adaptive security in ad hoc broadcast encryption is de-
fined using the following game between an attacker A and a
challenger CH. Both CH and A are given λ as input.

Setup. The challenger runs KeyGen(i, n,N) to obtain the
users’ public keys. The challenger gives the public keys
and public system parameters to the attacker.

Corruption. AttackerA adaptively issues private key queries
for some indices i ∈ {1, · · · , N}.

Challenge. At some point, the attacker specifies a chal-
lenge set R∗, such that for the private key of any user
i queried in the corruption step we have that i /∈ R∗.
The challenger sets 〈Hdr∗, k0〉 ← AHBEnc(R∗, 〈pki〉R∗)
and k1 ← K. It sets b ← {0, 1} and gives (Hdr∗, kb)
to attacker A.

Guess. Attacker A outputs a guess bit b′ ∈ {0, 1} for b and
wins the game if b = b′.

4



We define A’s advantage in attacking the ad hoc broadcast
encryption (AHBE) system with security parameter λ as

AdvAHBEA,n,N (1λ) = |Pr[b = b′]− 1

2
|.

Definition 5. (Adaptive security.) We say that an AHBE
scheme is adaptively secure if for all polynomial time algo-
rithms A we have that AdvAHBE

A,n,N (1λ) is negligible in λ.

Similarly to BE [18], in addition to the adaptive game
for AHBE security, we consider two other weaker security
notions. The first is static security, where the adversary
must commit to the set R∗ of identities that it will attack
in an Initialization phase before the Setup algorithm is run.
This is the security definition that is used by recent BE
systems [2, 18]. Another useful security definition is referred
to as semi-static security. In this game the adversary must
commit to a set R̃ of indices at the Initialization phase. The
adversary cannot query the private key for any i ∈ R̃, and it
must choose a target group R̃∗ for the challenge ciphertext
that is a subset of R̃. A semi-static adversary is weaker
than an adaptive adversary, but it is stronger than a static
adversary since the attacker’s choice of which subset of R̃ to
attack can be adaptive.

3.3 From Semi-static Security to Adaptive Se-
curity

Static security seems too weak to capture the attackers a-
gainst AHBE systems, since the challenger does not know in
practice the target set that the attacker will corrupt. Adap-
tive security might be a correct definition for security in
AHBE systems. However, it seems hard to achieve adaptive
security in AHBE systems since the simulator does not know
which users the attacker will corrupt so that it can prepare
secret keys for them. A usual way is to let the simulator
guess the target set before initializing the adaptive security
game. Nevertheless, such a reduction suffers from an expo-
nentially small probability of correctly guessing the target
set.

Recently, Gentry and Waters developed a modular proof
approach [18] to achieve adaptive security in regular BE sys-
tems. Their technique is derived from the two-key simula-
tion technique introduced by Katz and Wang [22] which was
initially used to obtain tightly secure signature and identity-
based encryption schemes in the random oracle model. They
further exploit this idea to achieve adaptively secure regu-
lar broadcast encryption systems from semi-statically secure
ones. We observe that this idea can also be employed to con-
vert any semi-static secure AHBE system into an adaptively
secure system.

In the sequel we show how to convert an AHBE system
with semi-static security into one with adaptive security.
The cost is doubling public keys and ciphertexts. Suppose
we are given a semi-static secure AHBE system AHBESS with
algorithms KeyGenSS , AHBEncSS , AHBDecSS . Then we
can build an adaptively secure AHBEA system as follows.

• KeyGen. A user generates his public/secret key pair as
the following:

si ← {0, 1}.
(pk′2i−1, sk

′
2i−1) ← KeyGenSS(2i− 1, 2n,N),

(pk′2i, sk
′
2i)← KeyGenSS(2i, 2n,N).

Set pki = (pk′2i−1, pk
′
2i), ski = (sk′2i−si , si).

Output (pki, ski).

• AHBEnc. For any message M to be broadcasted, the
sender does the following:

Generate a random set of |R| bits: t ← {ti ← {0, 1} :
i ∈ R}.
Set

R0 = {2i− ti : i ∈ R},
〈Hdr0, k0〉 = AHBEncSS(R0, 〈pk′`〉R0),

R1 = {2i− (1− ti) : i ∈ R},
〈Hdr1, k1〉 = ABHEncSS(R1, 〈pk′`〉R1),

C0 = E(M,k0),

C1 = E(M,k1),

Hdr = 〈Hdr0, C0, Hdr1, C1, t〉.
Output 〈Hdr,K〉.

• AHBDec. Receiving 〈Hdr,K〉, a user in R does the
following:

Parse skj as 〈sk′j , sj〉,
Parse Hdr as 〈Hdr0, C0, Hdr1, C1, t〉.
Set R0 and R1 as above.

Compute

ksj⊕tj ← AHBDecSS(Rsj⊕tj , j, sk
′
j , Hdrsj⊕tj , 〈pk′`〉Rsj⊕tj

),

M = D(Csj⊕tj , ksj⊕tj ).

Output M .

We briefly compare the Gentry-Waters conversion for reg-
ular BE systems with ours for AHBE systems. In the Gentry-
Water conversion for regular BE systems, each user is asso-
ciated with two potential secret keys; however, the dealer
gives her only one of the two. An encryptor (who does not
know which secret key the receiver possesses) encrypts the
ciphertext twice, one for each key. The main benefit of this
idea is that a simulator will have private keys for every us-
er, and then it can always correctly answer the corruption
queries from the attacker, hence circumventing the need of
guessing of the target set in advance.

In our conversion, since no dealer will generate private
keys for the users, each user generates by herself two pub-
lic/private key pairs; only one of the two secret keys will
be kept while the other is erased. The combination of each
user’s public keys can work as the public key of the regular
BE system. Then the encryptor and the users can do the
same as that in the Gentry-Water conversion. It is easy to
see that, from a viewpoint of security proof, the two con-
versions are identical. This is due to the fact that, in the
security proof of a regular BE system, a simulator will gen-
erate all the system parameters and the public/private keys
on behalf of the dealer. In the context of AHBE systems,
the simulator will do the same job on behalf of each user. In
both cases, the attacker only communicates with the simu-
lator. Thus, there is no difference for the attacker to com-
municate with the simulator in a regular BE or an AHBE
system. Hence, the proof of the Gentry-Water conversion
applies to the following theorem.
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Theorem 1. Let A be an adaptive attacker against AHBEA.
Then, there exist algorithms B1,B2,B3, and B4, each run-
ning in about the same time as A, such that
AdvAHBEAA,n,N (λ) ≤ AdvAHBESS

B1,2n,N (λ) +AdvAHBEAB2,2n,N (λ)+

Adv
Esym

B3 (λ) +Adv
Esym

B4 (λ)

Proof. It is omitted to avoid repetition.

4. AHBE WITH SHORT CIPHERTEXTS
In this section, we propose a generic construction of AHBE

schemes. The construction is based on a new notion of key
homomorphic broadcast encryption. Then we describe a
concrete implementation by showing that the Gentry-Waters
BE scheme [18] is key homomorphic. The decryption in
our scheme is non-interactive. The basic construction has
O(n2) size public keys but constant size ciphertexts. After
a tradeoff between ciphertexts and public keys we obtain a
scheme with sub-linear ciphertexts, public keys and private
keys.

4.1 Key Homomorphism
Coarsely speaking, the key homomorphism of a BE scheme

means that, given two instances of the BE scheme, both their
public keys PK1, PK2 and decryption keys d1(i), d2(i) can
be aggregated such that the aggregation of d1(i) and d2(i) is
a decryption key corresponding to the aggregation of PK1

and PK2. Formally, the key homomorphism is defined as
follows.

Definition 6. (Key homomorphism.) Let ⊗ : Γ×Γ→
Γ and � : Ω × Ω → Ω, © : K × K → K be appropri-
ately defined efficient operations in the public key space
Γ, the decryption key space Ω and the message encryp-
tion key space K, respectively. A BE scheme is said to
be key homomorphic if the following conditions hold for all
R ⊆ {1, · · · , N}(|R| ≤ n) and all i ∈ R:

1. If 〈PK1, SK1〉 ← BSetup(n,N),

〈PK2, SK2〉 ← BSetup(n,N),

d1(i)← BKeyGen(i, SK1),

d2(i)← BKeyGen(i, SK2),

〈Hdr, k〉 ← BEnc(R, PK1 ⊗ PK2),

then BDec(R, i, d1(i)� d2(i), Hdr, PK1 ⊗ PK2) = k.

2. If Hdr is a header of k1 under 〈R, PK1〉, then it is
header of some k2 under (R, PK2) and a header of
k1© k2 under 〈R, PK1 ⊗ PK2〉.

Hereafter, if a BE scheme is key homomorphic, we will
call it a key homomorphic BE (KHBE) scheme.

4.2 Transformation from KHBE to AHBE
The main idea is to exploit the key homomorphism of the

underlying BE scheme, and illustrated in Matrix (1), where
? means that di(i)(i = 1, · · · , n) is not published.



U1 U2 U3 · · · Un Sender

? d1(2) d1(3) · · · d1(n) PK1

d2(1) ? d2(3) · · · d2(n) PK2

d3(1) d3(2) ? · · · d3(n) PK3

...
...

...
. . .

...
...

dn(1) dn(2) dn(3) · · · ? PKn


(1)

We briefly explain the above matrix. PKi is the public key
of a BE instance generated by user i. di(j) is the decryption
key allocated to user j in the underlying BE instance. Each
row is published by a correspondent member of an ad hoc
group of broadcast receivers, but user Ui does not publish
di(i). Due to the key homomorphism, for any receiver set
R, PKi can be publicly aggregated into K =

⊗
i∈R as the

public key of a new instance of the underlying BE, and the
j-column {di(j)}ni=1 can be aggregated into a decryption key
d(j) =

⊙
i∈R di(j) corresponding to the public key K of the

new BE instance. Since dj(j) is not published, d(j) can only
be obtained by user j(j = 1, · · · , n). Finally, a sender can
choose any receiver set R ⊆ {1, · · · , n} to broadcast and
only user j ∈ R can decrypt with her decryption key d(j).
For any user j′ /∈ R, she cannot use d(j′) =

⊙
i∈R di(j

′) to
decrypt correctly. This is because K fully functions as the
public key of a regular BE systems in which all users have
decryption keys but only the intended receivers can decrypt.

Here, we implicitly require that PKi’s are (computation-
ally) independent and different. Else, the conversion is not
secure. For instance, if PK1 = PK2, then d1(1) can be
trivially computed from the published data as d1(1) = d2(1)
and the latter d2(1) is public. This requirement is rational
in practice because PKi’s are independently generated by
different users and the coincidence of equality is negligible.
The detailed conversion is described as follows.

• KeyGen. Assume that the potential receivers form a
set {1, · · · , N}. Let n ≤ N be the maximum number
of receivers in a broadcast. For simplicity and without
loss of generality, we hereafter assume that n = N .
Generate an instance π of a KHBE scheme as system
parameter. Then the KeyGen algorithm works as fol-
lows.

– For receiver i ∈ {1, · · · , n}, invoke BSetup to gen-
erate a public-private key pair (PKi, SKi) of the
underlying KHBE scheme.

– Receiver i runs BKeyGen and obtains di(j) ←
BKeyGen(j, SKi) for j = 1, · · · , n. The public
key of the receiver i in the AHBE scheme is set
as

Ki = {di(j)|1 ≤ i 6= j ≤ n} ∪ {PKi}.

Note that di(i) is not published.

– Set receiver i’s private key as di(i) which will
be used for later decryption regarding the AHBE
scheme.

• AHBEnc. This procedure works as follows.
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– Decide the receiver set R ⊆ {1, · · · , n}.
– Extract the broadcast public key:

K =
⊗
i∈R

PKi.

Since PKi’s are public, any sender can retrieve
them and compute the group public key K for
broadcast.

– Invoke the underlying KHBE encryption algorith-
m BEnc(·) to compute the header

〈Hdr, k〉 ← BEnc(R,K).

Send (R, Hdr) to the receivers.

• AHBDec Due to the key homomorphism of the un-
derlying KHBE scheme, the receiver i ∈ R can extract
a decryption key under the AHBE public key K by
computing

d(i) = dj(i)
⊙

[

j 6=i⊙
j∈R

dj(i)] =
⊙
j∈R

dj(i).

Note that di(i) is not published and only the receiv-
er i in the receiver set R can compute it. It is easy
to see that d(i) =

⊙
j∈R

dj(i) is a valid decryption key

under the aggregated public key K =
⊗
i∈R

PKi of the

underlying KHBE scheme. Hence, d(i) can be used
by user i to decrypt header encrypted by K, provided
that user i is in the receiver set. To decrypt the header,
each receiver i ∈ R can invoke the KHBE decryption
algorithm BDec(·) and compute

k = BDec(R, i, d(i), Hdr,K).

Theorem 2. The generic AHBE scheme has semi-static
security if the underlying KHBE has adaptive security.

Proof. We construct an algorithm B to break the semi-
static security of the underlying KHBE scheme by invoking
the attacker A against our AHBE scheme.

In the Initialization phase, the attacker A commits to a set
R̃ ⊆ {1, · · · , n}.

In the Setup phase, B randomly selects i∗ ∈ R̃. B setups
the semi-static security game with the KHBE challenger CH.
CH will return the system parameters and a KHBE public
key denoted by PKi∗ . Then B queries CH for the secret key
di∗(j) for each index j /∈ R̃. For i ∈ {1, · · · , n}\{i∗}, B gen-
erates the KHBE public/private key (PKi, SKi) as the real
scheme, and can compute the corresponding decryption key
di(j) for each index j ∈ {1, · · · , n}\{i}. For i = 1, · · · , n, B
provides A with Ki = {di(j)|1 ≤ i 6= j ≤ n}∪ {PKi} as the
n receivers’ public keys of the AHBE scheme. Clearly, the
simulation of each user’s public key in the AHBE scheme is
perfect.

In the Corruption phase, the attacker A can query the
private key of any user i ∈ {1, · · · , n} \ R̃. Since the pub-

lic/private key pairs of the users outside of R̃ have been
generated by following the real scheme, B can answer the
corruption queries correctly.

In the Challenge phase, the attacker A specifies a chal-
lenge set R∗ ⊆ R̃. If i∗ /∈ R∗, B claims failure because in

this case, A’s answer will not help B to break the underly-
ing KHBE scheme. Else if i∗ ∈ R∗, B forwards R∗ to CH
and requests for a challenge KHBE header from CH. B will
obtain 〈Hdr∗, kb〉 under 〈R∗, PKi∗〉. The task of B is to effi-
ciently covert 〈Hdr∗, kb〉 into a well-formed challenge under
〈R∗,

⊗
i∈R∗ PKi〉 to attacker A.

To this end, B computes BDec(R∗, i∗, di(i∗), Hdr∗, PKi) =
kb,i for i 6= i∗ and i ∈ R∗, noting that for all j ∈ R∗, we have
that BDec(R∗, j, di(j), Hdr∗, PKi) = kb,i due to the second

property of the key homomorphism. B sets k∗b = kb ©i∈R∗
i 6=i∗

kb,i and sends 〈Hdr∗, k∗b 〉 to challenge A. Due to the key
homomorphism, if kb is hidden in Hdr∗ under 〈R∗, PKi∗〉,
then k∗b is hidden in Hdr∗ under 〈R∗,

⊗
i∈R∗ PKi〉; else k∗b

is independent of Hdr∗ as a header under the aggregated
public key

⊗
i∈R∗ PKi. Hence, 〈Hdr∗, k∗b 〉 is a well-formed

challenge to A and has the same distribution as that in the
real world.

In the Guess phase, the attacker A will output a guess bit
b′. B directly uses b′ to answer the KHBE challenge. Since
k∗b is a message encryption key hidden in the header Hdr∗

under the aggregated public key
⊗

i∈R∗ PKi if and only if
kb is a message encryption key hidden in the header Hdr∗

under the KHBE public key PKi∗ , B answers correctly if
and only if A’s guess is correct. Hence, if A breaks our
AHBE scheme with advantage ε, then B breaks the under-
lying KHBE scheme with advantage at least 1

n
ε, where the

factor 1
n

of the reduction loss is introduced by the event

i∗ /∈ R∗ which happens with probability at most 1
n

. As to
time complexity, the additional overhead for B is to gener-
ate the public keys for n receivers. This extra overhead is
O(n2).

The above construction only achieves semi-static security.
However, by applying the generic transformation from semi-
static security to fully-adaptive security in Section 3.3, the
above scheme can be readily improved to meet fully-adaptive
security, at a cost of double public keys and ciphertexts.

4.3 An Implementation

4.3.1 Adaptively secure version of the Gentry-Waters
BE scheme

Gentry and Waters presented a regular BE with semi-
static security and a transformation from semi-static securi-
ty to adaptive security [18]. In the following, we provide an
adaptively secure version of the Gentry-Waters BE scheme
by implementing their transformation. Let g, hi,s(i ∈ {1, · · · ,
n}, s ∈ {0, 1}) be independent generators of bilinear group
G of prime order p. The scheme is as follows.

• BSetup(n, n): Randomly select x in Zp and compute
gx, e(g, g)x. The BE public key is PK = e(g, g)x and
the BE public key is SK = gx.

• BKeyGen(i, SK): Run ri ← Zp, si ← {0, 1} and output
user i’s private key di = 〈di,0, · · · , di,n, si〉 :

di,0 = g−ri , di,i = gxhrii,si , di,j = hrij,si(∀j 6=i).

• BEnc(R, PK): Randomly pick t in Zp and compute
Hdr = (c1, c2, c3) :

c1 = gt, c2 = (
∏
j∈R

hj,0)t, c3 = (
∏
j∈R

hj,1)t.
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Set k = e(g, g)xt and output 〈Hdr, k〉. Send 〈R, Hdr〉
to receivers.

• BDec(R, i, di, Hdr, PK): If i ∈ R, receiver i extract k
from Hdr with private key di by computing

e(di,i
∏
j∈R\{i} di,j , c1)e(di,0, c2)

= e(
∏
j∈R di,j , c1)e(di,0, c2)

= e(gx
∏
j∈R h

ri
j,si

), gt)(g−ri , (
∏
j∈R hj,si)

t)

= e(g, g)xt = k.

Note that the header component (
∏
j∈R hj,1−si)

t is not
used in the decryption procedure. It is just a trick for
their security proof.

We define�,⊗,© by d1i�d2i = 〈d1i,0d2i,0 , · · · , d1i,nd2i,n〉,
PK1⊗PK2 = PK1PK2, k1©k2 = k1k2, respectively. Then
we have following lemma.

Lemma 1. For any positive integers n, the following claim-
s hold. (1) The above BE scheme has semi-static security
under the decision n-BDHE assumption. (2) The above BE
scheme is key homomorphic.

Proof. Claim 1 follows from a combination of Theorem
2.2 and Theorem 3.2 in [18]. Claim 2 follows from a straight-
forward verification.

4.3.2 A Basic AHBE Instantiation
Following the generic construction, we instantiate an AHBE

scheme with constant size ciphertexts.

• KeyGen. Assume the same system parameters as
the above KHBE scheme. Then the KeyGen algorithm
works as follows.

– For receiver i ∈ {1, · · · , n}, invoke BSetup to gen-
erate a public-private key pair

(PKi, SKi) = (e(g, g)xi , gxi)

of the underlying KHBE scheme for randomly
chosen xi in Zp.

– Receiver i runs BKeyGen and obtains di(j) ←
BKeyGen(j, SKi) for i, j, l = 1, · · · , n, where di(j) =
〈di,0,j , · · · , di,n,j〉:

di,0,j = g−ri,j , di,j,j = gxih
ri,j
j,si

, di,l,j = h
ri,j
l,si

(∀l 6=j)

for some ri,j ← Zp, si ← {0, 1}. Receiver i’s pri-
vate key is di(i) for the AHBE decryption.

– Output the receiver i’s public key

Ki = {di(j)|1 ≤ i 6= j ≤ n} ∪ {PKi}

of the resulting AHBE scheme.

• AHBEnc. This procedure works as follows.

– Decide the receiver set R ⊆ {1, · · · , n}.
– Extract the broadcast public key for the receivers

in R:

K =
∏
i∈R

PKi = e(g, g)
∑

i∈R xi .

Since PKi’s are public, any sender can retrieve
them and compute the group public key K for
broadcast.

– Invoke the underlying KHBE encryption algorith-
m BEnc(·) to compute the headerHdr = BEnc(K, k)
= (c1, c2, c3):

c1 = gt, c2 = (
∏
j∈R

hj,0)t, c3 = (
∏
j∈R

hj,1)t,

where t is randomly chosen from Zp. Set

k = Kt = e(g, g)t
∑

i∈R xi

and send (R, Hdr) to the receivers.

• AHBDec Receiver i ∈ R can extract a decryption key
under the AHBE public key K by computing

d(i) = di(i)
⊙

[
j 6=i⊙
j∈R

dj(i)] =
⊙
j∈R

dj(i)

= 〈
∏
j∈R dj,0,i, · · · ,

∏
j∈R dj,n,i〉.

Here, di(i) is not published and only the receiver i in
the receiver set R can compute it. Due to the key
homomorphism of the underlying KHBE scheme, it is
easy to see that d(i) =

⊙
j∈R

dj(i) is a valid decryption

key under the aggregated public key K =
∏
j∈R

PKj

of the underlying KHBE scheme. Hence, d(i) can be
used by user i to decrypt the header under 〈R,K〉. To
decrypt the header, each receiver i ∈ R can invoke the
KHBE decryption algorithm BDec(·) and compute

k = BDec(R, i, d(i), Hdr,K).

From Theorems 2 and Lemma 1, we have the following
claim regarding the security of the instantiation. The de-
tailed proof is omitted to avoid repetition.

Corollary 1. The above ad hoc broadcast scheme has semi-
static security in the standard model under the decision B-
DHE assumption.

The above construction only achieves semi-static securi-
ty. One can follow the generic conversion in Section 3.3 to
obtain fully-adaptive security.

4.4 Tradeoff between Ciphertexts and Public
keys

In the above basic AHBE construction, the public key of
each user consists of O(n2) elements and the private key in-
cludes O(n) elements. This is a heavy burden for an AHBE
system of realistic scale, although the ciphertext is of con-
stant size. In the following, we illustrate an efficient tradeoff
between the public/private keys and ciphertexts.

Let n = n3
1 and we divide the maximal receiver group

{i1, · · · , in} into n2
1 subgroups each of which hosts at most

n1 receivers. Then we apply our basic AHBE scheme to
each subgroup concurrently when a sender wants to broad-
cast to a set of users R ⊆ {i1, · · · , in}. After employing
this approach, the public key of each user consists of O(n2

1)
elements and the secret key contains O(n1) elements, at a
cost that the AHBE ciphertext includes O(n2

1) KHBE ci-
phertexts. Hence, the resulting AHBE scheme has sub-linear

complexity, i.e., O(n
2
3 ) size public keys and ciphertexts, and

O(n
1
3 ) size private keys. This performance is comparable to

the up-to-date conventional broadcast schemes [2, 4, 5, 18]
which exploit a similar subgroup partition approach to ob-
tain sub-linear complexity O(

√
n).
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5. CONCLUSION
We proposed the notion of AHBE which allows a sender to

dynamically broadcast to any ad hoc group without the help
of a trusted dealer. We presented the first AHBE schemes
which are proven to be adaptively secure in the standard
model under some well-understood computational assump-
tions. The scheme enjoys non-interactive decryption and has
sub-linear complexity comparable to the up-to-date broad-
cast systems requiring a trusted dealer to initialize the sys-
tem.
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