From 7b0b525cdf77edd19fa091b17de0b25cf83de32f Mon Sep 17 00:00:00 2001 From: Alexander Munch-Hansen Date: Tue, 24 Dec 2019 17:26:44 +0100 Subject: [PATCH] More corrections --- report.tex | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/report.tex b/report.tex index 4b0c0b3..4241387 100644 --- a/report.tex +++ b/report.tex @@ -134,7 +134,7 @@ We will cover an identity based encryption scheme which illustrates a basic usag \item[Encrypt$(\text{params}, \mathtt{ID}, M)$] Takes the system parameters, \texttt{ID}, and $M \in \mathcal{M}$. Returns some ciphertext $C \in \mathcal{C}$. \item[Decrypt$(\text{params}, C, d)$] Takes the system parameters, some private key $d$ and $C \in \mathcal{C}$. Returns the plaintext $M \in \mathcal{M}$. \item[Correctness] Naturally, these algorithms must satisfy that: -$$ \forall M \in M\ :\ \text{Decrypt}(\text{params}, C, d) = M\quad \text{where}\quad C = \text{Encrypt}(\text{params}, ID, M)$$ +$$ \forall M \in M\ :\ \text{Decrypt}(\text{params}, C, d) = M\quad \text{where}\quad C = \text{Encrypt}(\text{params}, ID, M)$$ I.e. for all messages $M \in \mathcal{M}$, if this is encrypted for some id \ID, then it decrypts to the same message $M$, if the correct decryption key $d$ for the \ID is used. \end{description}