138 lines
3.8 KiB
Python
138 lines
3.8 KiB
Python
# Concept: Create 8 PKs where each represent a bloodtype. Let 7 of them be created by OGen and 1 of them by KeyGen.
|
|
# The one represents our bloodtype. Bob will then encrypt 8 values using these PKs, where each value repredents
|
|
# A truth value, thus either true or false, s.t. each cipher is an entry in the bloodtype comptability matrix.
|
|
|
|
from secrets import SystemRandom
|
|
import numpy as np
|
|
from crypto.week1 import BloodType, convert_from_string_to_enum, blood_cell_compatibility_lookup
|
|
|
|
# We can't encrypt 0, so we have to index from 1
|
|
convert_bloodtype_to_index = {
|
|
BloodType.O_NEGATIVE: 1,
|
|
BloodType.O_POSITIVE: 2,
|
|
BloodType.A_NEGATIVE: 3,
|
|
BloodType.A_POSITIVE: 4,
|
|
BloodType.B_NEGATIVE: 5,
|
|
BloodType.B_POSITIVE: 6,
|
|
BloodType.AB_NEGATIVE: 7,
|
|
BloodType.AB_POSITIVE: 8,
|
|
}
|
|
|
|
|
|
class ElGamal:
|
|
def __init__(self, g, q, p):
|
|
self.gen_ = g
|
|
self.order = q
|
|
self.p = p
|
|
self.pk = None
|
|
self.sk = None
|
|
|
|
def gen_key(self):
|
|
key = SystemRandom().randint(1, self.order)
|
|
while np.gcd(self.order, key) != 1:
|
|
key = SystemRandom().randint(1, self.order)
|
|
return key
|
|
|
|
def gen(self, sk):
|
|
h = (self.gen_**sk) % self.order
|
|
self.sk = sk
|
|
self.pk = (self.gen_, h)
|
|
return self.pk
|
|
|
|
def enc(self, m, pk):
|
|
# sample random r \in Zq
|
|
r = SystemRandom().randint(1, self.order)
|
|
g, h = pk
|
|
|
|
s = (h**r) % self.order
|
|
p = (g**r) % self.order
|
|
c = s * m
|
|
return c, p
|
|
|
|
def dec(self, c):
|
|
c1, c2 = c
|
|
h = (c2**self.sk) % self.order
|
|
m = c1 / h
|
|
return m
|
|
|
|
def ogen(self):
|
|
s = SystemRandom().randint(1, self.order)
|
|
h = s**2 % self.order
|
|
return self.gen_, h
|
|
|
|
|
|
class Alice:
|
|
def __init__(self, bloodtype, elgamal):
|
|
self.elgamal = elgamal
|
|
|
|
self.sk = elgamal.gen_key()
|
|
self.pk = elgamal.gen(self.sk)
|
|
self.b = list(convert_bloodtype_to_index.keys()).index(bloodtype)+1
|
|
self.fake_pks = [self.elgamal.ogen()
|
|
for _ in range(7)]
|
|
|
|
def send_pks(self):
|
|
all_pks = self.fake_pks
|
|
all_pks.insert(self.b-1, self.pk)
|
|
return all_pks
|
|
|
|
def retrieve(self, ciphers):
|
|
mb = self.elgamal.dec(ciphers[self.b-1])
|
|
return mb
|
|
|
|
|
|
class Bob:
|
|
def __init__(self, bloodtype, elgamal):
|
|
self.bloodtype = list(convert_bloodtype_to_index.keys()).index(bloodtype)
|
|
self.truth_vals = []
|
|
self.elgamal = elgamal
|
|
self.pks = None
|
|
for donor in BloodType:
|
|
truth_val = blood_cell_compatibility_lookup(bloodtype, donor)
|
|
self.truth_vals.append(truth_val)
|
|
|
|
def receive_pks(self, pks):
|
|
self.pks = pks
|
|
|
|
def transfer_messages(self):
|
|
ciphers = []
|
|
for idx, truth_val in enumerate(self.truth_vals):
|
|
pk = self.pks[idx]
|
|
c = self.elgamal.enc(truth_val, pk)
|
|
ciphers.append(c)
|
|
return ciphers
|
|
|
|
|
|
def run(donor : BloodType, recipient : BloodType):
|
|
p = 199
|
|
q = 2 * p + 1
|
|
g = SystemRandom().randint(2, q)
|
|
|
|
elgamal = ElGamal(g, q, p)
|
|
|
|
alice = Alice(donor, elgamal)
|
|
bob = Bob(recipient, elgamal)
|
|
|
|
bob.receive_pks(alice.send_pks())
|
|
pls = alice.retrieve(bob.transfer_messages())
|
|
|
|
return bool(pls)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
# 199 is a large prime
|
|
|
|
green = 0
|
|
red = 0
|
|
for i, recipient in enumerate(BloodType):
|
|
for j, donor in enumerate(BloodType):
|
|
z = run(donor, recipient)
|
|
lookup = blood_cell_compatibility_lookup(recipient, donor)
|
|
if lookup == z:
|
|
green += 1
|
|
else:
|
|
print(f"'{BloodType(donor).name} -> {BloodType(recipient).name}' should be {lookup}.")
|
|
red += 1
|
|
print("Green:", green)
|
|
print("Red :", red)
|