crypto_computing/week4.py
2019-10-02 20:07:34 +02:00

196 lines
5.6 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

# Concept: Create 8 PKs where each represent a bloodtype. Let 7 of them be created by OGen and 1 of them by KeyGen.
# The one represents our bloodtype. Bob will then encrypt 8 values using these PKs, where each value repredents
# A truth value, thus either true or false, s.t. each cipher is an entry in the bloodtype comptability matrix.
import math
import random
from secrets import SystemRandom
from .week1 import BloodType, blood_cell_compatibility_lookup
bloodtypes = {b: i for i, b in enumerate(BloodType, start=1)} # we can't encrypt 0, so we have to index from 1
class ElGamal:
def __init__(self, g, q, p):
self.gen_ = g
self.order = q
self.p = p
self.pk = None
self.sk = None
def gen_key(self):
key = SystemRandom().randint(1, self.order)
while math.gcd(self.order, key) != 1:
key = SystemRandom().randint(1, self.order)
return key
def gen(self, sk):
h = pow(self.gen_, sk, self.order)
self.sk = sk
self.pk = (self.gen_, h)
return self.pk
def enc(self, m, pk):
# sample random r \in Zq
r = SystemRandom().randint(1, self.order)
g, h = pk
s = pow(h, r, self.order)
p = pow(g, r, self.order)
c = s * m
return c, p
def dec(self, c):
c1, c2 = c
h = pow(c2, self.sk, self.order)
m = c1 / h
return m
def ogen(self):
s = SystemRandom().randint(1, self.order)
h = pow(s, 2, self.order)
return self.gen_, h
class Alice:
def __init__(self, bloodtype, elgamal):
self.elgamal = elgamal
self.sk = elgamal.gen_key()
self.pk = elgamal.gen(self.sk)
self.b = bloodtypes[bloodtype]
self.fake_pks = [self.elgamal.ogen() for _ in range(7)]
def send_pks(self):
all_pks = self.fake_pks
all_pks.insert(self.b-1, self.pk)
return all_pks
def retrieve(self, ciphers):
#print(ciphers)
mb = self.elgamal.dec(ciphers[self.b-1])
# Bob sends 1 for false, 2 for true, so we have to subtract 1 here
return mb - 1
class Bob:
def __init__(self, bloodtype, elgamal):
self.bloodtype = bloodtypes[bloodtype]
self.truth_vals = []
self.elgamal = elgamal
self.pks = None
# Bob needs his row of the truth table, to create the 8 messages
for donor in BloodType:
truth_val = blood_cell_compatibility_lookup(bloodtype, donor)
self.truth_vals.append(truth_val)
def receive_pks(self, pks):
self.pks = pks
def transfer_messages(self):
ciphers = []
for idx, truth_val in enumerate(self.truth_vals):
pk = self.pks[idx]
c = self.elgamal.enc(truth_val + 1, pk) # + 1 since Bob can't send 0, as it will encrypt to 0
ciphers.append(c)
return ciphers
def is_prime(n: int, k: int) -> bool:
"""
Miller-Rabin Primality test.
Adapted from pseudo-code at https://en.wikipedia.org/wiki/Miller%E2%80%93Rabin_primality_test.
:param n: An odd integer to be tested for primality.
:param k: The number of rounds of testing to perform.
:return: True if n is 'probably prime', False otherwise if n is composite.
"""
# write n as 2r·d + 1 with d odd (by factoring out powers of 2 from n 1)
d = n - 1
r = 0
while d % 2 == 0:
d >>= 1
r += 1
for i in range(k): # witnessLoop
continue_wl = False
a = random.randint(2, n - 2)
x = pow(a, d, n)
if x == 1 or x == n - 1:
continue
for j in range(r - 1):
x = pow(x, 2, n)
if x == n - 1:
continue_wl = True
break
if continue_wl:
continue
return False
return True
def gen_prime(b: int, k: int = 4) -> int:
"""
Generate strong probable prime by drawing integers at random until one passes the is_prime test.
Adapted from pseudo-code at https://en.wikipedia.org/wiki/Miller%E2%80%93Rabin_primality_test.
:param b: The number of bits of the result.
:param k: The number of rounds of testing to perform.
:return: a strong probable prime.
"""
while True:
n = random.randint(2**(b-1), (2**b)-1)
if n % 2 == 0:
continue
# Check that the future value of q is prime
if is_prime(n, k) and is_prime(2*n+1, k):
return n
def find_primitive_root(p):
if p == 2:
return 1
p1 = 2
p2 = (p - 1) // p1
# test random g's until one is found that is a primitive root mod p
while True:
g = SystemRandom().randint(2, p - 1)
if not (pow(g, (p - 1) // p1, p) == 1):
if not pow(g, (p - 1) // p2, p) == 1:
return g
def run(donor: BloodType, recipient: BloodType):
p = gen_prime(128)
q = 2 * p + 1
g = find_primitive_root(p)
#print("p:", p, "q:", q, "g:", g)
elgamal = ElGamal(g, q, p)
alice = Alice(donor, elgamal)
bob = Bob(recipient, elgamal)
bob.receive_pks(alice.send_pks())
pls = alice.retrieve(bob.transfer_messages())
return bool(pls)
def main():
green = 0
red = 0
for i, recipient in enumerate(BloodType):
for j, donor in enumerate(BloodType):
z = run(donor, recipient)
lookup = blood_cell_compatibility_lookup(recipient, donor)
if lookup == z:
green += 1
else:
print(f"'{BloodType(donor).name} -> {BloodType(recipient).name}' should be {lookup}.")
red += 1
print("Green:", green)
print("Red :", red)