Miller-Rabin prime gen for week4.
This commit is contained in:
parent
d688640a41
commit
2d2a3e7f95
|
@ -1,3 +1,3 @@
|
|||
from .week2 import main
|
||||
from .week4 import main
|
||||
|
||||
main()
|
2
week3.py
2
week3.py
|
@ -3,7 +3,7 @@ from __future__ import annotations
|
|||
|
||||
import random
|
||||
|
||||
from crypto.week1 import BloodType, blood_cell_compatibility_lookup
|
||||
from .week1 import BloodType, blood_cell_compatibility_lookup
|
||||
|
||||
|
||||
class Protocol:
|
||||
|
|
101
week4.py
101
week4.py
|
@ -1,22 +1,13 @@
|
|||
# Concept: Create 8 PKs where each represent a bloodtype. Let 7 of them be created by OGen and 1 of them by KeyGen.
|
||||
# The one represents our bloodtype. Bob will then encrypt 8 values using these PKs, where each value repredents
|
||||
# A truth value, thus either true or false, s.t. each cipher is an entry in the bloodtype comptability matrix.
|
||||
|
||||
import math
|
||||
import random
|
||||
from secrets import SystemRandom
|
||||
import numpy as np
|
||||
from crypto.week1 import BloodType, blood_cell_compatibility_lookup
|
||||
|
||||
# We can't encrypt 0, so we have to index from 1
|
||||
convert_bloodtype_to_index = {
|
||||
BloodType.O_NEGATIVE: 1,
|
||||
BloodType.O_POSITIVE: 2,
|
||||
BloodType.A_NEGATIVE: 3,
|
||||
BloodType.A_POSITIVE: 4,
|
||||
BloodType.B_NEGATIVE: 5,
|
||||
BloodType.B_POSITIVE: 6,
|
||||
BloodType.AB_NEGATIVE: 7,
|
||||
BloodType.AB_POSITIVE: 8,
|
||||
}
|
||||
from .week1 import BloodType, blood_cell_compatibility_lookup
|
||||
|
||||
bloodtypes = {b: i for i, b in enumerate(BloodType, start=1)} # we can't encrypt 0, so we have to index from 1
|
||||
|
||||
|
||||
class ElGamal:
|
||||
|
@ -29,7 +20,7 @@ class ElGamal:
|
|||
|
||||
def gen_key(self):
|
||||
key = SystemRandom().randint(1, self.order)
|
||||
while np.gcd(self.order, key) != 1:
|
||||
while math.gcd(self.order, key) != 1:
|
||||
key = SystemRandom().randint(1, self.order)
|
||||
return key
|
||||
|
||||
|
@ -67,12 +58,8 @@ class Alice:
|
|||
|
||||
self.sk = elgamal.gen_key()
|
||||
self.pk = elgamal.gen(self.sk)
|
||||
# There is 100% a better way to get the index, also, it's to avoid encryption 0. Coincidentally, it's
|
||||
# not an issue when we do it, as O- is in the 0th index and this bloodtype can donate to everyone
|
||||
# so the decryption bugging, it not an issue
|
||||
self.b = list(convert_bloodtype_to_index.keys()).index(bloodtype)+1
|
||||
self.fake_pks = [self.elgamal.ogen()
|
||||
for _ in range(7)]
|
||||
self.b = bloodtypes[bloodtype]
|
||||
self.fake_pks = [self.elgamal.ogen() for _ in range(7)]
|
||||
|
||||
def send_pks(self):
|
||||
all_pks = self.fake_pks
|
||||
|
@ -80,15 +67,15 @@ class Alice:
|
|||
return all_pks
|
||||
|
||||
def retrieve(self, ciphers):
|
||||
print(ciphers)
|
||||
#print(ciphers)
|
||||
mb = self.elgamal.dec(ciphers[self.b-1])
|
||||
# Bog sends 1 for false, 2 for true, so we have to subtract 1 here
|
||||
return mb-1
|
||||
# Bob sends 1 for false, 2 for true, so we have to subtract 1 here
|
||||
return mb - 1
|
||||
|
||||
|
||||
class Bob:
|
||||
def __init__(self, bloodtype, elgamal):
|
||||
self.bloodtype = list(convert_bloodtype_to_index.keys()).index(bloodtype)
|
||||
self.bloodtype = bloodtypes[bloodtype]
|
||||
self.truth_vals = []
|
||||
self.elgamal = elgamal
|
||||
self.pks = None
|
||||
|
@ -104,16 +91,66 @@ class Bob:
|
|||
ciphers = []
|
||||
for idx, truth_val in enumerate(self.truth_vals):
|
||||
pk = self.pks[idx]
|
||||
# Bob can't send 0, as it will encrypt to 0
|
||||
c = self.elgamal.enc(truth_val+1, pk)
|
||||
c = self.elgamal.enc(truth_val + 1, pk) # + 1 since Bob can't send 0, as it will encrypt to 0
|
||||
ciphers.append(c)
|
||||
return ciphers
|
||||
|
||||
|
||||
def run(donor : BloodType, recipient : BloodType):
|
||||
p = 15485863
|
||||
def is_prime(n: int, k: int) -> bool:
|
||||
"""
|
||||
Miller-Rabin Primality test.
|
||||
Adapted from pseudo-code at https://en.wikipedia.org/wiki/Miller%E2%80%93Rabin_primality_test.
|
||||
|
||||
:param n: An odd integer to be tested for primality.
|
||||
:param k: The number of rounds of testing to perform.
|
||||
:return: True if n is 'probably prime', False otherwise if n is composite.
|
||||
"""
|
||||
# write n as 2r·d + 1 with d odd (by factoring out powers of 2 from n − 1)
|
||||
d = n - 1
|
||||
r = 0
|
||||
while d % 2 == 0:
|
||||
d >>= 1
|
||||
r += 1
|
||||
|
||||
for i in range(k): # witnessLoop
|
||||
continue_wl = False
|
||||
a = random.randint(2, n - 2)
|
||||
x = pow(a, d, n)
|
||||
if x == 1 or x == n - 1:
|
||||
continue
|
||||
for j in range(r - 1):
|
||||
x = pow(x, 2, n)
|
||||
if x == n - 1:
|
||||
continue_wl = True
|
||||
break
|
||||
if continue_wl:
|
||||
continue
|
||||
return False
|
||||
return True
|
||||
|
||||
|
||||
def gen_prime(b: int, k: int = 10) -> int:
|
||||
"""
|
||||
Generate strong probable prime by drawing integers at random until one passes the is_prime test.
|
||||
Adapted from pseudo-code at https://en.wikipedia.org/wiki/Miller%E2%80%93Rabin_primality_test.
|
||||
|
||||
:param b: The number of bits of the result.
|
||||
:param k: The number of rounds of testing to perform.
|
||||
:return: a strong probable prime.
|
||||
"""
|
||||
while True:
|
||||
n = random.randint(2**(b-1), (2**b)-1)
|
||||
if n % 2 == 0:
|
||||
continue
|
||||
if is_prime(n, k):
|
||||
return n
|
||||
|
||||
|
||||
def run(donor: BloodType, recipient: BloodType):
|
||||
p = gen_prime(128)
|
||||
q = 2 * p + 1
|
||||
g = SystemRandom().randint(2, q)
|
||||
#print("p:", p, "q:", q, "g:", g)
|
||||
|
||||
elgamal = ElGamal(g, q, p)
|
||||
alice = Alice(donor, elgamal)
|
||||
|
@ -125,11 +162,7 @@ def run(donor : BloodType, recipient : BloodType):
|
|||
return bool(pls)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
#z = run(BloodType.O_POSITIVE, BloodType.A_NEGATIVE)
|
||||
#print(z)
|
||||
#exit()
|
||||
|
||||
def main():
|
||||
green = 0
|
||||
red = 0
|
||||
for i, recipient in enumerate(BloodType):
|
||||
|
|
Loading…
Reference in New Issue
Block a user