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Overview

Aspects of security* 
Venues of attack 
Techniques for anonymity & censorship resistance 
Securing a DHT

*This is not the interesting part to talk about during the exam
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Dangers of distributed systems

Trust 
who can you trust? 

Identity theft 
pretending to be you (or someone you trust) 

Privacy 
preventing others listening in on the conversation 

Censorship & attacks 
denying you the right to know
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The Internet

The Internet is vast and not at all safe 
data packets going from machine to machine before they reach you 

Many standards and protocols established back in 
safer days 

SMTP, NNTP, ftp, telnet, ... 

There are plenty of criminals, who would delight in 
taking over your machine and stealing your data 

see iloveyou, Code Red, SQL Slammer, SoBig.F, Swen, Storm, NotPetya, WannaCry, etc. 
not to mention DDoS, industrial espionage, etc.
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Who can you trust?

Surely you can trust well-established Web sites? 

Several important open source ftp servers have been 
‘owned’ over the years 

thus leaving black hats free to insert code of their own in popular open source 
projects... (example: savannah.gnu.org) 

This also happened for Microsoft some years ago  

Numerous sites have been hacked for credit card 
numbers etc. 

Spoofing of URLs: www.paypa1.com 
Unicode URLs have made everything more interesting
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Cryptography

Fact: Messages can be intercepted. But intercepted 
data is worthless, if the interceptor cannot read it 

(the people involved are traditionally known as Alice, Bob, and Carol) 

Cryptography is very old, and has been based on a 
long number of techniques 

today, cryptography is based on advanced, hard-to-solve mathematical problems 

Regardless of the method used, a key is used to signify 
how the plain text is transformed into cipher text 

and for some reason, it always involves Alice and Bob trying to communicate securely 
with Carol trying to eavesdrop… 
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Symmetric cryptography

The same key is used to encrypt and decrypt the 
message 

Advantages 
symmetric cryptography is fast 

Disadvantages 
the key must be securely exchanged between Alice and Bob 
if the key is compromised, the entire communication is instantly readable
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Asymmetric cryptography

Keys come in pairs: 
a public key known to all 
a private (secret) key known only by the user 

A message encrypted with the public key can be 
decrypted only by the private key 

so if Alice encrypts a message with Bob's public key, only Bob can decrypt it with his 
private key 

A message signed with the private key can be verified 
only by the public key 

so if Alice signs a message with her private key, all can verify (using Alice's public key) 
that Alice is the author
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Asymmetric cryptography

Advantages 
as the private key is never shared, the system is secure 
the system can also be used to authenticate (or “digitally sign”) messages 

Disadvantages 
only as secure as the private key... 
significantly slower than symmetric cryptography 
• not as much a drawback as you might think
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Establishing trust

How does Alice know Bob is really Bob, and not Carol 
claiming to be Bob? 

Asymmetric cryptography often relies on CAs – 
Certification Authorities 

these, using out-of-band methods, establish the correct identity of Bob, and assigns a 
(signed) certificate to Bob 
Alice can then verify that some CA has vouchsafed Bob, and if she trusts the CA, she 
can trust Bob 

A problem with these certificates is the cost… 
at least until Let’s Encrypt emerged (https://letsencrypt.org) 
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Establishing trust

A less centralised approach is taken by PGP (Pretty 
Good Privacy), where Bob relies on associates to 
confirm his identity 

users sign signatures of people they know (and have verified) 
if Alice knows (and trusts) any of these associates, she can trust Bob's identity 
“small-world” experiments show typically at most six degrees of separation between 
any two persons 
trust decreases over distance 

GPG is the open source equivalent
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Symmetric/asymmetric cryptography

Asymmetric cryptography is used for the initial 
communication to establish identity and (securely) 
exchange a randomly generated symmetric key 

This is the method used by TLS used in, e.g., https 
the Web server provides the Web browser with its CA signed certificate (the browser 
checks this against its installed CA root certificates) 
the browser generates a random key, encrypts it with the server’s public key, and 
returns it to the server 
as only the server can decrypt the key, the server and browser can initiate a securely 
symmetric (i.e., fast) encrypted session
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Secure hashes

Secure (or cryptographic) hashes are used to verify 
the integrity of a message 

most common used to be MD5 (128 bits) and SHA-1 (160 bits) 

It is thought computationally infeasible to create two 
different messages with identical secure hash codes (it 
requires brute force and 2128 or 2160 are big) 

This is no longer true... 
• MD5 and SHA-1 have both been weakened. Neither are fatally compromised, but 

methods have been devised to generate messages matching a given hash code. 
Use SHA256 or WHIRLPOOL instead
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Secure hashes

Thus, if the (secure) hash code of a message is known, 
we can check whether the message has been modified 
by computing the hash code of the message ourselves 
and comparing the results 

Given the quality of the secure hash, it is just as good 
(and much faster) to sign the (compact) hash code 
with your private key for authentication as signing the 
entire message
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Security – a purely technical problem?

Security can be addressed through a number of 
technical means 

However, these valiant efforts are all for naught 
in the face of inexperience and nigh terminal cluelessness 

Some of the most successful black hat hackers have 
operated, not through absurd Hollywood computer 
guru excellence, but through social engineering 

(hacking being considerably easier, if you can get people to tell you their password)
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Aspects of security 
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Securing a DHT
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How to attack a P2P system?

Attacks against P2P systems can broadly be divided 
into 

(Distributed) Denial of Service 
• requesting 
• pushing 

Malicious peers 
Sybil 
Shadow
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(Distributed) Denial of Service

Overload the system 
often using a swarm of captured machines (botnet) 

Difficult to resist, if attackers are resource rich 

Defences: 
minimise cost of losing any individual peers 
make it difficult to identify important peers 
optimise traffic so that only minimal part of network is affected 
do not let new (bogus) data overwrite old (good) data
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Malicious peers

Malicious peers can 
reroute traffic in wrong directions 
claim other peers are down 
poison routing tables of others 
corrupt transferred data 
create a high churn rate 
time out to decrease overall performance 

Defences 
do not rely on only one path or line of inquiry 
verify peers and data 
favour long living peers
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Sybil attack

Create a lot of fake peers and join the network 
easy to do, if you let a machine masquerade as many 

Using all these these peers in concert, traffic can be 
subverted or surveilled 

Defences 
make joining expensive 
ensure that paths on the overlay network involve multiple subnets 
• sybils are likely to originate from the same subnet  
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Eclipse attack

Peers are eclipsed by other, malicious peers that insert 
themselves between good peers and the network 

the good peers’ contribution to the network is subverted 
good peers seem to disappear from the network 

Defences 
ensure that a peer cannot freely choose its position on the network 
have several paths available to the network
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Crowds: defeating Web tracking

A number of members participate in a crowd, and 
they are known to each other 

if a member, Bob, wishes to retrieve a Web page, Bob sends a request for the URL to a 
random member, Carol (using symmetric encryption). Carol can then choose to 
retrieve the Web page or randomly forward the request to another crowd member, 
Alice, and so on. Eventually a member chooses to retrieve the Web page, and the Web 
page is returned along the request's path
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Mix networks: defeating traffic analysis

Mix networks are used to ensure that a sender and 
receiver cannot both be known 

A mix network consists of a number of known mixers
—routers with asymmetric key pairs
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Mix networks: defeating traffic analysis

A sender chooses a path through the mix network (m1, 
..., mn), and encrypts the message (with some final 
destination) with mn’s public key, encrypts this 
message (with mn-1→mn) with mn-1’s public key and so 
on 

The message is then sent to m1, who decrypts the 
message using its private key, and sends it to the next 
mixer, who repeats the process 

This is also known as onion routing
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Mix networks: defeating traffic analysis

Eventually, the message makes it to mn, who can then 
forward the message onwards to its final destination 

Only m1 knows the sender and only mn knows the 
receiver and neither knows the route of the message 
(not even their own position on the path)
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Mix networks – an example
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Problems with existing mix networks

The original mix networks relied on a “cloud” of 
established, known mixers 

thus, easy to block (deny any access to the mixers) 
a malicious mixer would recognise sender/recipient, if at the edge of the connection 
cover traffic makes traffic analysis difficult within the cloud, but what about the 
edges? 
edge traffic analysis becomes feasible (if expensive) 

If the message leaving the network is in clear text, it is 
exposed to the last node on the path 

some protocols leave sensitive data in headers (e.g., IP address of sender) 

Sophisticated alternative found in Tarzan
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Tarzan

Goals 
P2P: All participants can mix 
Robustness against malicious peers 
Ensured anonymity 
Look like IP to applications (just a library) 

Characteristics 
P2P network 
Mimics: generating secure cover traffic
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Tarzan is a P2P network

Defeating blocking 
Tarzan is a scalable P2P network 
thus, thousands of peers can participate 
this makes it unfeasible to block everyone suspected of being a mixer 

Traffic analysis 
everybody is a mixer 
cover traffic among all peers 
no clear point for edge traffic to analyse
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Discovery – joining the network

A new peer starts by retrieving a peer list from a 
known peer 

The peer can then ping the other peers (thus 
validating their IP address), validate their public key, 
and retrieve their lists 

This process is repeated until the peer is satisfied 

Later, peers gossip among themselves 
thus, a good coverage of the network is gained over time
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Mimics

Peers exchange cover traffic 

Cover traffic is between validated peers 

Cover traffic is 
encrypted 
sent at a uniform data rate (but adjusted when there is real traffic) 
uniform – all packets are the same size 

Every peer exchanges mimic traffic with k other peers
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Defense against malicious peers

A malicious peer could spawn many (virtual) peers to 
increase its chance of being selected for tunneling 

but peers must be validated to be a part, and you cannot fake your IP return address 

Most likely, a malicious peer will only control a 
subpart of the IP address space 

Tarzan therefore randomly selects between sub-domains of the IP address (spreading 
the participants over the Internet)
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Establishing a secure tunnel

The originator iteratively selects peers (across IP 
domains) towards its target using the mimics of the 
peers along the route 

the originator either already knows the mimics from its own discovery, or can validate 
them independently 

Thus, the message is continually under the traffic 
cover 

All exchanges are encrypted
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Through the tunnel

The message is NAT’ed (given a private IP address) 
the message is covered in encryption layers (one per hop) 

All traffic is padded and shipped using UDP (and 
protected by the cover traffic) 

forwarded (and stripped) along the tunnel 

The destination PNAT peer NATs again to public alias 
address 

PNAT contacts the destination service 

Responses returned similarly 

35



Characteristics

Scalability 
Overhead is unavoidable, but looks reasonable – no hotspots or SPoF 
Though best suited for fairly low bandwidth jobs, if to be hidden behind cover traffic 

Fairness 
Peers are chosen at random, cover traffic is set at a fair pace 

Integrity and security 
Difficult to subvert 

Anonymity, deniability, censorship resistance 
Quite strong
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Summary

Secure if enough peers participate 

P2P: A good case to blur the distinction between 
clients and servers 

Spans domains to make Sybil attacks difficult 

Dynamically adjusted cover traffic over mimic pairs 
makes it difficult to analyse traffic 

Neat to provide Tarzan as infrastructure – use the 
library as you would IP
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Freenet

Objective 
to build a virtual file space across peers that cannot be easily attacked and that 
provides a high degree of protection against censorship 

Decentralised architecture 

Built-in redundancy – popular files are replicated 
across the network 

High security and plausible deniability – nodes have 
encrypted file spaces 

have found use in mainland China where censorship is real

38



Freenet

No authentication (to real world identities) as such, 
but can authenticate pseudonyms, allowing e.g., only 
the original author to update a document 

Each resource in a Freenet node space is encrypted 
and integrity checked with SHA-1 hash 

Network traffic is encrypted link to link 

Routing is performed in a way to foil surveillance
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Characteristics

Globally Unique Identifiers (GUIDs) are crucial in 
Freenet – these are SHA-1 hashes (160 bit) 

Content-hash keys (CHK) : Hashes calculated over files inserted into Freenet 
signed-subspace keys (SSK): Hashes calculated from a public key and a textual 
description. The signified file is signed with the private key and can therefore only be 
modified by the owner. These (“indirect”) files are intended to contain directory 
listings with GUIDs on other files 

To participate in Freenet, a node must dedicate some 
disk space
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Architecture

Freenet nodes know only their immediate neighbors 
traffic may have originated from the neighbor, or the neighbor might only be passing 
it on 
this makes it difficult to pinpoint whence a file originated 
this also means that files get transferred over a number of nodes before reaching the 
destination 
• ...which might be bad for performance 

Nodes maintains a table of known GUIDs and the 
peers thought to hold the associated resource (maybe 
itself)
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Requesting a file

A user knows (somehow) the GUID (and key) of a 
desired resource 

This query is checked against the local node's store. If 
not found, the query is forwarded to the known peer 
with the closest GUID, and this process is repeated 
until the resource is located or TTL runs out 

If the resource is located, it is returned by the same 
route to the originator (who is the only one who 
knows it is the originator). Along the route back, 
nodes stores the GUID and location, and may even 
cache the resource
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Requesting a file – security measures

Along the way, peers may alter the message by setting 
themselves as the data holder and possibly caching it 

to thwart attacks against a data holder 

Peers may also alter the value of TTL 
to thwart analysis of TTL 

Thus, popular resources and their GUIDs are 
replicated across the network 

this makes DoS attacks of resources self defeating
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Requesting a file
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Storing a file on Freenet

The originator hashes the resource and sends the 
GUID out on the network with a TTL 

Other nodes check the GUID for uniqueness and forwards it to the nearest (in ID space) 
neighbor until TTL runs out. The final peer sends ‘all clear’ following the route back to 
the originator 

The originator can now publish the file. It is verified at 
each peer along the route, routing tables are updated, 
copies are cached, and the file ends up at the final 
peer on the route 

Unpopular files will eventually be reclaimed by the 
system to make room for more popular files
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Joining Freenet

A new node joins Freenet by making an 
announcement (containing a public key, an IP address 
and TTL) to a (somehow) known node. 

The nodes forward the announcement randomly until TTL and these nodes generate a 
GUID in concert for the new node 
The GUID is then the responsibility of the new node and requests close to the GUID are 
forwarded to the node 

As inserts and requests matching the GUID of the new 
peer are directed towards it, it will gradually learn its 
delegated part of the key space
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Search performance
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Experiences

Searching is so far somewhat missing – this is handled 
elsewhere (and this, of course, presents an excellent 
target for censorship) 

Resources are encouraged to be encrypted by the 
creator, allowing readers (who know the key) to 
decrypt it. (How are these keys safely distributed?) 

The safety of the system means that resources may 
travel some distance before reaching their 
destination. OTOH replication of resources and 
updates in routing tables improves performance
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Characteristics

Scalability 
Simulations look good (caching 
would be expected to help), but in 
use Freenet is reportedly fairly slow 

Fairness 
Caching will relieve overworked 
peers – peers will accumulate and 
serve data over time 

Integrity and security 
The SHA-1 should keep files intact 
(though not any more) 

Anonymity, deniability, 
censorship resistance 

High marks – though only as long as 
there is a safe method of 
distributing the keys
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Are DHTs secure?

Structured P2P networks may well seem vulnerable 
deterministic routing mechanism 
crucial routing information kept at peers 
peer ID determines position in network 
values kept at peer with closest key
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Aspects of Kademlia

All IDs are 160 bits long, random or found with SHA-1 
i.e., uniform distribution, etc 

To navigate this key space, Kademlia uses XOR 
d(X, Y) = X XOR Y; d(X, Y) = d(Y, X) 
intuition: higher order difference = longer distance 

A Kademlia routing table stores 160 k-buckets 
the ith  k-bucket contains nodes within a XOR distance of 2i to 2i+1 from itself (so the 
ith bit is significant) 
up to k nodes in each bucket, ordered by liveness (most recently seen at tail) 

• thus, once again, more complete knowledge of ‘close’ peers, but still knowledge 
about the rest of the world
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Kademlia routing table

Peer 0011 (•) must know some peers in the 
highlighted groups — all different prefixes to itself
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Kademlia routing table
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Kademlia routing table
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Locating a destination

Given a destination, use the (XOR) distance from 
ourselves to find the matching k-bucket 

Contact nodes in that k-bucket to get even closer 
nodes 

if there are not enough nodes in the bucket, use the nearest 

Repeat until the k closest nodes have been found
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Routing in Kademlia

Reaching 1110 from 0011. 0011 knows initially 101
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Operations in Kademlia

PING 

STORE 

FIND_NODE 

FIND_VALUE
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FIND_NODE
FIND_NODEn(id) 

returns the k closest nodes to an ID that n knows 

Iterative process: 
n0 = origin 

N1 = FIND_NODEn0(ID) 

N2 = FIND_NODEn1(ID) 

…  

Nm = FIND_NODEnm-1(ID) 

The node can choose any peer among the returned k 
nodes for the next step 

Lookup terminates when k closest nodes have 
responded

59



FIND_VALUE

FIND_VALUEn(key) 
works like FIND_NODE, unless n knows the value in which case the value is 
returned 
if one of the k closest nodes does not have the value, the requester will store it there
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Maintaining routing tables

Upon communication with another node 
Check the appropriate k-bucket 
• if already there, move to tail 
• if there is room, insert at tail 
• if new, and least recently seen node is unresponsive, replace with new node (and 

move to tail) 
• else: ignore node 

Thus, the routing tables are populated, and old, active nodes are given preferential 
treatment 
Implementation optimization: keep new peers in cache replacement list; replace only 
member of k-bucket if unresponsive during normal operations
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Maintaining routing tables

Why prefer old nodes? 
Studies show that the longer a peer stays online, the higher the probability is that it 
will remain online 
Makes it difficult to flood the network with bogus peers 

As SHA-1 is uniform, a Kademlia node will receive 
messages from nodes with IDs uniformly distributed 
across the key space 

Thus, all traffic is valuable and increases knowledge
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Parallelism in Kademlia

At each step in the lookup process, FIND_NODE/
FIND_VALUE queries α nodes in parallel 

The node can then choose the quickest peer and 
move on 

Ensures locality and takes advantages of the strongest 
peers 

The system does not have to wait until a node times 
out as with other systems 

this makes, e.g., a slowloris attack infeasible
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Redundancy in Kademlia

Each (key, value) pair is republished every hour and 
stored at k locations close to the key 

(key, value) expires after 24 hours, so old data is 
flushed 

But, original publisher republishes (key, value) every 
24 hour, so valuable information is maintained 

Whenever a peer A observes a new peer B with an ID 
closer to some of A's keys, A will replicate these keys 
to B
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Joining the network

Bootstrapping 
compute an ID 
(somehow) locate a peer in the network 
add that peer to the appropriate k-bucket 
find neighbours by doing FIND_NODE on own ID 
populate the other k-buckets by performing FIND_NODE on random IDs within 
those buckets 

This process (due to the reflected nature of Kademlia) 
ensures that the new peer is known across the 
network
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Failure in Kademlia

Unlikely: Routing tables are continually refreshed due 
to ordinary traffic 

As SHA-1 is uniform, the k-buckets will be evenly 
updated 

If there is no traffic, a peer will regularly explicitly 
refresh oldest k-bucket 

Parallelism in queries ensures that a failing peer is 
detected 
routed around
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Kademlia

Most popular DHT ⇒ biggest target for attacks 

Weaknesses 
deterministic routing along converging path 
sybils can saturate the network with malicious peers 
eclipse peers can collude to produce poor routing 

Strengths 
prefers long living peers, so churn attacks are inefficient 
routing information is continually refreshed — no specific operation to target
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S/Kademlia

All peers have public/private keys 

Securing Kademlia through 
expensive NodeId generation 
sibling broadcast 
routing over disjoint paths 
verifiable messages using public/private keys
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Secure Node Identifiers

Sybils rely on cheap/home-made/unverifiable NodeId 
generation 

Ids created as public key hashes 

Weak signatures on (IP, port, timestamp) 
PING, FIND_NODE 

Strong signatures on whole messages 
man in the middle made difficult 
message contains nonce, so replay is impossible
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Generating Ids for S/Kademlia
Central authority 

can co-sign peers’ certificates 
can control/limit the growth of sybils 
but, centralised/SPoF 

Crypto-puzzles 
no central authority, but computationally expensive 
given a crypto hash function H (e.g., SHA1, SHA256, etc.) and ⊕=XOR 
static: Generate key so that c1 first bits of H(H(key)) = 0 
• NodeId = H(key) (so NodeId cannot be chosen freely) 

dynamic: Generate X so that c2 first bits of H(key ⊕ X) = 0 
• increase c2 over time to keep NodeId generation expensive 

verification is O(1) — creation is O(2c1 + 2c2)
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Sibling broadcast

Standard Kademlia uses  
k buckets, k redundant copies of key/values (siblings) 

The number of redundant copies increases integrity 
but marries network connectivity (k-bucket) to redundancy (k copies) 

S/Kademlia adds 
s redundant copies of key/values 
sibling lists of a size to ensure that a peer knows s siblings with high probability  
• similar to leaf sets from Pastry 
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Populating the k-buckets

Actively valid nodeIds: 
signed, responses to RPCs 
added if there is room (as usual in Kademlia) 

Valid nodeIds 
signed 
only added if the prefix is sufficiently different from the peer’s own 
• makes a targeted attack more difficult 

Unsigned nodeIds 
ignored
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Querying in S/Kademlia

We need to ensure that a malicious peer cannot steer 
the query into a territory of malicious peers 

ordinary Kademlia queries use a single list  of nodes, refined over queries. Malicious 
peers could drown out the good results in this single list 

S/Kademlia issues queries over d paths, that are kept 
disjoint, and where every peer is queried only once 

This increases the odds for not all searches going into 
malicious territories
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Results
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Results

Making attacks harder (not impossible) by 
limiting NodeId generation with crypto-puzzles 
accepting only signed NodeIds into k-buckets 
distributing queries across a wider set of the network 

Unfortunately at the cost of having good peers solve 
crypto-puzzles
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Characteristics

Scalability 
nearly as scalable as Kademlia — signing is an overhead, but network messages are 
small 

Fairness 
as fair as Kademlia, and if you don’t sign, you are ignored 

Integrity and security 
malicious peers are less likely to subvert the network 

Anonymity, deniability, censorship resistance 
not easy to subvert routing in order to suppress key/values  
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Conclusions

Reputation and trust on the Internet is hard 

A number of good techniques exist – often based on a 
central authority 

but can you trust the authorities? 

P2P makes everything worse 
no central authority makes designs challenging 

P2P can make many things better 
by making it difficult for the central authority to eavesdrop
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