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The Internet of Things (IoT) is a paradigm based on the Internet that comprises many interconnected
technologies like RFID (Radio Frequency IDentification) and WSAN (Wireless Sensor and Actor Networks)
in order to exchange information. The current needs for better control, monitoring and management in
many areas, and the ongoing research in this field, have originated the appearance and creation of
multiple systems like smart-home, smart-city and smart-grid. However, the limitations of associated
devices in the IoT in terms of storage, network and computing, and the requirements of complex analysis,
scalability, and data access, require a technology like Cloud Computing to supplement this field. More-
over, the IoT can generate large amounts of varied data and quickly when there are millions of things
feeding data to Cloud Computing. The latter is a clear example of Big Data, that Cloud Computing needs
to take into account. This paper presents a survey of integration components: Cloud platforms, Cloud
infrastructures and IoT Middleware. In addition, some integration proposals and data analytics techni-
ques are surveyed as well as different challenges and open research issues are pointed out.
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1. Introduction

The Internet of Things was probably introduced by Ashton
(2009) in 1999. The IoT can be defined as a set of interconnected
things (humans, tags, sensors, and so on) over the Internet, which
have the ability to measure, communicate and act all over the
world. The key idea of the IoT is to obtain information about our
environment to understand and control and act on it. The IoT can
help us in our daily life, e.g. Zaslavsky et al. (2012), where a smart
home scenario adapts to the everyday user improving their quality
of life and home consumption through a set of home sensors and
data information city. Furthermore, the IoT is also suitable in
Ambient-Assisted Living, Smart Unit, Monitoring, Tracking, Control
systems, Safer Mining Production and so on (Botta et al., 2014;
Sindhanaiselvan and Mekala, 2014; Singh et al., 2014; Gubbi et al.,
2013; Da Xu et al., 2014). However, the IoT usually coincides with
sensors with low power, low memory and battery and network
limitations, so there is a need of computing, storage and access
and analysis of IoT data (Zaslavsky et al., 2012). Furthermore, there
are large amounts of heterogeneity data and devices (Compton et
al., 2012) which will grow (Zaslavsky et al., 2012), so a platform
that can handle all of this is necessary.

Cloud Computing enables a convenient, on demand and scal-
able networks access to a pool of configurable computing resour-
ces (Zaslavsky et al., 2012). Cloud Computing has virtually
unlimited capabilities in terms of storage and processing power
(Botta et al., 2014), which are the main drawbacks of IoT. There-
fore, by Cloud Computing, IoT can be abstracted of its limitations,
heterogeneity, connectivity, identification and security of devices
involved (Zorzi et al., 2010). There are different types of categories
in Cloud Computing: IaaS (Infrastructure as a Service) which is the
lowest layer in a Cloud Infrastructure and offers a poll of Virtual
Machines for computing and storage, PaaS (Platform as a Service)
is the middle layer which allows deploying applications, and SaaS
(Software as a Service) the top layer, that offers accessible user
applications like IBM Bluemix, OPENSHIFT, Google App Engine,
HEROKU and Microsoft Azure.

The Cloud Computing and IoT integration, known as Cloud of
Things (Aazam et al., 2014), solves such problems as IoT's limitations,
data access, computing, data analysis, and can create new oppor-
tunities, like Smart Things, Things as a Service and SenaaS (Sensor as
a Service) (Barbaran et al., 2014; Madria et al., 2014). Moreover,
offering a PaaS, users can build applications which use and handle
System's Things; even external applications can acquire semantic
standard data through Linked Data (Le-Phuoc et al., 2012). The latter
takes advantage of the data acquired and saves storage space. Due to
the integration benefits and the proliferation of Cloud Computing in
recent years, there are several projects and strong research efforts in
this field. In the last few years, multiple platforms, protocols, and
systems have emerged to tackle the challenges of Cloud Computing
and IoT constrained devices.

This paper aims to present the state of the art of different levels
of integration components, analyzing different existing proposals
in this field and pointing out some challenges and open research
issues. Previous research has surveyed Cloud Computing and IoT
integration. A survey of Cloud Computing and Wireless Sensor
Networks (WSN) overview some applications with both, known as
Sensor-Cloud which is presented in Sindhanaiselvan and Mekala
(2014). Botta et al. (2014) survey the need for integration, showing
some applications thanks to this paradigm and mentioning some
open issues and future directions. IoT challenges, visions and
applications and the importance of cloud computing and seman-
tics in this field is surveyed in Singh et al. (2014). The term the
Cloud of Things and some key integration issues have been
introduced by Aazam et al. (2014). Also, Gubbi et al. (2013) present
the IoT as an emerging technology, show applications, tends, a
cloud centric IoT approach, and mentioned Cloud Computing as an
open challenge in the IoT. Our approach does not focus on sce-
narios where the IoT and Cloud Computing are suitable or lim-
itations or needs as other work has. However, our approach
attempts to offer a practical vision to integrate current compo-
nents of Cloud Computing and the IoT.

Also we know the current limitations on IoT devices, especially
on embedded devices, so although we have surveyed different
cloud technologies to improve these, the software for embedded
devices is a key challenge to achieve the desired integration. In
addition to the limitations of the devices, IoT also requires appli-
cations in critical and real-time systems where low-latency and
low-bandwidth-usage are key requirements. We have taken into
account the latter and we have tried to survey an integration
which addresses these requirements.

The rest of the paper is organized as follows. In Section 2
integration components are surveyed. Section 3 analyzes current
proposals in multiple areas for this field. Section 4 shows data
analytics techniques for optimizing such integration. In Section 5
some case studies are analyzed for discussing about the elements
surveyed. Section 6 points out challenges and open research
issues. Finally, conclusions are drawn in Section 7.
2. Integration components

We have classified the integration components into three
categories taking into account the need for a seamless integration.
On the one hand, we have surveyed multidisciplinary Cloud Plat-
forms to satisfy IoT limitations and to offer new business oppor-
tunities and more scalability. For the deployment, management
and monitoring of Cloud Platforms, we have surveyed different
Cloud Infrastructures. And lastly, we have surveyed several IoT
middleware to abstract the underlying heterogeneous IoT devices.

Cloud Computing and IoT integration provides new storage,
processing, scalability and networking capabilities which are so far
limited in the IoT due to its characteristics. Furthermore, new
opportunities like complex analysis, data mining and real-time
processing will be present on IoT, hitherto unthinkable in this field.
Finally, through the IoT Middleware, the IoT devices will have a
lightweight and interoperable mechanism for the communication
among themselves and with the Cloud systems deployed. Fig. 1
shows the integration components surveyed in this paper.

2.1. Cloud platforms

Recently and in the future, the number of users and data from
IoT will grow significantly as the number of connected devices
increases (Zaslavsky et al., 2012). For a long time, DBMS (Database
Management Systems) have been used to store and access data in
a great number of applications. Nevertheless, the growth in users
and data means that a large number of DBMS are unsuitable.
Hence, a platform which can tackle these needs is required in
order to offer high scalability, storage and even processing. In this
subsection, we summarize different platforms for storing, pro-
cessing and accessing large amounts of heterogeneity data, which
has recently become known as Big Data (Zaslavsky et al., 2012).

2.1.1. Batch processing
Processing and analyzing large amounts of data is one of the

requirements addressed in the integration proposal. Batch pro-
cessing components are responsible for the execution of a series of
jobs without manual intervention, allowing a greater distribution
of these and high throughput.

An open source framework to manage large amounts data is
approached by Shvachko et al. (2010). Hadoop is composed by



Fig. 1. Cloud and IoT integration.
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three main components: HDFS, MapReduce and YARN. HDFS is a
distributed file system responsible for storing distributed and
replicated data through a server cluster, providing reliability,
scalability and high bandwidth. HDFS also balances the disk space
usage between servers with a master/slave architecture. MapRe-
duce (http://hadoop.apache.org/docs/r1.2.1/mapred_tutorial.html)
is also a master/slave framework used in Hadoop 1 to process and
analyze large data sets, master job scheduling and cluster resource
management on slaves. The coupling of a specific programming
model like MapReduce with the cluster resource management, and
concerns about centralized handling jobs, have forced the
appearance of YARN (Vavilapalli et al., 2013) on Hadoop 2. YARN
aims to decouple resource management functions from the pro-
gramming model, incorporating a new layer which abstracts
resource management at the same time as allowing new pro-
gramming models. Presently, MapReduce is only an application
running on top of YARN. However, the complexity of developing
MapReduce programs has originated the appearance of new
enriched systems that translate code into MapReduce, like Apache
Hive (https://hive.apache.org/), an SQL-like data warehouse for
managing and querying large datasets, and Apache Pig (https://
pig.apache.org/), a platform for analyzing large datasets with a
high-level language for expressing programs.

Although Hadoop and other platforms are suitable for proces-
sing and analyzing large amounts of data, in some situations such
as machine learning algorithms and interactive ad-hoc on large
datasets, latency is considerable due to having to reload con-
tinuous data from a disk (Zaharia et al., 2010). A good solution is a
Map Reduce framework that keeps data in memory to reuse for
multiple jobs and to reduce disk latency. Apache Spark (Zaharia et
al., 2010; https://spark.apache.org/) is a fast and general frame-
work which processes large amounts of data with low latency.
Spark incorporates fault-tolerant and large data processing like
Hadoop Map Reduce, but also introduces a novel abstraction, the
RDD (Resilient Distributed Dataset). RDDs are fault-tolerant col-
lections of elements distributed across nodes than can be created,
parallelizing an existing collection or referencing a dataset in data
store. The main advantages of RDDs are that they can persist in
memory and can rebuild lost data without replication, executing
100� faster than Hadoop Map Reduce in a logistic regression
algorithm (Apache spark, 2015). Moreover, Spark has a driver-
worked architecture unique to each application, allowing isolation
between applications, but data sharing applications must be
written in external storage. Spark is also compatible with any
Hadoop data store, like HDFS, Apache Cassandra, Apache Hive,
Apache Pig or Apache HBase, Chukwa and Amazon S3.
2.1.2. Distributed databases
Focusing more on storing and querying large amounts of data,

the distributed databases offer mechanisms to enable some tra-
ditional features DBMS in a distributed environment with high
availability and low latency.

Druid (Yang et al., 2014; http://druid.io/) is an open source
distributed and column oriented platform for storing and acces-
sing large data sets in real-time. The need for storage and com-
puting have originated platforms that store large amounts of data
like Hadoop. However, these platforms do not guarantee how
quickly data can be accessed and stored nor do they query per-
formance, which can be required in some systems. Druid aims to
resolve these problems and offers a platform which is suitable for
applications that require low latency on ingestion and query data.
Druid architecture is composed by two main components: his-
torical nodes, which store and query non-real-time data and real-
time nodes, which ingest stream data and respond to queries with
it. Moreover, other components such as the coordination nodes
coordinate historical nodes to ensure that data is available and
replicated, the brokers receive queries and forward them to real-
time and historical nodes, and lastly, the indexer nodes ingest
batch and real-time data in the system. The main functions of real-
time nodes are to respond with real-time data and built segments
for aged data that they send to the historical nodes. Historical
nodes persist data in deep storage and download it in memory
when the coordination node requires it. Druid also utilizes Apache
Zookeeper—a well-known Hadoop component for synchronizing
elements in a cluster—to manage the current cluster state, and
MySQL for the maintenance of metadata about data segments.

Apache HBase (http://hbase.apache.org/) is another open
source distributed database suitable for random and real-time
read/write large amounts of data. Apache HBase emerged after
Google's Bigtable, a distributed storage system for structured data
provided by Google File System. Specifically, Apache HBase uses
HDFS for its storage system, and can be seen as the Hadoop
Database. In HBase, data is stored in tables like traditional Rela-
tional Database Management Systems (RDBMS). However, HBase
tables are composed by multiple rows, where each row has a set of
columns which can store mixed and indeterminate key-value sets
unlike traditional RDBMS. The tables can also be stored in different
namespaces to restrict resources, and offer different security levels
and region groups. The rows are identified and stored lexico-
graphically by row key, allowing related rows, or rows which can
be read together. The HBase architecture is HMaster/RegionServer,
where the HMaster monitors and manages all RegionServers,
and each RegionServer serves and manages the underlying
regions. The regions are the basic components to distribute
and provide availability and fault-tolerant in Hbase tables. Initially,
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if a pre-splitting policy has not been established, a table is com-
posed by only one region. Then, when the table rows grow, a set of
policies can be established to split the regions in the RegionsSer-
vers. If a table has been split into three regions, each region con-
tains a sorted keyset chunk of the table. Regions' replication is
provided by HDFS to enable fault-tolerant. The HMaster is
responsible for assigning regions to RegionsServers, balancing
regions between RegionServers and restoring regions if a Region-
Server goes down. Furthermore, HBase has allowed interaction
with MapReduce, so MapReduce jobs can interact with the HBase
data store. HBase provides a set of operations to modify and query
tables, but if you want to use a SQL functionality and JDBC con-
nector with HBase, you can use Apache Phoenix (http://phoenix.
apache.org/) or Cloudera Impala (loudera.com/content/cloudera/
en/products-and-services/cdh/impala.html).

However, in some situations such as time series, the sorted key
can imply a major issue because when a table is split into two
regions, the new writers will be written in the last region due to
sorting, so a hot region will always be present. This problem is
solved by OpenTSDB (http://opentsdb.net/). OpenTSDB uses an
HBase table and a key format composed by a metric type—a string
composed by a timestamp and a set of key/value—to store all
stream data across various regions in a table. OpenTSDB has a
broker architecture formed by the Time Series Daemons (TSD). The
TSDs are the key components in OpenTSDB since they are
responsible for managing and querying all data saved on HBase. A
set of aggregation operations over the metrics as max, min or avg
can be applied to OpenTSDB. All the features of HBase such as
fault-tolerant, replication, split into tables, and so on, are used by
OpenTSDB. Furthermore, a Web UI and other tools have been
integrated to query and graph all the time series stored. Never-
theless, a storage limitation is defined in OpenTSDB, since each
metric and its types and values are assigned a unique id with
3 bytes, so 224�1 metrics and 224�1 types and values on each
metric can be stored.

2.1.3. Real-time processing
On the other hand, there are situations that require not only

access to data, but also processing it in real-time, like decision
making in critical systems or trending topics in social media.

Apache Storm (Toshniwal et al., 2014) is a popular open source
distributed system for processing data streams in real-time. Storm
contains a nimbus/supervisor architecture coordinated through
Zookeeper, and is based on directed graphs, where the vertices
represent computational components, and the edges represent the
data flow among components. Spouts are the Storm components
that receive data in the topology and are transmitted to Bolts
which are responsible for processing the data and transmitting it
to the next set of Bolts or data storage as required. Moreover,
Storm offers semantic guarantees about data processing like ‘at
least once’ or ‘at most once’ in addition to fault-tolerance. The
main drawback is that it is not able to dynamically re-optimize at
runtime, between nodes, but it is considered as future work
(Toshniwal et al., 2014).

An extension of Apache Spark for fault-tolerant streaming
processing is known as Spark Streaming (Zaharia et al., 2012;
https://spark.apache.org/streaming/). Spark Streaming follows a
different philosophy than Apache Storm. In Spark Streaming, the
data received is stored in memory for a specific interval or win-
dow, and then is processed and stored in a Spark RDD. A D-Stream
(Discretized stream) is the representation by times series of RDD,
and it lets users manipulate them through various operators in
real-time. Spark Streaming is properly integrated with Apache
Spark, as it uses the same data representation, allowing reuse code
and a hybrid architecture through the combining of batch with
stream processing with the same data. The main drawback is the
length of the sliding windows, as if they are too large it can make
the real-time disappear whereas if they are too small it can gen-
erate multiple RDDs. Furthermore, in most cases, stream data is
received over the network, so to achieve data received fault-tol-
erance, Spark Streaming replicates data among the worker nodes.

2.1.4. Distributed queues
Albeit in multiple systems, data is obtained from internal data

stores, in some systems, especially in IoT, data is dispatched by
many devices or sub-systems. To deploy a large number of things
in an IoT system requires large amounts of data received to be
handled and eventually dispatched in real-time to the stake-
holders. Distributed queues are summarized in this subsection in
order to solve these problems.

Apache Kafka (Kreps et al., 2011; http://kafka.apache.org/) is a
distributed messaging system that consumes and dispatches large
amounts of data with low latency. Kafka is based on a publish/
subscribe queue with ‘at least once’ semantics that guarantees its
suitability for streaming data and performing offline analysis.
Topics are the stream of messages in Kafka, wherein producers can
publish messages and consumers can subscribe to receive them.
Load balancing and fault-tolerance is performed by partitions of
the topics, where each topic can be divided into multiple parti-
tions, and each partition can have multiple replicas. Communica-
tion between producers and consumers to the server is through
agnostic TCP, so it is available in many languages. When a message
is sent by a producer to Kafka, it is stored on a disk in determined
partitions and its replicas are consumed for a prefixed time.
Moreover, Kafka allows group-consumers, a way to introduce load
balancing ingestion data between consumers. However, Kafka
does not contain a master node, but it does contain a set of brokers
which locate the system partitions and are synchronized through
Apache Zookeeper. The latter avoids concerns of master failures.
Furthermore, producers and consumers can operate synchronous
or asynchronous with batch data, but it originates a great dilemma
between latency and throughput.

RabbitMQ (Dossot, 2014; https://www.rabbitmq.com/) is
another open source messaging queue that contains an Erlang-
based implementation of AMQP (Advanced Message Queuing
Protocol) v0.9.1 protocol. AMQP is an open standard to exchange
messages over TCP. RabbitMQ utilizes the Mnesia database, which
is an in-memory persistent embedded database of Erlang for data
persistence. RabbitMQ also uses brokers which are middleware
applications of AMQP that receive messages from producers and
send them to other brokers or consumers. Brokers can be repli-
cated for high availability and send messages to other brokers in
other clusters. When a message is sent by producers, it is received
by a component of brokers, called exchange, that routes it,
according to its routing rules—point-to-point, publish-subscribe,
headers or multicast—and it is sent to a queue. When a consumer
or consumer group receives a message, it is deleted from the
queue. Moreover, RabbitMQ contains a pluggable system, where
plugins can extend the deployment with new components like a
web UI management and monitoring. Therefore, RabbitMQ follows
a different philosophy from Kafka, it incorporates message con-
firmation and more forms of communication than a topic. Pro-
ducers can also obtain the message acknowledgment of con-
sumers, so RabbitMQ can behave as RPC (Remote Procedure Call)
protocol. RabbitMQ can also be more flexible than Kafka, however
throughput and latency in Kafka is more desirable.

2.1.5. Management, monitoring and deployment
Many systems like Apache Storm, Apache Hadoop or Apache

Spark contain a web UI for monitoring and visualizing the cluster
deployed. Nevertheless, in deployed clusters with multiple platforms
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deployed, what is needed is a single platform that can deploy,
monitor and manage all platforms.

In the Hadoop ecosystem, there is a platform for provisioning,
monitoring and managing Hadoop clusters, called Apache Ambari
(http://ambari.apache.org/). Apache Ambari provides an open
source management web UI, enabling system administrators to
easily deploy new Hadoop services in the cluster, add new host
nodes, manage existing services deployed and monitor the heath
and status of the Hadoop cluster. Ambari follows a master/agent
architecture, where master contains a set of components respon-
sible for monitoring the agent status and planning actions. Ambari
agents send heartbeat event to master every few seconds with the
agent status and actions and it receive actions to execute in the
response. Moreover, Ambari utilizes a database to store the system
status, so in case of master failure, the status is rebuilt. Ambari
uses Ganglia—a distributed monitoring high-performance system
—for metrics collections, and Nagios—a monitoring system for IT
infrastructure—for system alerting and sending emails. Further-
more, Ambari also integrates all capabilities in other systems
through the Ambari REST APIs. Ambari is therefore a powerful tool
for managing and monitoring Hadoop components with only one
platform, and it can be integrated easily into other systems.

Tables 1 and 2 summarize a comparison for the different Cloud
Platforms analyzed. The components cover multiple Cloud Com-
puting needs such as batch and stream processing, distributed
storage and distributed queue which can be integrated indepen-
dently or jointly. Most components follow a master/slave archi-
tecture and present a point of failure if the master goes down, but
this can be mitigated with master replication or a broker archi-
tecture. Replication and load balancing are contained in most
components, except load balancing in Apache Storm and Apache
Ambari, and replication in Apache Ambari and Apache Spark that
relies on the data store for this. Fault tolerance is one of the basic
Cloud Computing features and is present in most components.

For batch processing, Apache Spark is recommended for low-
latency applications with the same data, whereas Apache Hadoop
is a fairly consolidated platform and is more integrated with
external systems and compatible. Considering compatibility
aspects, Spark Streaming is suitable if Apache Sparks is chosen as a
batch processing component. Apache Storm does not necessarily
require data storage as Spark Streaming does, and it contains more
external integration, but nevertheless it does not contain load
balancing so the correct design is necessary and not too many
work peaks. For distributed queuing, it depends on the application,
you may require confirmation messages and more options than a
single topic, so RabbitMQ is the best solution in this case, but if
you want a low-latency and throughput solution, Apache Kafka
should be chosen.

Although HBase is an established solution, the need to design
based on the data and the lack of real-time, mean that Druid will
become the more promising solution. Apache Ambari has been
designed to solve multi-platform deployment problems and is
seemingly the solution for this. Also, Apache HDFS is the most
compatible distributed file system, whilst components like Java
Apache Thrift and Hadoop Streaming allow multi-language service
development. On the other hand, Apache Hadoop has the largest
number of official companies using it, more than 170 companies,
in comparison with Druid and OpenTSDB with 10 and 30 compa-
nies, respectively. Lastly, all components surveyed have an open
source license.

2.2. Cloud infrastructures

In a cloud datacenter, the IaaS is the key component to provide
capabilities, since it is responsible for managing and provisioning
and deploying virtual components. Virtualization has an important



Table 2
Cloud platforms comparison II.

Cloud
platform

Finality Architecture Replication Load
balancing

Fault-
tolerant

Memory Programming
Languages

Data store External
integration

Access Documenta- tion Official com-
panies that
use it

Last
update

License

Apache Spark Batch
processing

Driver/
worked

No in mem-
ory, implicit
in storage

Yes By applica-
tion, if driver
not fail.

Yes Java, Python and
Scala

HDFS, S3,
Cassandra
and HBase

Web UI
and CLI

⋆⋆⋆ þ80 nov-15 Apache
License
Version
2.0

Apache Kafka Distributed
queue

Brokers Yes Yes Yes No Several
languages

Several
systems

CLI ⋆⋆ þ70 N/A Apache
License
Version
2.0

Apache Storm Stream
processing

Nimbus/
supervisor

Yes No Yes, if not
nimbus

Yes Java and Apache
Thrift

Several
systems

Web UI
and CLI

⋆⋆ þ70 nov-15 Apache
License
Version
2.0

Apache Spark
Streaming

Stream
processing

Driver/
worked

Yes, at
reception

Yes By applica-
tion, if driver
not fail.

Yes Java, Python,
Scala

HDFS, S3,
Cassandra,
Hbase

Web UI
and CLI

⋆⋆⋆ N/A nov-15 Apache
License
Version
2.0

RabbitMQ Distributed
queue

Brokers Yes, with
plugin

Yes Yes Yes Several
languages

MQTT and
STOMP

Web UI
and CLI

⋆⋆ N/A dec-15 Mozilla
Public
License
Version
1.1

Apache Ambari Provisioning
and monitoring
and managing
clusters

Master/agents No No Yes, if not
master

No REST API HDFS Several
Hadoop
Components

Web
UI, CLI

⋆⋆ N/A dec-15 Apache
License
Version
2.0
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role because of abstract computing, networking and storage plat-
forms from the underlying physical hardware (Moreno-Vozmediano
et al., 2012). Furthermore, through virtualization you can execute
multiple OSs (Operation Systems) with a better exploitation of the
hardware it facilitates the fault-tolerance through simultaneous
deployment and provides high server utilization with saving costs
and energy.

OpenNebula (http://opennebula.org/) is an example of a Cloud
IaaS platform, which emerged from a research project undertaken
at the Complutense University of Madrid in 2005. OpenNebula is
an open source solution for management of virtualized data cen-
ters with private, public and hybrid IaaS clouds. The aim of the
project is to provide an open, flexible, extensible, management
layer to abstract networking, storage, virtualization, and mon-
itoring and user management in different public clouds such as
Amazon Web Services, Microsoft Azure and private clouds. All
components in OpenNebula have been grouped in one key com-
ponent, the cloud OS, which manages virtual and physical infra-
structures and controls the provisioning of virtual resources
according to the needs of services (Moreno-Vozmediano et al.,
2012). The system is composed by a front-end/host architecture.
The front-end is considered a master node in a common cloud
platform, containing the OpenNebula services to manage and
monitor the cluster, and each host can be considered a slave in a
common cloud platform, that runs VMs (Virtual Machines). The
different data stores—System, Image and File data stores—are
shared through the network by front-end and host nodes.

Public clouds can also be configured in OpenNebula to allow
access to external users or to sell capabilities through the Amazon
EC2 Query Interface. Multiple OpenNebula instances can be con-
figured in Federation mode, where each instance is configured as a
slave and the master instance manages and shows everything as a
single OpenNebula instance. The latter is suitable for organizations
with several worldwide data centers. OpenNebula offers both a
Data Center Virtualization Management allowing datacenters to be
managed and consolidated through advanced features like capa-
city management and resource optimization, as Cloud manage-
ment to enable VDC (Virtual Data Centers) provisioning that
allows the data center to be portioned into multiple VDCs. The
VDCs enable the isolation of users or workloads, defining different
levels of security, high availability in each VDC, datacenter fed-
eration and hybrid cloud computing. Lastly, OpenNebula allows
Multi-VM Applications and Auto-Scaling, where services which
contain multiple VMs deployed are managed as a single entity, and
an application insight through the reception of monitoring infor-
mation of VM guest which can be used to detect problems in
applications and trigger auto-scaling rules.

Another platform which follows the cloud OS paradigm is the
well-known open source IaaS OpenStack (https://www.openstack.
org/). Whereas OpenNebula has a centralized systemwith optional
components, OpenStack is composed by a set of interrelated sub-
components with its own APIs which must be installed and inte-
grated for OpenStack deployment. Therefore, OpenStack has a
pluggable peer architecture where each component can be
installed and controlled in a different node. Moreover, OpenStack
is focused on private clouds, or public clouds which have an AWS
EC2 compatible API. OpenStack have four main services: Dash-
board, Compute, Networking and Storage. The Dashboard has been
designed to manage OpenStack resources and services through a
Web-based UI which can be customizable to adjust it to the user's
needs. Computer service is maybe the most important component
as it is responsible for managing and controlling the cloud plat-
form. OpenStack supports two types of storage: Object and Block.
Object Storage is suitable for redundant, fault-tolerant and scalable
data stores, while Block Storage provides a persistent block level
storage suitable for performance sensitive scenarios. OpenStack
also has a VDC implemented through VLAN, permission and
quotas over existing resources: volumes, instances, images, and so
on. The networking service allows Network-Connectivity-as-a-
Service for other OpenStack services, offering an API to manage
networks, supporting many technologies and networking vendors
through a pluggable architecture. The Load-Balancer-as-a-Service
enables networking to distribute requests between instances, and
the Firewall-as-a-service enables firewall policies for all network-
ing routes.

The data processing service provides a mechanism to easily
deploy data processing clusters like Apache Hadoop o Apache
Spark, enabling the clusters' deployment in a few minutes by
means of specified parameters like cluster topology and nodes
hardware. For high availability, OpenStack distinguishes between
two services: stateless and stateful services. The stateless services
do not depend on their status, so for high availability it is only
necessary to have redundant instances with load balancing
between them. For stateful services, OpenStack offers two con-
figurations: the active/passive configuration that provides addi-
tional services in case of failure through backup instances, and
active/active configuration wherein main and backup instances are
managed, so in the case of failure the backup instance should not
be recovered and backup latency is lower. Finally, the telemetry
service is another important component that enables billing and
allows users to set alarms to provide Monitoring-as-a-Service.
OpenStack is maybe the most popular IaaS service. It is supported
by a large part of the community and is sponsored and funded by a
wide range of companies.

Apache also has an IaaS project, called Apache CloudStack
(http://cloudstack.apache.org/). CloudStack began as a project of a
start-up in 2008, and was submitted to the Apache Software
Foundation in 2012. CloudStack is an open source IaaS project of
the Apache Software Foundation (ASF) for deploying public, pri-
vate and hybrid IaaS clouds. Like OpenNebula and OpenStack,
CloudStack has developed an AWS EC2 support for public IaaS
cloud. The CloudStack architecture is also master/slave, where
CloudStack Management Server runs in an Apache Tomcat con-
tainer and manages and orchestrates resources in the cloud, and
the hypervisor hosts which deploy VMs in each host node through
the installed hypervisor. The CloudStack Management Server is
also responsible for providing Web UI and API interfaces, mana-
ging storage and images, and it can be deployed in a multi-node
mode for high availability and load balancing between manage-
ment servers. CloudStack also supports zones, like OpenNebula, in
order to manage geographically distributed nodes. Distributed
geographical zones provide a higher level of fault-tolerance since a
cloud system can recover from external disasters in a zone.
CloudStack storage is divided into two types: Primary and Sec-
ondary Storage. Primary Storage is in charge of storing disk
volumes of all VMs while Secondary Storage stores disk volumes,
snapshots, ISO images and disk templates. Heterogeneous Sec-
ondary Storage is not supported in zones nonetheless CloudStack
has plugins to enable OpenStack Object Storage and Amazon S3
storage as Secondary Storage. Moreover, CloudStack also provides
VDC in zones, called Virtual Private Clouds (VPC), for isolation data
center deployments. Besides, high availability, auto-scale rules and
load balancing are all applicable to VMs.

The comparison results of Cloud Infrastructures are shown in
Tables 3 and 4. The main difference is that whilst OpenStack is
composed by a pluggable set of components, OpenNebula and
CloudStack have a centralized architecture. A pluggable archi-
tecture like OpenStack can adapt better to the user's needs apart
from offering a multitude of component-as-a-service, but the
requirements and installation efforts of OpenStack are generally
higher than CloudStack and OpenNebula. The main features of IaaS
platforms like load balancing, auto-scaling, monitoring, accounting



Table 3
Cloud IaaS comparison I.

IaaS cloud Cloud
model

Hypervisor External
Cloud
Connector

Cloud API
Interfaces

Cloud Integrators Access Cloud
Federation

Image
repository

Monitoring Storage

OpenNebula Public, pri-
vate and
hybrid

KVM, Xen, Vmware
ESX and Vcenter

AWS, Soft-
Layer and
Azure

AWS EC2, EBS and
OGF OCCI

XML-RPC, Ruby, Java and
OpenNebula OneFlow
RESTFul API

REST API,
Web UI and
CLI

Yes, cloud
bustring

Yes Virtual and physical
resources

NFS, Lustre, GlusterFS, ZFS, GPFS,
MooseFS, Vmware datastore, LVM
datastore and Ceph

OpenStack Private and
public

Baremetal, Docker,
Hyper-V, LXC, KVM,
QEMU, UML, Vmware
vShere, Xen

AWS EC2, S3 and
OGF OCCI

Native API, Java, Node.js,
Ruby, .NET and third-party
tools (Euca2ools, Hybridfox,
boto, fox, php-opencloud)

REST API,
Web UI, CLI
and third-
party tools

No Yes Virtual and physical
resources, with
Ceilometer service

Object Storage (Swift, Ceph, Gluster,
Sheepdog), Block Storage(LVM, Ceph,
Gluster, NFS, ZFS, Sheepdog) and
multiple commercial drivers

CloudStack Public, pri-
vate and
hybrid

Baremetal, Hyper-V,
KVM, LXC, vSphere,
Xenserver and Xen
Project

AWS EC2, S3,
OpenStack Block
Storage and OGF
OCCI

Native API and Python REST API,
Web UI and
CLI

No Yes Virtual and physical
resources

Primary Storage (all standards-
compliant iSCSI and NFS servers
supported by the hypervisors) and
Secondary Storage (zone-based NFS,
Amazon S3, OpenStack Object Sto-
rage and SMB/CIFS)

Table 4
Cloud IaaS comparison II.

IaaS cloud Accounting Networking Security High avaliability Load balancing Auto-scaling Database sta-
tus support

Official com-
panies that
use it

Last
update

License

OpenNebula Yes 802.1Q VLAN, ebtables,
Open vSwitch and Vmware
networking

ACL, authentication (user/
password, ssh, x509, LDAP)
and authorization and var-
ious administration roles

Trigger to host failures and
multi-cluster deployments

Load balancing in
clusters

Yes, application
auto-scaling based
on metrics or a
schedule

MySQL, SQLite þ140 nov-15 Apache
License
Version
2.0

OpenStack Yes, with
Telemetry
service

Plugis for Open vSwitch,
Cisco, Linux Bridge, Mod-
ular Layer 2, NVP, Ryu
OpenFlow, Big Switch,
Cloudbase Gyper-V, Mid-
oNet, Brocade Neutron,
PLUMgrid, Mellanox,
Embrane, IBM SDN-VE,
CPLANE, Nuage and
OpenContrail

Authentication (username/
password, external CA,
HTTPD, trusts, ssl, x509,
LDAP), authorization,
groups, tenants, domains
and roles

Redundant instances for sta-
teless services and active/
passive and active/active
configurations for stateful
services

Load balancing as a Ser-
vice in Networking and
load balancing in high
availability

By Heat
component

MySQL, Mon-
goDB, Cassan-
dra, and so on

þ250 oct-15 Apache
License
Version
2.0

CloudStack Yes, optional
service

Plugins for MidoNet,
VXLAN, and SDN

Authentication (username
/password, LDAP, ssh keys),
authorization, administra-
tion roles, domains and
groups

Multimanagement replica-
tion servers, restart VMs
automatically and MySQL
replication

IP load balancing VM
though rules, load bal-
ancing between multiple
Management Servers,
Citrix NetScaler and F5
support

Yes, back-end ser-
vices and applica-
tions VMs though
rules and
monitoring

MySQL þ200 nov-15 Apache
License
Version
2.0

M
.D

íaz
et

al./
Journal

of
N
etw

ork
and

Com
puter

A
pplications

67
(2016)

99
–117

106



M. Díaz et al. / Journal of Network and Computer Applications 67 (2016) 99–117 107
and high availability are present in all three platforms surveyed.
Whereas OpenNebula and CloudStack are focused on public, pri-
vate and hybrid cloud models, OpenStack is mainly focused on
private clouds with compatibility with AWS EC2 for public cloud,
as are others.

OpenNebula is the only in the cloud infrastructures surveyed
that presents cloud federation to interconnect worldwide data
centers, and is also the only one that contains external cloud
connectors to establish a relationship with public clouds. This
offers a high level of QoS (Quality of Service) with peak workloads.
However, as mentioned in Tusa et al. (2012), OpenNebula tries to
manage federated resources but the approach used for interacting
with physical servers (SSH remote commands) it is quite hard to
accomplish real federation achievements. The cloud middleware
CLEVER (Tusa et al., 2010) takes into account that obstacle and
proposes a scalable federated Cloud environment through single
sign-on authentication. On the other hand, OpenStack is the
platform with more support for storage, networking, database and
hypervisor components, whilst OpenNebula is the platform with
less component support. OpenStack is also the platform with the
most cloud integrators, including native API, different program-
ming languages and third-party tools. CloudStack is the platform
with the fewest cloud integrators, with compatibility for just
native API and Python. The majority of the platforms can be
accessed by an API, a Web UI and a CLI, but OpenStack also sup-
ports access through third-party tools. With respect to security
aspects, all components have authentication, administrative roles
and domain division. OpenStack is the platform which has
received the most funding and official use by external companies,
over 250 in both cases, whilst OpenNebula contains the lowest
number, just over 140 companies use it. Lastly, all components
surveyed contain an open source Apache License Version 2.0.

2.3. Middleware for IoT

In IoT deployments there are usually many heterogeneous
devices with different functionalities, capabilities, and multiple
programming languages to access them. So an abstraction layer is
necessary to abstract this heterogeneity in order to achieve a
seamless integration with anything. Through a middleware, users
and applications can access the data and devices from a set of
interconnected things, hiding communication and low-level
acquisition aspects (Calbimonte et al., 2014). We now summarize
different IoT middleware in this context. In the comparison we
have also added the Web Service (WS) protocols DPWS (Device
Profile for Web Services) and CoAP (Constrained Application Pro-
tocol) that although they are not middleware as such, but they
incorporate several middleware features and are important pro-
tocols to promote the IoT towards WoT.

GSN (Aberer et al., 2006; https://github.com/LSIR/gsn/wiki) is a
middleware that originated in 2005 as a platform for processing
data streams generated by WSN at EPFL which provides a platform
for flexible integration and deployment of heterogeneous WSNs.
The key concept in GNS is the virtual sensor, which describes
sensors across XML files, it is able to abstract from implementation
details of access to sensor data, and structures though different
configurations of the data stream which the virtual sensor con-
sumes and produces. GSN has a container-based architecture
composed of several layers: the virtual sensor manager (VSM)
which manages virtual sensors and underlying infrastructure; the
query manager (QM) which parses and executes and planning SQL
queries. It also has a configurable notification manager to config-
ure alerts; and lastly, at the top, an interface layer for access
through web services and via Web. VMS manages connection with
devices though wrappers, currently there are wrappers for TinyOs
platforms, several devices and generic wrappers. Moreover,
different instances of GSN can establish a communication through
remote wrappers.

Although GSN handles the heterogeneity devices and acquisi-
tion level problems, there is actually a large heterogeneity data
problem when data need to be interpreted and understood (Le-
Phuoc et al., 2012; Calbimonte et al., 2014). An extension of GSN
middleware, called XGSN, is presented in Calbimonte et al. (2014)
to address this problem facilitating the discovery and search tasks
in an IoT environment. XGSN provides semantic annotation for
GSN middleware, enriching virtual sensors with semantic data by
means of an extension of the SSN ontology. The main semantic
annotations of XGSN are about sensors, sensing devices and their
capabilities, and the measurements produced which have not been
described before in GSN. Moreover, in the same way as GSN, XGSN
offers interfaces to query data and managing virtual sensors, and
even integration with the LSM (Linked Sensor Middleware) for
storing and processing stream data.

DPWS (Device Profile for Web Services) (Sleman and Moeller,
2008; Jammes et al., 2005) is an OASIS Web Services specification
for embedded devices and devices with few resources. DPWS is
based on SOA (Service-Oriented Architecture), where each device
is abstracted as a set of services. DPWS defines a protocol stack
built over Web Services standards: SOAP (Simple Object Access
Protocol) 1.2, WSDL (Web Services Description Language) 1.1, XML
Schema and WS-Addressing; and also defines several protocols for
discovery, security, messaging and eventing. The DPWS services
can be specified using XML Schema, WSDL and WS-Policy like a
Web Service, and are discovered by the WS-Discovery protocol in a
plug-and-play mode. Services are discovered, specifying the type
of the device, the scope in which devices reside or both. The WS-
Discovery protocol uses multicast with SOAP over UDP in order to
reduce network traffic overhead and during the discovery process
each device displays its metadata information like its EPR (End-
Point Reference) or a set of messages that can be sent or received.
Moreover, the WS-Eventing protocol defines a publish/subscribe
protocol allowing devices to register to receive messages about
other devices. Lastly, the WS-Security is responsible for providing
different levels of security, such as authentication and con-
fidentiality in the devices. Currently, there are several implanta-
tions of DPWS like the WS4D open source implementation (http://
ws4d.org/) in C/Cþþ and different implementations in Java, and
the adoption of Microsoft in their OS from Windows Vista and
Windows Server 2008 (https://msdn.microsoft.com/en-us/library/
windows/desktop/aa826001(v¼vs.85).aspx). However, due to the
DPWS protocol stack, the DPWS integration in embedded devices
may be too heavy, so a solution like the DPWS-compliant gateway
proposed by Cubo et al. (2014), can abstract the underlying IoT
components while taking advantage of DPWS interoperability and
semantics on embedded devices.

The OMG Data-Distribution Service for Real-Time Systems
(DDS) (http://portals.omg.org/dds/) is a data-centric publish/sub-
scribe OMG (http://www.omg.org) specification for real-time and
embedded systems. The specification defines both the commu-
nication semantics (behavior and QoS) and the APIs for efficient
delivery of information between producers and consumers. In the
same way as Apache Kafka, data publishers in DDS publish typed
data-flows over topics which consumers can subscribe to. How-
ever, DDS does not contain a server to connect publishers and
producers rather it provides dynamic and extensible applications
by means of dynamic discovery of publishers, subscribers and data
types. DDS follows the DCPS (Data-Centric Publish-Subscribe)
model, through typed interfaces, providing the information nee-
ded to tell the middleware how to manipulate the data and also
providing a level of safety type. A domain is the way to abstract
different entities (publishers, consumers, data types) in the same
group. At the beginning of each application, it is necessary to

http://www.omg.org
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define the data types for the communication, although publishers
and consumers have been designed to support multiple data types.
Unlike other middleware, DDS defines QoS policies like data dur-
ability, latency maximum or data ownership. Currently, there are
several official implementations of DDS which include multiple
programming languages and SOs as well as different license types.

For communication between devices WSs are usually used. The
WSs offer a way to communicate, share and access data informa-
tion over Internet. Nowadays, there are many WSs offering a
variety of functionalities over Internet, like current currency
exchange, information on zip codes and cities, connecting with
social networks, and so on. The main ones are RESTFul (Repre-
sentation State Transfer) and SOAP WSs. However, WSs normally
operate over HTTP, or in the case of SOAP, they work with
exchange XML, so it is a major limitation for constrained devices.
CoAP (Bormann et al., 2012; Shelby et al., 2015) is a transfer pro-
tocol designed for constrained devices. CoAP follows the same
style of RESTFul architecture, but it uses UDP thereby reducing TCP
connection and transfer overheads. CoAP define GET, POST, DELETE
and PUT operations and responses like normal RESTFul WSs,
allowing a seamless integration with HTTP platforms. However, in
HTTP the transactions are usually initiated by clients with pull
mode, so this scenario is too expensive for devices with power
limitations, battery and network. CoAP, in contrast to HTTP, uses
an asynchronous mode to push information from servers to clients
following the observer design pattern. Moreover, to allow inter-
operability between CoAP end points, CoAP includes a technique
for adverting and discovering resource descriptions, and depend-
ing on the situation, CoAP allows several types of confirmation
messages.

Nonetheless, HTTP is widespread across the Internet in many
applications and systems, unlike CoAP. A proxy design to leverage
the compatibility with HTTP and the seamless adaptation of CoAP
on embedded devices is presented in Ludovici and Calveras (2015).
The proxy shows that the WebSocket protocol is more suitable
than HTTP for long-lived communications, whilst the final CoAP
devices are not overloaded since they are only connected with the
proxy following the observer pattern, handling the proxy all con-
sumers' connection. The proxy also provides HTTP compatibility,
and leveraging the observer pattern, uses a cache to reduce the
number of requests to CoAP devices. On the other hand, Castro
et al. (2014) avoid to use external intermediate application servers
for interconnecting clients with end devices, and they propose
CoAP Embedded Java Library for interconnecting Web browsers
directly with end devices. There are different implementations of
CoAP both with private and public licenses as in several pro-
gramming languages (http://coap.technology/impls.html). CoAP
can also considerably reduce power consumption with respect to
HTTP in many situations as show in Levä et al. (2014).

LinkSmart (https://linksmart.eu/) emerged from a European
research project to develop a middleware based on a Service-
oriented architecture for network embedded systems. LinkSmart
has been designed, taking into account the common problem of
compatibility between proprietary protocols and devices. The
result of the project is a software gateway which acts as a bridge
between the digital world and the underlying IoT devices. Loosely
coupled OSGi based web services are powered by LinkSmart in
order to allow applications to control, observe and manage phy-
sical devices through the LinkSmart gateway. The use of OSGi
provides a components system which allows the deployment and
control of components without requiring a reboot. LinkSmart is so
far the only one which allows dynamic deployment and control of
components during execution, a key issue in critical devices which
cannot be rebooted. By default, LinkSmart has components
installed, like the Network Manager, which can be used to register
and discovery services in the LinkSmart Network and for direct
communication between LinkSmart nodes, in addition to optional
components to provide a topic based publish-subscribe service,
device discovery and secure identity and encrypted communica-
tions. LinkSmart requires a JVM and a minimum memory of
256 Mb so it is too high for embedded devices.

For the latter, a proxy component has been incorporated to
abstract different communication protocols and interfaces like
ZigBee, Bluetooth and USB. The publish/subscribe mechanism
provided by the Event Manager component is another key com-
ponent which exchanges XML messages between senders and
receivers, being suitable for asynchronous environments. More-
over, IOS, Android and Windows tools have been incorporated to
control and manage the IoT resources deployed.

The component infrastructure middleware introduces a novel
paradigm in IoT, where the underlying devices can be reconfigured
as well as offering common mechanisms for deploying and
managing components in runtime. However, the requirements of
JVM in OSGi make it unsuitable for constrained devices. LooCI
(Hughes et al., 2012) is a middleware for building component-
based applications in WSN which takes into account this restric-
tion. LooCI provides interoperability across various platforms: a
Java micro edition for constrained devices known as Squawk, the
open source OS for IoT Contiki, and the OSGi. Like LinkSmart, LooCI
has a distributed event bus to allow publish/subscribe in addition
to direct bindings for communication between all the components
deployed. All the communication is based on type events, so it
leads to type-safe communications and services and binding dis-
coveries. In contrast to LinkSmart, LooCI instead of having a proxy
component to abstract different communication protocols or
interfaces, leaves the implementation of the device communica-
tion in each component and standardizes the networking services
through a Network framework. Recently (Maerien et al., 2015), a
new middleware known as SecLooCI has been proposed to expand
the LooCI middleware in order to enable a secure sharing of
resource-constrained WSN devices. However, the SecLooCI mid-
dleware's implementation is not available for download as it has
not yet been released

Table 5 shows the results of the IoT Middleware comparison. All
middleware surveyed have a mechanism to discover other systems
and services. Most middleware contain a peer-to-peer model
communication which uncouples the main point of failure in cli-
ent–server models. On the other hand, DPWS has a client–server
model and CoAP has a client–server asynchronous model since the
information is pushed from server to clients asynchronously.
Several QoS mechanisms are only addressed by DDSs which,
together with the real-time support, is maybe the main reason for
the adoption of DDS in critical and governmental systems. The
device virtualization is addressed by GSN and LinkSmart through
the proxy component. GSN, LinkSmart and LooCI are maybe the
most versatile middleware, since GSN and LinkSmart contain
support for several protocols and devices, and LooCI can imple-
ment any device communication through its corresponding
interface. For the device requirements, CoAP is the most light-
weight middleware, while the different instantiations of the dif-
ferent wrappers as the middleware instantiation itself mark the
requirements in GSN, LinkSmart and LooCI. GSN is the weightiest
middleware due to its protocol stack, and DDS does not define the
communication stack so the weight of DDS may vary in each
implementation.

DDS, DPWS and LinkSmart contain secure implementations,
including security services like authentication and data con-
fidentiality. On the other hand, CoAP can use DTLS (Datagram
Transport Layer Security) for security, GSN does not mention
anything about security and LooCI has released a new middleware
for security but it is not yet available. DDS, LinkSmart and LooCI
require that all data applications must be defined at the start, but
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at the same time this offers a safety type which is not present in
the remaining middleware. Moreover, LinkSmart and LooCI are
good choices when dynamic management and deployment of
components are required and DDS and CoAP are better for real-
time support. Lastly, GSN, LinkSmart and LooCI have open source
licenses and the rest have both enterprises as open source
implementations.
3. Integration existing proposals

In this section, different existing proposals for Cloud Comput-
ing and IoT integration are summarized. The proposals cover
research projects, enterprise products and open source projects in
multiple areas, so they form a multidisciplinary set of existing
solutions in this field.

OpenIoT (https://github.com/OpenIotOrg/openiot) is an open
source middleware, co-funded by the European Union's Seventh
Framework Programme, for getting information about sensors,
actuators and smart devices and offering utility-based IoT services
in a cloud platform. OpenIoT leverages the state of the art on
middleware frameworks of RFID/WSN and IoT like XGSN and
AspireRFID. Virtual sensors are also promoted by OpenIoT,
enabling the concept of Sensing-as-a-Service. The main inclusion
is the semantics structure, using ontologies, enabling semantics
interaction and interoperability between external systems and
offering Open Linked Data interfaces. OpenIoT has also designed a
set of applications over the cloud platform, to enable on-the-fly
specification of services requests to the OpenIoT platform, data
visualization, and configuration and monitoring components over
the sensors and OpenIoT services.

The SENSEI project (http://www.ict-sensei.org/; Tsiatsis et al.,
2010) is also an Integrated Project in the EU's Seventh Framework
Programme, which aims to integrate heterogeneous WSAN
(Wireless Sensor and Actor Networks) in an open business-drive
architecture in order to offer services and applications on them.
SENSEI's result is a secure marketplace where users can manage
and access information about WSAN resources. The Resource is the
main concept in the architecture, which abstracts sensors, actua-
tors, processors and software components through a semantic
specification at the same time that offers a set of services. SENSEI
also offers an Open Service Interface and a management UI
designed to enable machine processing which facilitates the
dynamic composition, discovery and instantiation of new services.
For communication and management with end points, SENSEI
makes use of the Resource End Point (REP), which makes resour-
ces on embedded devices or sensors available to the SENSEI sys-
tem through Restful interfaces. The REPs can be directly deployed
on devices through TinyOS, Contiky, and Android implementations
or by REP gateways which act as a resource proxy between the
underlying WSAN and the SENSEI systems through the HTTP-
CoAP, HTTP-Socket and HTTP-USB conversions.

Nimbits (http://www.nimbits.com/) is an open source platform
for connecting things in the cloud, and one another. At present,
Nimbits can be downloaded and installed privately in addition to
using a public cloud Nimbits deployed in Google App Engine.
Nimbits is composed of two main components: a web server
which records and processes geo and time stamped data, and
executes user rules on the data such as push notification, emails
and XMPP messages; and a Java library for developing and con-
necting new applications on the platform. Moreover, Nimbits
contains a library for Arduino support and an Android App to
manage and visualize all connected data prints. The data is sent by
clients using the JSON (JavaScript Object Notation) format. Users
can configure data points to behave in many cascading ways when
new data is recorded, generating different triggers and alerts in
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each situation. Several parts of Nimbits are provided with an open
source license, but the core components do not contain an open
source license, though the latter can be downloaded for free now.

Xively (https://xively.com/) is an IoT Platform as a Service for
developing applications over connected things. Xively offers dif-
ferent communication methods for connecting things, like REST-
Ful, HTTP, Sockets and MQTT (Message Queue Telemetry Trans-
port). Different data formats such as JSON, XML and CSV, and
official libraries for dozens of languages and platforms like Ardu-
ino, Android, Java and C. The Xively API has been built to read and
write data and manage products and devices. Xively has been
designed to support a development process in three stages:
development for testing devices and applications, deployment for
turning prototypes into products, and management for batching
products and support real-time devices. This can be done by the
web UI offered by Xively. Furthermore, the platform contains end-
to-end security for protecting commutation channels and for fine-
grained permissions. Xively has a proprietary license, allowing
users and systems to connect with its platform.

Paraimpu (Pintus et al., 2012) introduces a novel paradigm, to
share objects, data and functionalities with other people in order
to attain a participative and collaborative use of a friend's things.
Paraimpu is a web platform which allows the adding, use, inter-
connection and sharing of real smart objects and virtual things like
services on the Web and social networks. Users can define con-
nections between a sensor and an actuator through a sequence of
rules and actions, and manage the thing's privacy. As a result, a
user can publish on social media, like Facebook, an information
message when a sensor's temperature exceeds a certain threshold.
The platform promotes the concept of ”Web of Thing”, where
multiple connected smart objects communicate using Web pro-
tocols. Currently, Paraimpu has a proprietary license and only
allows things to be used or connected to its platform.

An integration with their own products has been released by
Particle (https://www.particle.io/). Particle offers a set of devel-
opment kits at low prices—starting from 19$ a microcontroller
with Wi-Fi support—with a free hosted cloud platform for each
device. The Particle team has obviously thought of the importance
of IoT software and they have designed a set of software tools for
developing, managing and monitoring your Particle devices. The
software tools include a mobile app for remote control and mon-
itoring, Web and local IDEs, a CLI Particle and programming sup-
port for Node.js, Arduino-like development and a REST API.
However, the main advantage of Particle is that all their software
contains an open source license and all are published on GitHub.
Moreover, the solutions have also been integrated with several
external systems such as a smart bed and a water monitoring
system. The development kits have Wi-Fi and 2G/3G support, so
together with their low price and the hosted cloud, they form a
cheap choice to start with IoT and Cloud Computing.

As is Particle, Thinking Things (http://www.thinkingthings.tel-
efonica.com/) is also a project founded by Telefonica with their
own devices which aims to connect IoT devices and cloud tech-
nologies. Unlike Particle, Thinking Things has presented a set of
modular development kits with integrated sensors—air tempera-
ture, air humidity and ambient light—making up a stack of con-
nected blocks that you can put together like Lego pieces. Fur-
thermore, a REST API and mechanisms to monitor and define
action rules form part of the platform. Thinking Things also offers
devices with Arduino-compatibility, with free cloud connection
and utilization. A collaboration with a pizza company has con-
cluded with the development of an embedded button to order
pizzas in real-time. However, Thinking Things development kits
are more expensive than Particle kits, they do not contain as many
software tools as Particle and they only have connectivity support
for GSM communications.
SensorCloud (http://www.sensorcloud.com/) leverages the
Cloud Computing technologies to provide a data storage, visuali-
zation and management platform. For the IoT interconnection, the
company MicroStrain offers a specific gateway which collects data
from its sensors and pushes it to SensorCloud. Moreover, data from
other IoT devices can be published on SensorCloud through the
RESTful API offered. SensorCloud also incorporates the Math-
Engine—a set of software tools to process, analyze and monitor
sensor data—a mechanism to upload you own scripts to process
data and an alerts engine (as other integration platforms). Lastly,
SensorCloud offers multiple plans to use its platform, from free
ones with 25.000 transactions per month.

The concept of a secure and robust software agent is promoted
by CloudPlugs (http://cloudplugs.com/). The agent, known as
SmartPlug, connects with the CloudPlugs IoT platform in addition
to having local intelligence for communication and to control
other devices. CloudPlugs also has a pay-as-you-grow IoT platform
with which you can manage and deploy the underlying IoT
deployment and access your IoT data through a REST API. Smart-
Plug has also been designed to deploy applications over a Node.js
server, offering communication support with local sensors through
several local interfaces like ZigBee and Bluetooth and multi-
operating system support. Final devices can connect directly to
the CloudPlugs platform through several communication protocols
and all things can communicate with each other independently
from the protocol through a smart message bus in the platform.
CloudPlugs is the only platform which besides the Cloud Com-
puting integration offers mechanisms to support local intelligence.
Although, CloudPlugs has a pay-as-you-grow platform, it also
offers a free account to test the platform.

Stack4Things (Merlino et al., 2015) proposes an extension of
the OpenStack platform in order to enable a cloud-oriented
infrastructure for managing the IoT. Stack4Things relies on the
OpenStack as a cloud platform as well as virtual infrastructure
manager to provide higher level services applied to the IoT. The
s4tProbe components constitute the end components in the sys-
tem, which are deployed in Arduino YUN boards. The s4tProbe
components connect the IoT with the OpenStack platform pro-
viding a pull-based design through the AQMP protocol and a push
based design through CoAP. The OpenStack platform has been
extended to support new UI functionalities, integrate s4tProbe
components and provide complex event processing.

The comparison of integration proposals in Table 6 shows that
all the surveyed proposals have REST API support and a manage-
ment Web UI. The connection with devices is established in dif-
ferent ways. On the one hand Nimbits, Paraimpu and Sensor Cloud
just rely on a RESTFul API whereas Particle and Stack4Things rely
on the lightweight CoAP protocol. Stack4Things also relies on
AQMP for a pull-based design. OpenIoT, SENSEI and CloudPlugs
rely on, respectively, middleware, gateways and agents to abstract
the underlying IoT deployment. In the case of SENSEI and Cloud-
Plugs, they also offer support for other protocols. Lastly, Xively
allows communications with several protocols and Thinking
Things abstracts the communication through its own devices.

Most integration proposals are available online for use and
deployment of an IoT infrastructure except for SENSEI, Stack4-
Things and OpenIoT, but the latter has the source code available
online. In the case of Nimbits, Thinking Things and Particle, it is
free to use the cloud, but the last two require the use of their own
devices for this. Moreover, Particle goes beyond and apart from the
free use of cloud, all source code of the platform's components
contain open source licenses and are available online. Stack4-
Things leverages the cloud features of a well established solution
as OpenStack to build the system. Nimbits also contains an open
source license for its source, but in this case only for some por-
tions. For security aspects, most components make use of tokens
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in order to allow a secure form of authentication, identification
and permissions over a set of users or devices. On the other hand,
SensorCloud and CloudPlugs protect their communication through
secure protocols, but they do not make use of tokens as it can be
overly weighty for embedded devices.
4. Data analytics techniques

Although the aims of processing, storing and representing large
amounts of data in worldwide IoT environments can be provided
by the integration of the IoT and Cloud Computing, there are still
open concerns such as verify, normalize, filter and analyze IoT
data. The lack of open standards, the large diversity of technolo-
gies involved in the IoT and the large amount of data generated
require techniques to improve and optimize such integration
issues.

Despite the cloud features, there are still some concerns about
data security and user privacy. Data security is one of the biggest
reason why people are unwilling to use the Cloud (Liu et al., 2015,
2014). Through data integrity verification techniques the data
owners can verify if their data is maintained intact at the same
time that providing data security. Moreover, data integrity ver-
ification techniques must be aligned with the Cloud and Big Data
and be efficient in storage, communication and computation. A
wide review of integrity protection and verification techniques
from external parties is presented in Liu et al. (2015). The better
evaluated technique is MuR-DPA Liu et al. (2014), which presents a
public auditing verification scheme which support dynamic data
updates and efficient verification. On the other hand, for ensuring
the privacy even with TPAs (Third Party Auditor), in Wang et al.
(2010) is proposed a privacy-preserving public auditing system for
data storage security which guarantee that TPAs would not learn
any knowledge about the data content.

On the other hand, the data compression of the high volume of
data generated by the IoT can lighten the storage, transmission and
processing tasks in this field. Furthermore, information in some
environments such as smart city are not as important in terms of
privacy and data loss as in critical systems and connected health.
The data compression techniques follows different paradigms
while the traditional compression philosophy is focused on redu-
cing redundant information (Ukil et al., 2015). SensCompr (Ukil et
al., 2015) focuses on extracting useful information from IoT data
with continuous adaptation and information loss. Normal and
usual activities usually do not provide extra information, but
anomalous IoT data. Therefore, SensCompr applies outlier detec-
tion method to capture unusual patterns. Also, SensCompr is
released to be done during data capture, in-network processing
and on sensor data storage. On the other hand, the work in Li et al.
(2013) proposed a CS (Compressed Sensing) framework with a
different approach than SensCompr. Although the CS framework
also has as purpose acquiring events of interest, the CS framework
focuses on compressing signal in data acquisition networks and
future reconstruction in the data analysis system.

Another technique for saving data and making estimations is
data filtering. In this field, there are different approaches and some
of them are specified for some systems (non-linear and linear
systems). One of the most widely used data filter for non-linear
system is the extended Kalman filter (EKF) (Julier et al., 1995). The
EKF linearizes about an estimate of the current mean and covar-
iance providing a recursive linear estimator. The collaborative fil-
tering is another approach that is based on the collaboration
between multiple agents or data sources for filtering information.
The collaborative filtering has been used on many areas such as
recommendation systems in order to predict suitable recommen-
dations for end users. An algorithmic framework for performing
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collaborative filtering is presented in Herlocker et al. (1999). Fur-
thermore, in environments where the user opinion is taken into
account, data filtering can be helped in the decision process from
users as realized in CrowdScreen (Parameswaran et al., 2012).

Even though semantic data and open standard middlewares can
homogenize data, the great variety of data sources and the needs for
integration data and making knowledge requires to unify them.
Moreover, the variety is one of the main features of Big Data, so their
processing and analysis processes as well as redundant and incon-
sistency issues can be improved with normalization techniques. Also
as mentioned in Nayak et al. (2014) the data normalization is one of
the fundamental data preprocessing steps for learning from data
before feeding to the Artificial Neural Network (ANN). The min–max,
z-score and decimal point normalizations are evaluated in Al Shalabi
and Shaaban (2006). Besides the authors propose preference matrix
to choose the best normalization method. The work in Nayak et al.
(2014) also includes the above data normalizations techniques and
includes the median, Sigmoid, Median and Median Absolute
Deviation (MAD) and Tanh estimator normalizations techniques
which have been evaluated in four ANN based forecasting models.
The evaluation concludes that users must not adopt a single nor-
malization technique, rather alternate methods should be con-
sidered to obtain better results.

The above techniques except verification are involved in the
preprocessing step, which help in the next step, processing for
extracting useful information. Analysis techniques are the main
techniques in the IoT since they turn into raw data into useful
information that can be used as knowledge. Data mining involves
discovering of useful patterns from large amounts of data and
applying algorithms for extracting useful and hidden information
(Chen et al., 2015). The analysis techniques may contain different
aims and may be useful for certain types of problems. In Chen et al.
(2015) the data mining techniques are divided into five categories:
classification, clustering, association analysis, time series analysis
and outlier analysis. The classification techniques pretend to find
models or functions that describe and distinguish data classes.
Clustering analyzes data without consulting reference models.
Association analysis aims for discovering association rules in data
sets. Time series and outlier analysis pretend to analyze time series
data and objects whose behavior changes over time, respectively.
Depends on the problem type, a large amount of techniques can be
chosen in Tsai et al. (2014) and Chen et al. (2015).
5. Case studies

The opportunities offered by the IoT are in continuous growth.
Besides the large amount of systems and applications available for
improving manufacturing and quality of our lives, a great amount
of startups, hardware, and systems and so on related to the IoT are
released every day. The great expansion of the IoT is due to the
unbound possibilities which submits this field.

Smart home is probably the first application that comes to
mind when thinking about IoT, and it is indeed a major field of
research. Future homes will be fully monitored, this technology
will make possible not just to know the average temperature of
our home and the power and water consumption, but also the
quality of air we breathe to automate the house ventilation, and
the prediction of water or gas leaks or any structural failure.

Smart objects such as smart watches, activity trackers or smart
glasses are also a hot trend. These objects are the key to make the
IoT part of our daily life, in order to interact with other objects or
to monitor ourselves. In the near future, the human body could be
monitored making possible early detection of illnesses and its
prediction, what's more internal sensors could be implanted to
augment senses and capabilities.
Some cities also have bet for IoT to enhance quality and per-
formance of urban services. These Smart cities offer a wide range
of applications, from transport and traffic management to water
distribution, including healthcare, waste management, energy,
security or environmental monitoring (air and noise pollution
monitoring or forest fire detection).

Therefore, the IoT is now one of the most interesting fields of
research that will be present to help us every day. The following
subsections show several case studies of some of the most relevant
IoT applications. The case studies have been selected based on the
work of IoT Analytics in the most popular IoT applications (http://
iot-analytics.com/10-internet-of-things-applications/) shown in
Fig. 2. Although, many applications share requirements and aims,
we have divided the IoT applications in three categories taking into
account its main requirements: real-time, for applications which
contains time restrictions; data analysis, for applications focused
in analyzing data; and device interaction, for applications focus on
devices relations. On the one hand, the Connected Health and
Smart Farming requires real-time monitoring of vital signs and the
Smart Supply Chain needs real-time for an efficient trading. In
Smart Home, Wearable and Industrial Internet device interaction
is a key aim. Lastly, Smart Retail, Smart City and Smart Grid rely on
data analysis to optimize business, cities and the electrical grids,
respectively.

In the case studies, we have chosen one of the most relevant
applications in each category, with an introduction of the case
study and a discussion of the technologies surveyed for a properly
deployment in each situation.

5.1. Connected health

Nowadays, there is a trend in many countries to reduce hospital
resources and moving healthcare services like medical checks to
home (Yang et al., 2014). Besides more work needs to be done on
models and algorithms to utilize data for the decision-making
activities of health care diagnosis and medical treatment (Yan et
al., 2015). The Connected Health would lead to a reduction in the
financial burden, a personal comfortable place for patients and a
quick release of hospital resources in case of emergency. However,
a new paradigm shift of health resources and financial burden
would need to be rethought for achieving it in society. Establishing
the mentioned environment requires real-time monitoring of vital
signs as a necessary requirement for actuating as soon as possible
to save lives. Moreover, analyzing normal vital signs could lead to
early detection and the prediction of abnormal situations. Also
checking medical records of all patient illnesses would prevent
possible illnesses before it is too late. The system would also
propose personal treatments based on the patient history and
genetic information. The Connected Health scenario proposed is
composed by a large deployment of smart units with vital signs
sensors for monitoring the patients health.

Respect to IaaS platforms, the Connected Health needs high
availability to ensure 24/7 availability, security to protect sensible
data and auto-scaling to ensure that all data is processed and
received in the system. The three IaaS platforms surveyed provide
the requirements of high availability, security and auto-scaling.
OpenStack can adapt better to the user's needs installing only the
required components with its pluggable architecture meanwhile
offering a multitude of component-as-a-service. Also OpenStack
provides, in addition to the largest support for hypervisor, storage
and networking components adjusting better to the user's needs,
support with NoSQL databases providing a high level of high
availability, in contrast to OpenNebula and CloudStack. On the
other hand, OpenNebula can adapt better to the peak workloads
thanks to the cloud federation without investing in hardware.



Fig. 2. The most popular Internet of Things applications right now.
Source: Permission authorized for publication by IoT Analytics.
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Furthermore, the great amount of data stream received in the
system requires real-time processing to detect abnormal situa-
tions. On the other hand, batch processing becomes established as
a needed component for analyzing common data and preventing
possible illnesses. Also all data in the system needs to be stored to
be queried and accessed by the personal corresponding. A possible
solution could be constituted by Apache Hadoop for achieving
bath processing, Apache Storm for real-time processing and
Apache Kafka to distribute the data between the cloud platforms
with low latency. RabbitMQ can provide a high level of con-
fidentiality through message confirmation, however the latency in
Kafka is more desirable for real-time. Apache Hadoop could also be
used as data storage, but other components like Apache HBase can
be used for that and providing a SQL-like querying interface like
the actual health systems. A solution for reducing managing and
deployments costs, would be to use Apache Spark and its com-
ponent Apache Spark Streaming for real-time and batch proces-
sing. Moreover, Apache Ambari can be used to orchestrate the
deployment and management of cloud platforms, but in its current
version does not include support for Apache Spark.

The IoT also needs to be abstracted by a middleware with QoS
and real-time requirements. DDS grows stronger as suitable mid-
dleware for that purpose. However, some of the requirements of
DDS can be too heavy for some of resource constrained devices.
For that purpose, CoAP with connection confirmation would be a
promising candidate even though does not provide QoS.

5.2. Smart home

As previously stated, Smart Home is one of the outstanding
examples of the IoT. Nowadays, homes contain more and more
smart objects and it will continue to grow. A properly orchestra-
tion between all objects connected at home could save money for
the end users, adapt to their needs in addition to react from
abnormal situations. Also the home consumption is one of the
main household expenses and the Smart Home would lead to
optimize it. For instance, temperature limits of the air conditioner
and central heating can considerably increase the home con-
sumption. However, when we get home we want a pleasant
temperature both in summer as in winter and the home con-
sumption is affected. Also the room temperature may change
when the number of people increases or when the oven is turned
on. Moreover, others aspects such as lighting and access control or
human actions could also be connected. So the Smart Home can
help us daily to save money with household expenses and adapt to
our needs. The proposed scenario is composed of multiple Smart
Homes with objects connected locally and support of Cloud
Computing for monitoring and managing each case.

In this scenario high availability and security are not as
important as Smart Healhtcare, but could be important for aspects
like access control. On the contrary, the accounting may be a
required requirement for monitoring the users consumption. Like
the above scenario, the three surveyed provide such requirements.
However, thanks to the large amount of component-as-a-service
offered, OpenStack provides an extra level of service which can be
offered to the end users.

Batch processing and querying large amounts of data are pre-
sent in this scenario. Apache HBase and Druid can be used as data
storage taking advantage of its integration with Apache Hadoop
for batch processing. Druid also provides real-time requirements
on ingesting and querying data. On the other hand, OpenTSDB can
store and query large amount of time series data—solving the
sorted key issue of HBase—as long as achieving data set processing
with Apache Pig. Furthermore, Apache Hadoop and Apache Spark
can be used as data storage with solutions such as Apache Pig and
Apache Hive or Apache Spark SQL for providing high layers for
accessing, respectively. Finally, as the Connected Health scenario,
Apache Ambari can orchestrate the deployment and management
of cloud platforms.

On the other hand, the middleware is the main component in
the scenario. Discovery and peer-to-peer communication are
desirable requirements for achieving device interaction. DDS, GSN,
LinkSmart and LooCI satisfy such requirements. LooCI and LinkS-
mart would be suitable for dynamic environments thanks to their
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dynamic configuration. On the other hand, DDS provides high
levels of QoS and security for scenarios where such aspects are
more important. GSN does not include security support, but offers
communication with remote middlewares.

A different approach could integrate a Smart Home with
humidity, temperature, lighting and physical presence with
Thinking Things, or custom behaviors with Particle devices, both
with free cloud utilization. Moreover, CloudPlugs with local
intelligence, Xively or SensorCloud could be used for that.

5.3. Smart city

The increase of world population in urban environments, the
shortage of natural resources, and the concerns about the climate
change and the environment, have led to the cities to make its
services and infrastructure more accessible, interactive and effi-
cient (Pellicer et al., 2013) to tackle them. The Smart Cities pretend
to improve the everyday life of a large amount of areas such as
transportation (He et al., 2014), public safety, urban consumption,
tourism, urban planning and so on. The large amount of subareas
belong to Smart City have originated that many Smart City
approach addressed have different aims. For instance, the initial
efforts of Málaga and Amsterdam were focused on promoting
renewable energy generation, Madrid and Stockholmwere focused
on traffic management, and public safety and Santander and
Göteborg on comprehensive communications infrastructure.
Therefore, Smart City is one of the fields with the largest scope and
diversity of the IoT. Moreover, variations of one of the factors
involved in Smart Cities may affect to the rest, so a strong
orchestration of the process involved optimize the aggregation.
The proposed scenario in Smart City is composed by a strong
orchestration of a large amount of service in order to optimize the
city life.

The initiative of many Smart Cities to offer some collected data as
open data, requires providing a QoS level. The requirements of high
availability, auto-scaling and load balancing are provided by the
infrastructures surveyed as already stated. Moreover, both Open-
Stack, CloudStack and OpenNebula support the Open Cloud Com-
puting Interface (OCCI) (http://occi-wg.org/). OCCI enables an open
specification and a flexible API for cloud task such as integration,
portability and interoperability. So OCCI offers mechanisms to make
easier integrations or migrations between cloud infrastructures.

Analyzing and making intelligence with an orchestration
between the services deployed are the key requirements in this
scenario. Moreover, new paradigms need to be addressed in order
to allow semantic and open data. Apache Spark provides a batch
processing framework which can process data 100� faster than
Apache Apache Hadoop. Fast processing in machine learning can
generate knowledge more trained in less time so it will adjust
itself better to prevent events in others areas. Moreover, many
machine learning algorithms are available for Apache Spark
through Apache Mahout.

In this Smart City scenario a middleware which facilities the
task for adding context information would help to provide
semantic and open data. Although many solutions incorporate a
gateway for facilitating that process, the gateway inclusion in
Smart City can assume a bottleneck due to components fails or
human attacks. DDS, XGSN and DPWS provides high layers to
facilitate the inclusion of semantic data. XGSN, in fact, enriches
virtual sensors with semantic data by means of an extension of the
SSN ontology. DPWS could require more devices requirements
than XGSN and DDS. On the other hand, DDS and DPWS require a
data format communication definition, so it provides a level of
safety type. DDS also is the only one that takes into account QoS
and real-time requirements.
In the case of an OpenStack deployment that has already been
done, another solution could consist in the proposed scenario in
Stack4Things in order to leverage the OpenStack cloud features.
6. Challenges and open research issues

Security and Privacy are key challenges in the deployment of IoT
infrastructures. IoT devices are normally associated with con-
strained devices, so they are more vulnerable to attacks and
threats. On the other hand, in many situations IoT systems use
sensitive information like personal information or critical infra-
structures, thus privacy with devices, cloud and network are key
aspects. Roman et al. (2013) mentioned the importance of security
and privacy to push the Internet of Things distributed approach
into real world. They enumerated the security mechanisms that
can be integrated in the IoT: protocol and network security that
offers end-to-end secure communication mechanism; identity
management to achieve authentication and authorization to
assure that the data is produced by a certain entity and to restrict
the access control; privacy over data generated; trust between
entities and users interaction and governance to support political
decisions and stability; and fault tolerance to prevent and to detect
attacks. Lastly, and the most difficult to avoid are attack models in
the IoT such as DoS (Denial of service), physical damage, eaves-
dropping, node capture to extract information and controlling
entities. Moreover, security and privacy are one of the main con-
cerns on the Cloud adoption.

Ipv6: The Internet is the main component of the Internet of
Things, and everyone knows its addressable limitations on IPv4.
Moreover, the adoption of technologies like CoAP that allow
interaction with embedded devices directly from the Internet, and
the continued growth of the latter over the coming years, repre-
sent a greater effort to get rid of the Network Address translation
(NAT) mechanisms and to address each thing or service in the
world with a unique IP address. IPv6 has been designed to solve
this problem through an IP 128 bit address, bringing with it sev-
eral advantages such as a native integration with the Internet, end-
to-end connectivity and a compliance with open REST interfaces
(Ziegler et al., 2014). In order to adopt the IPv6 in the embedded
devices of the IoT, 6LoWPAN and ZigBee IP are suitable specifica-
tions. Nevertheless, at the present time there are not too many
commercial platforms that implant these specifications. With the
adoption of IoT, we are moving from networks with human initi-
ated activities towards networks in which machine-to-human and
machine-to-machine communications will be more numerous and
IPv6 will pave the way.

Fog Computing: Even though Cloud Computing can help avoid
some IoT limitations, there are situations like mobility support,
geo-distribution, location awareness and low latency that need to
be addressed and Cloud Computing lacks means to tackle them. A
new platform, called Fog Computing (Aazam and Huh, 2014),
wants to provide storage, computing, and networking services
between Cloud Computing and end devices. It is named Fog
because fog is a cloud close to the ground and its main purpose is
to extend Cloud Computing to bring it closer to IoT devices. In
certain situations, data is not required for the Cloud or must be
processed with very low latency and mobility, so Fog Computing
can provide the necessary requirements in IoT through a dis-
tributed and collaborative platform in collaboration with IoT
devices. Notwithstanding, due to IoT limitations, Fog Computing
cannot provide functionalities such as complex analysis, data
access to large numbers of users and storing historical data, which
is complemented with Cloud Computing.

Lambda Architecture: The Lambda Architecture (LA) (Marz and
Warren, 2015) is a paradigm composed by cloud platforms—a
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distributed queue, batch and stream processing and distributed
data stores—designed to offer arbitrary queries over arbitrary real-
time data. Due to the temporal characteristics of IoT data, and the
need to extract knowledge and predictions of historical data, even
in some situations with real-time, we believe that the LA is a right
paradigm for IoT, which will bring the following benefits: storage,
real-time processing, scalability and machine learning. Real-time
processing is a necessary requirement for many situations, for
example, critical infrastructures and health systems. Moreover, in
other scenarios, the true knowledge resides in the data, since it
can be used to prevent certain situations from arising and to act in
advance, and the LA stimulates these scenarios. Furthermore, the
LA abilities for large-scale smart environment management and
Big Data storage/analytics are show in Villari et al. (2014). Apart
from these benefits, LA is not centered on any particular tech-
nology, so each user can choose the necessary technology based on
his/her needs. Fig. 3 shows the surveyed Lambda Architecture.

Interoperability: The large number of devices and technologies in
IoT makes interoperability a key issue in this field. The IoT and Cloud
Computing integration can partly solve this problem, but in some
situations like the aforementioned Fog Computing, the interoper-
ability is a necessary requirement. Moreover, many companies use
the interoperability to obtain unique products that are only com-
patible with each other. The research in this field for a greater
number of standards, and their adoption by enterprise components
will enable the creation of smart scenarios with heterogeneity
devices without having to worry about interoperability.

Context-Aware Computing: Context-Aware computing has been
acquired importance thanks to the growth and the IoT and its
potential of it. Context-aware computing allows us to store context
information linked to sensor data allowing an easy and meaningful
interpretation (Perera et al., 2014). Moreover, the European Union
has identified context awareness as an important research area for
context-aware IoT computing (Da Xu et al., 2014). Context-Aware
computing would help the IoT with new information that can be
used for new applications and obtaining a knowledge better
founded. Context-Aware computing also reopens the original use
of ontologies as sources of knowledge, remaining a pending issue
its properly integration with cloud computing.
7. Conclusions

The IoT is an emerging technology that is gradually moving
towards forming part of many facets of our lives. The multifaceted
IoT, and the increasingly large number of devices, technologies and
platforms in this field, have led IoT to be a global and extended
technology in many areas. However, due to the limitations of the
IoT as presented in this paper and the need for complex features to
address existing demands, current technologies, like Cloud Com-
puting, are appropriate as a complement in this field.

We have thought of an integration based on several compo-
nents: Cloud platforms, Cloud infrastructures and IoT middleware.
The Cloud platforms are the components responsible for providing
the IoT with the necessary and current requirements such as real-
time processing, scalable storage and global access, as well as
expansion towards others opportunities like machine learning.
The Cloud platforms have different aims and have been divided in
several categories such as batch processing, distributed databases,
distributed queues, real-time processing and platforms for helping
in the management, monitoring and deployment tasks. However,
the Cloud platforms are not discriminatory among them and can
be orchestrated together such as the LA. In order to monitor,
manage, and offer an infrastructure to deploy Cloud platforms,
different Cloud infrastructures have been surveyed. The Cloud
infrastructures provides the storage, networking and computing
resources required by the IoT and the Cloud platforms. And lastly,
the IoT middleware provides an abstraction layer for the under-
lying IoT devices, as well as mechanisms for interacting with Cloud
Computing.

There exists different integration proposals in the literature. We
have analyzed both research projects, enterprise products as open
source projects in multiple areas in order to provide an overview
of existing solutions. On the other hand, preprocessing data
techniques and data mining algorithms also have been surveyed in
order to complement such integration. The techniques includes
both preprocessing method and data mining algorithms in order
to normalize, verify, filter, compress and analyze the large amount
of data from the IoT.

Furthermore, we have taken into account the requirements of
real-time and critical applications for the desired integration and
we have surveyed components like real-time processing Cloud
platforms, high-availability and auto-scaling Cloud infrastructures,
and real-time and lightweight IoT middleware. Some case studies
have been analyzed in order to discuss the components surveyed.
Nonetheless, the components surveyed are not the only require-
ments which should be taken into consideration, since security,
networking and interoperability aspects are key challenges in an
IoT deployment, but many of the components surveyed have been
designed with this in mind.

The IoT and Cloud Computing still have concerns about privacy
and security, and the lack of interoperability is presented in both
areas. Approaches such as Fog Computing, the Lambda Archi-
tecture and Ipv6 could be considered for such integration. This
paper offers an insight into the proposed components for inte-
grating the Internet of Things with Cloud Computing. Based on the
comparisons made and the elements surveyed, users can select the
necessary elements based on their own needs in order to obtain a
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seamless integration. Most of the surveyed components have open
source licenses, so any user can develop a platform with these
components and survey new components to improve this paper
and the research in this field.
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