
Security & Privacy
in P2P Networks

Niels Olof Bouvin

1

Overview

Aspects of security*
Venues of attack
Techniques for anonymity & censorship resistance
Securing a DHT

*This is not the interesting part to talk about during the exam
2

Dangers of distributed systems

Trust
who can you trust?

Identity theft
pretending to be you (or someone you trust)

Privacy
preventing others listening in on the conversation

Censorship & attacks
denying you the right to know

3

The Internet

The Internet is vast and not at all safe
data packets going from machine to machine before they reach you

Many standards and protocols established back in
safer days

SMTP, NNTP, ftp, telnet, ...

There are plenty of criminals, who would delight in
taking over your machine and stealing your data

see iloveyou, Code Red, SQL Slammer, SoBig.F, Swen, Storm, NotPetya, WannaCry, etc.
not to mention DDoS, industrial espionage, etc.

4

Who can you trust?

Surely you can trust well-established Web sites?

Several important open source ftp servers have been
‘owned’ over the years

thus leaving black hats free to insert code of their own in popular open source
projects... (example: savannah.gnu.org)

This also happened for Microsoft some years ago

Numerous sites have been hacked for credit card
numbers etc.

Spoofing of URLs: www.paypa1.com
Unicode URLs have made everything more interesting

5

Cryptography

Fact: Messages can be intercepted. But intercepted
data is worthless, if the interceptor cannot read it

(the people involved are traditionally known as Alice, Bob, and Carol)

Cryptography is very old, and has been based on a
long number of techniques

today, cryptography is based on advanced, hard-to-solve mathematical problems

Regardless of the method used, a key is used to signify
how the plain text is transformed into cipher text

and for some reason, it always involves Alice and Bob trying to communicate securely
with Carol trying to eavesdrop…

6

Symmetric cryptography

The same key is used to encrypt and decrypt the
message

Advantages
symmetric cryptography is fast

Disadvantages
the key must be securely exchanged between Alice and Bob
if the key is compromised, the entire communication is instantly readable

7

Asymmetric cryptography

Keys come in pairs:
a public key known to all
a private (secret) key known only by the user

A message encrypted with the public key can be
decrypted only by the private key

so if Alice encrypts a message with Bob's public key, only Bob can decrypt it with his
private key

A message signed with the private key can be verified
only by the public key

so if Alice signs a message with her private key, all can verify (using Alice's public key)
that Alice is the author

8

Asymmetric cryptography

Advantages
as the private key is never shared, the system is secure
the system can also be used to authenticate (or “digitally sign”) messages

Disadvantages
only as secure as the private key...
significantly slower than symmetric cryptography
• not as much a drawback as you might think

9

Establishing trust

How does Alice know Bob is really Bob, and not Carol
claiming to be Bob?

Asymmetric cryptography often relies on CAs –
Certification Authorities

these, using out-of-band methods, establish the correct identity of Bob, and assigns a
(signed) certificate to Bob
Alice can then verify that some CA has vouchsafed Bob, and if she trusts the CA, she
can trust Bob

A problem with these certificates is the cost…
at least until Let’s Encrypt emerged (https://letsencrypt.org)

10

Establishing trust

A less centralised approach is taken by PGP (Pretty
Good Privacy), where Bob relies on associates to
confirm his identity

users sign signatures of people they know (and have verified)
if Alice knows (and trusts) any of these associates, she can trust Bob's identity
“small-world” experiments show typically at most six degrees of separation between
any two persons
trust decreases over distance

GPG is the open source equivalent

11

Symmetric/asymmetric cryptography

Asymmetric cryptography is used for the initial
communication to establish identity and (securely)
exchange a randomly generated symmetric key

This is the method used by TLS used in, e.g., https
the Web server provides the Web browser with its CA signed certificate (the browser
checks this against its installed CA root certificates)
the browser generates a random key, encrypts it with the server’s public key, and
returns it to the server
as only the server can decrypt the key, the server and browser can initiate a securely
symmetric (i.e., fast) encrypted session

12

Secure hashes

Secure (or cryptographic) hashes are used to verify
the integrity of a message

most common used to be MD5 (128 bits) and SHA-1 (160 bits)

It is thought computationally infeasible to create two
different messages with identical secure hash codes (it
requires brute force and 2128 or 2160 are big)

This is no longer true...
• MD5 and SHA-1 have both been weakened. Neither are fatally compromised, but

methods have been devised to generate messages matching a given hash code.
Use SHA256 or WHIRLPOOL instead

13

Secure hashes

Thus, if the (secure) hash code of a message is known,
we can check whether the message has been modified
by computing the hash code of the message ourselves
and comparing the results

Given the quality of the secure hash, it is just as good
(and much faster) to sign the (compact) hash code
with your private key for authentication as signing the
entire message

14

Security – a purely technical problem?

Security can be addressed through a number of
technical means

However, these valiant efforts are all for naught
in the face of inexperience and nigh terminal cluelessness

Some of the most successful black hat hackers have
operated, not through absurd Hollywood computer
guru excellence, but through social engineering

(hacking being considerably easier, if you can get people to tell you their password)

15

Overview

Aspects of security
Venues of attack
Techniques for anonymity & censorship resistance
Securing a DHT

16

How to attack a P2P system?

Attacks against P2P systems can broadly be divided
into

(Distributed) Denial of Service
• requesting
• pushing

Malicious peers
Sybil
Shadow

17

(Distributed) Denial of Service

Overload the system
often using a swarm of captured machines (botnet)

Difficult to resist, if attackers are resource rich

Defences:
minimise cost of losing any individual peers
make it difficult to identify important peers
optimise traffic so that only minimal part of network is affected
do not let new (bogus) data overwrite old (good) data

18

Malicious peers

Malicious peers can
reroute traffic in wrong directions
claim other peers are down
poison routing tables of others
corrupt transferred data
create a high churn rate
time out to decrease overall performance

Defences
do not rely on only one path or line of inquiry
verify peers and data
favour long living peers

19

Sybil attack

Create a lot of fake peers and join the network
easy to do, if you let a machine masquerade as many

Using all these these peers in concert, traffic can be
subverted or surveilled

Defences
make joining expensive
ensure that paths on the overlay network involve multiple subnets
• sybils are likely to originate from the same subnet

20

Eclipse attack

Peers are eclipsed by other, malicious peers that insert
themselves between good peers and the network

the good peers’ contribution to the network is subverted
good peers seem to disappear from the network

Defences
ensure that a peer cannot freely choose its position on the network
have several paths available to the network

21

Overview

Aspects of security
Venues of attack
Techniques for anonymity & censorship resistance
Securing a DHT

22

Crowds: defeating Web tracking

A number of members participate in a crowd, and
they are known to each other

if a member, Bob, wishes to retrieve a Web page, Bob sends a request for the URL to a
random member, Carol (using symmetric encryption). Carol can then choose to
retrieve the Web page or randomly forward the request to another crowd member,
Alice, and so on. Eventually a member chooses to retrieve the Web page, and the Web
page is returned along the request's path

23

Mix networks: defeating traffic analysis

Mix networks are used to ensure that a sender and
receiver cannot both be known

A mix network consists of a number of known mixers
—routers with asymmetric key pairs

24

Mix networks: defeating traffic analysis

A sender chooses a path through the mix network (m1,
..., mn), and encrypts the message (with some final
destination) with mn’s public key, encrypts this
message (with mn-1→mn) with mn-1’s public key and so
on

The message is then sent to m1, who decrypts the
message using its private key, and sends it to the next
mixer, who repeats the process

This is also known as onion routing
25

Mix networks: defeating traffic analysis

Eventually, the message makes it to mn, who can then
forward the message onwards to its final destination

Only m1 knows the sender and only mn knows the
receiver and neither knows the route of the message
(not even their own position on the path)

26

Mix networks – an example

Alice

Ma

Bob

Mb

Mc

msg

a→b→c

Alice

Ma

Bob

Mb

Mc

(((msg)c)b)a

Alice

Ma

Bob

Mb

Mc

((msg)c)b

Alice

Ma

Bob

Mb

Mc

(msg)c

Alice

Ma

Bob

Mb

Mc

(msg)

Alice

Ma

Bob

Mb

Mc

msg

27

Problems with existing mix networks

The original mix networks relied on a “cloud” of
established, known mixers

thus, easy to block (deny any access to the mixers)
a malicious mixer would recognise sender/recipient, if at the edge of the connection
cover traffic makes traffic analysis difficult within the cloud, but what about the
edges?
edge traffic analysis becomes feasible (if expensive)

If the message leaving the network is in clear text, it is
exposed to the last node on the path

some protocols leave sensitive data in headers (e.g., IP address of sender)

Sophisticated alternative found in Tarzan
28

Tarzan

Goals
P2P: All participants can mix
Robustness against malicious peers
Ensured anonymity
Look like IP to applications (just a library)

Characteristics
P2P network
Mimics: generating secure cover traffic

29

Tarzan is a P2P network

Defeating blocking
Tarzan is a scalable P2P network
thus, thousands of peers can participate
this makes it unfeasible to block everyone suspected of being a mixer

Traffic analysis
everybody is a mixer
cover traffic among all peers
no clear point for edge traffic to analyse

30

Discovery – joining the network

A new peer starts by retrieving a peer list from a
known peer

The peer can then ping the other peers (thus
validating their IP address), validate their public key,
and retrieve their lists

This process is repeated until the peer is satisfied

Later, peers gossip among themselves
thus, a good coverage of the network is gained over time

31

Mimics

Peers exchange cover traffic

Cover traffic is between validated peers

Cover traffic is
encrypted
sent at a uniform data rate (but adjusted when there is real traffic)
uniform – all packets are the same size

Every peer exchanges mimic traffic with k other peers

32

Defense against malicious peers

A malicious peer could spawn many (virtual) peers to
increase its chance of being selected for tunneling

but peers must be validated to be a part, and you cannot fake your IP return address

Most likely, a malicious peer will only control a
subpart of the IP address space

Tarzan therefore randomly selects between sub-domains of the IP address (spreading
the participants over the Internet)

33

Establishing a secure tunnel

The originator iteratively selects peers (across IP
domains) towards its target using the mimics of the
peers along the route

the originator either already knows the mimics from its own discovery, or can validate
them independently

Thus, the message is continually under the traffic
cover

All exchanges are encrypted

34

Through the tunnel

The message is NAT’ed (given a private IP address)
the message is covered in encryption layers (one per hop)

All traffic is padded and shipped using UDP (and
protected by the cover traffic)

forwarded (and stripped) along the tunnel

The destination PNAT peer NATs again to public alias
address

PNAT contacts the destination service

Responses returned similarly

35

Characteristics

Scalability
Overhead is unavoidable, but looks reasonable – no hotspots or SPoF
Though best suited for fairly low bandwidth jobs, if to be hidden behind cover traffic

Fairness
Peers are chosen at random, cover traffic is set at a fair pace

Integrity and security
Difficult to subvert

Anonymity, deniability, censorship resistance
Quite strong

36

Summary

Secure if enough peers participate

P2P: A good case to blur the distinction between
clients and servers

Spans domains to make Sybil attacks difficult

Dynamically adjusted cover traffic over mimic pairs
makes it difficult to analyse traffic

Neat to provide Tarzan as infrastructure – use the
library as you would IP

37

Freenet

Objective
to build a virtual file space across peers that cannot be easily attacked and that
provides a high degree of protection against censorship

Decentralised architecture

Built-in redundancy – popular files are replicated
across the network

High security and plausible deniability – nodes have
encrypted file spaces

have found use in mainland China where censorship is real

38

Freenet

No authentication (to real world identities) as such,
but can authenticate pseudonyms, allowing e.g., only
the original author to update a document

Each resource in a Freenet node space is encrypted
and integrity checked with SHA-1 hash

Network traffic is encrypted link to link

Routing is performed in a way to foil surveillance

39

Characteristics

Globally Unique Identifiers (GUIDs) are crucial in
Freenet – these are SHA-1 hashes (160 bit)

Content-hash keys (CHK) : Hashes calculated over files inserted into Freenet
signed-subspace keys (SSK): Hashes calculated from a public key and a textual
description. The signified file is signed with the private key and can therefore only be
modified by the owner. These (“indirect”) files are intended to contain directory
listings with GUIDs on other files

To participate in Freenet, a node must dedicate some
disk space

40

Architecture

Freenet nodes know only their immediate neighbors
traffic may have originated from the neighbor, or the neighbor might only be passing
it on
this makes it difficult to pinpoint whence a file originated
this also means that files get transferred over a number of nodes before reaching the
destination
• ...which might be bad for performance

Nodes maintains a table of known GUIDs and the
peers thought to hold the associated resource (maybe
itself)

41

Requesting a file

A user knows (somehow) the GUID (and key) of a
desired resource

This query is checked against the local node's store. If
not found, the query is forwarded to the known peer
with the closest GUID, and this process is repeated
until the resource is located or TTL runs out

If the resource is located, it is returned by the same
route to the originator (who is the only one who
knows it is the originator). Along the route back,
nodes stores the GUID and location, and may even
cache the resource

42

Requesting a file – security measures

Along the way, peers may alter the message by setting
themselves as the data holder and possibly caching it

to thwart attacks against a data holder

Peers may also alter the value of TTL
to thwart analysis of TTL

Thus, popular resources and their GUIDs are
replicated across the network

this makes DoS attacks of resources self defeating

43

Requesting a file

44

Storing a file on Freenet

The originator hashes the resource and sends the
GUID out on the network with a TTL

Other nodes check the GUID for uniqueness and forwards it to the nearest (in ID space)
neighbor until TTL runs out. The final peer sends ‘all clear’ following the route back to
the originator

The originator can now publish the file. It is verified at
each peer along the route, routing tables are updated,
copies are cached, and the file ends up at the final
peer on the route

Unpopular files will eventually be reclaimed by the
system to make room for more popular files

45

Joining Freenet

A new node joins Freenet by making an
announcement (containing a public key, an IP address
and TTL) to a (somehow) known node.

The nodes forward the announcement randomly until TTL and these nodes generate a
GUID in concert for the new node
The GUID is then the responsibility of the new node and requests close to the GUID are
forwarded to the node

As inserts and requests matching the GUID of the new
peer are directed towards it, it will gradually learn its
delegated part of the key space

46

Search performance

47

Experiences

Searching is so far somewhat missing – this is handled
elsewhere (and this, of course, presents an excellent
target for censorship)

Resources are encouraged to be encrypted by the
creator, allowing readers (who know the key) to
decrypt it. (How are these keys safely distributed?)

The safety of the system means that resources may
travel some distance before reaching their
destination. OTOH replication of resources and
updates in routing tables improves performance

48

Characteristics

Scalability
Simulations look good (caching
would be expected to help), but in
use Freenet is reportedly fairly slow

Fairness
Caching will relieve overworked
peers – peers will accumulate and
serve data over time

Integrity and security
The SHA-1 should keep files intact
(though not any more)

Anonymity, deniability,
censorship resistance

High marks – though only as long as
there is a safe method of
distributing the keys

49

Overview

Aspects of security
Venues of attack
Techniques for anonymity & censorship resistance
Securing a DHT

50

Are DHTs secure?

Structured P2P networks may well seem vulnerable
deterministic routing mechanism
crucial routing information kept at peers
peer ID determines position in network
values kept at peer with closest key

51

Aspects of Kademlia

All IDs are 160 bits long, random or found with SHA-1
i.e., uniform distribution, etc

To navigate this key space, Kademlia uses XOR
d(X, Y) = X XOR Y; d(X, Y) = d(Y, X)
intuition: higher order difference = longer distance

A Kademlia routing table stores 160 k-buckets
the ith k-bucket contains nodes within a XOR distance of 2i to 2i+1 from itself (so the
ith bit is significant)
up to k nodes in each bucket, ordered by liveness (most recently seen at tail)

• thus, once again, more complete knowledge of ‘close’ peers, but still knowledge
about the rest of the world

52

Kademlia routing table

Peer 0011 (•) must know some peers in the
highlighted groups — all different prefixes to itself

53

Kademlia routing table

54

Kademlia routing table

55

Locating a destination

Given a destination, use the (XOR) distance from
ourselves to find the matching k-bucket

Contact nodes in that k-bucket to get even closer
nodes

if there are not enough nodes in the bucket, use the nearest

Repeat until the k closest nodes have been found

56

Routing in Kademlia

Reaching 1110 from 0011. 0011 knows initially 101
57

Operations in Kademlia

PING

STORE

FIND_NODE

FIND_VALUE

58

FIND_NODE
FIND_NODEn(id)

returns the k closest nodes to an ID that n knows

Iterative process:
n0 = origin

N1 = FIND_NODEn0(ID)

N2 = FIND_NODEn1(ID)

…

Nm = FIND_NODEnm-1(ID)

The node can choose any peer among the returned k
nodes for the next step

Lookup terminates when k closest nodes have
responded

59

FIND_VALUE

FIND_VALUEn(key)
works like FIND_NODE, unless n knows the value in which case the value is
returned
if one of the k closest nodes does not have the value, the requester will store it there

60

Maintaining routing tables

Upon communication with another node
Check the appropriate k-bucket
• if already there, move to tail
• if there is room, insert at tail
• if new, and least recently seen node is unresponsive, replace with new node (and

move to tail)
• else: ignore node

Thus, the routing tables are populated, and old, active nodes are given preferential
treatment
Implementation optimization: keep new peers in cache replacement list; replace only
member of k-bucket if unresponsive during normal operations

61

Maintaining routing tables

Why prefer old nodes?
Studies show that the longer a peer stays online, the higher the probability is that it
will remain online
Makes it difficult to flood the network with bogus peers

As SHA-1 is uniform, a Kademlia node will receive
messages from nodes with IDs uniformly distributed
across the key space

Thus, all traffic is valuable and increases knowledge

62

Parallelism in Kademlia

At each step in the lookup process, FIND_NODE/
FIND_VALUE queries α nodes in parallel

The node can then choose the quickest peer and
move on

Ensures locality and takes advantages of the strongest
peers

The system does not have to wait until a node times
out as with other systems

this makes, e.g., a slowloris attack infeasible

63

Redundancy in Kademlia

Each (key, value) pair is republished every hour and
stored at k locations close to the key

(key, value) expires after 24 hours, so old data is
flushed

But, original publisher republishes (key, value) every
24 hour, so valuable information is maintained

Whenever a peer A observes a new peer B with an ID
closer to some of A's keys, A will replicate these keys
to B

64

Joining the network

Bootstrapping
compute an ID
(somehow) locate a peer in the network
add that peer to the appropriate k-bucket
find neighbours by doing FIND_NODE on own ID
populate the other k-buckets by performing FIND_NODE on random IDs within
those buckets

This process (due to the reflected nature of Kademlia)
ensures that the new peer is known across the
network

65

Failure in Kademlia

Unlikely: Routing tables are continually refreshed due
to ordinary traffic

As SHA-1 is uniform, the k-buckets will be evenly
updated

If there is no traffic, a peer will regularly explicitly
refresh oldest k-bucket

Parallelism in queries ensures that a failing peer is
detected
routed around

66

Kademlia

Most popular DHT ⇒ biggest target for attacks

Weaknesses
deterministic routing along converging path
sybils can saturate the network with malicious peers
eclipse peers can collude to produce poor routing

Strengths
prefers long living peers, so churn attacks are inefficient
routing information is continually refreshed — no specific operation to target

67

S/Kademlia

All peers have public/private keys

Securing Kademlia through
expensive NodeId generation
sibling broadcast
routing over disjoint paths
verifiable messages using public/private keys

68

Secure Node Identifiers

Sybils rely on cheap/home-made/unverifiable NodeId
generation

Ids created as public key hashes

Weak signatures on (IP, port, timestamp)
PING, FIND_NODE

Strong signatures on whole messages
man in the middle made difficult
message contains nonce, so replay is impossible

69

Generating Ids for S/Kademlia
Central authority

can co-sign peers’ certificates
can control/limit the growth of sybils
but, centralised/SPoF

Crypto-puzzles
no central authority, but computationally expensive
given a crypto hash function H (e.g., SHA1, SHA256, etc.) and ⊕=XOR
static: Generate key so that c1 first bits of H(H(key)) = 0
• NodeId = H(key) (so NodeId cannot be chosen freely)

dynamic: Generate X so that c2 first bits of H(key ⊕ X) = 0
• increase c2 over time to keep NodeId generation expensive

verification is O(1) — creation is O(2c1 + 2c2)
70

Sibling broadcast

Standard Kademlia uses
k buckets, k redundant copies of key/values (siblings)

The number of redundant copies increases integrity
but marries network connectivity (k-bucket) to redundancy (k copies)

S/Kademlia adds
s redundant copies of key/values
sibling lists of a size to ensure that a peer knows s siblings with high probability
• similar to leaf sets from Pastry

71

Populating the k-buckets

Actively valid nodeIds:
signed, responses to RPCs
added if there is room (as usual in Kademlia)

Valid nodeIds
signed
only added if the prefix is sufficiently different from the peer’s own
• makes a targeted attack more difficult

Unsigned nodeIds
ignored

72

Querying in S/Kademlia

We need to ensure that a malicious peer cannot steer
the query into a territory of malicious peers

ordinary Kademlia queries use a single list of nodes, refined over queries. Malicious
peers could drown out the good results in this single list

S/Kademlia issues queries over d paths, that are kept
disjoint, and where every peer is queried only once

This increases the odds for not all searches going into
malicious territories

73

Results

74

Results

Making attacks harder (not impossible) by
limiting NodeId generation with crypto-puzzles
accepting only signed NodeIds into k-buckets
distributing queries across a wider set of the network

Unfortunately at the cost of having good peers solve
crypto-puzzles

75

Characteristics

Scalability
nearly as scalable as Kademlia — signing is an overhead, but network messages are
small

Fairness
as fair as Kademlia, and if you don’t sign, you are ignored

Integrity and security
malicious peers are less likely to subvert the network

Anonymity, deniability, censorship resistance
not easy to subvert routing in order to suppress key/values

76

Conclusions

Reputation and trust on the Internet is hard

A number of good techniques exist – often based on a
central authority

but can you trust the authorities?

P2P makes everything worse
no central authority makes designs challenging

P2P can make many things better
by making it difficult for the central authority to eavesdrop

77

