
Contents

1 Accessing and Developing WoT 1
1.1 Chapter 6 . 1

1.1.1 REST STUFF . 1
1.1.2 EVENT STUFF . 8
1.1.3 SUMMARY . 12

1.2 Chapter 7 . 12
1.2.1 Connecting to the web 12
1.2.2 Five step process . 13
1.2.3 Summary . 16

1.3 Chapter 8 . 17
1.3.1 Findability problem 18
1.3.2 Discovering Things . 18
1.3.3 Describing web Things 22
1.3.4 The Semantic Web of Things (Ontologies) 26
1.3.5 Summary . 28

1.4 Chapter 9 . 28
1.4.1 Securing Things . 29
1.4.2 Authentication and access control 32
1.4.3 The Social Web of Things 34
1.4.4 Beyond book . 36
1.4.5 Summary . 37

1 Accessing and Developing WoT

1.1 Chapter 6

1.1.1 REST STUFF

• The first layer is called access. This layer is aptly named Access be-
cause it covers the most fundamental piece of the WoT puzzle: how to
connect a Thing to the web so that it can be accessed using standard
web tools and libraries.

• REST provides a set of architectural constraints that, when applied as
a whole, empha- sizes scalability of component interactions, generality
of interfaces, independent deploy- ment of components, and interme-
diary components to reduce interaction latency, enforce security, and
encapsulate legacy systems.

1

• In short, if the architecture of any distributed system follows the REST
constraints, that system is said to be RESTful.

• Maximises interoperability and scalability

• Five constraints: Client/server, Uniform interfaces, Stateless, Cacheable,
Layered system

1. Client/server

• Maximises decoupling, as client doesn’t need to know how the
server works and vice versa

• Such a separation of concerns between data, control logic, and
presentation improves scalability and portability because loose
coupling means each component can exist and evolve indepen-
dently.

2. Uniform interfaces

• Loose coupling between components can be achieved only when
using a uniform interface that all components in the system re-
spect.

• This is also essential for the Web of Things because new, unknown
devices can be added to and removed from the system at any time,
and interacting with them will require min- imal effort.

3. Stateless

• The client context and state should be kept only on the client,
not on the server.

• Each request to server should contain client state, visibility (mon-
itoring and debugging of the server), robustness (recovering from
network or application failures) and scalability are improved.

4. Cacheable

• Caching is a key element in the performance (loading time) of the
web today and therefore its usability.

• Servers can define policies as when data expires and when updates
must be reloaded from the server.

5. Layered

2

• For example, in order to scale, you may make use of a proxy
behaving like a load balancer. The sole purpose of the proxy
would then be to forward incoming requests to the appropriate
server instance.

• Another layer may behave like a gateway, and translate HTTP
requests to other protocols.

• Similarly, there may be another layer in the architecture respon-
sible for caching responses in order to minimize the work needed
to be done by the server.

6. HATEOAS

• Servers shouldn’t keep track of each client’s state because stateless
applications are easier to scale. Instead, application state should
be addressable via its own URL, and each resource should contain
links and information about what operations are possible in each
state and how to navigate across states. HATEOAS is particularly
useful at the Find layer

7. Principles of the uniform interface of the web

• Our point here is that what REST and HTTP have done for the
web, they can also do for the Web of Things. As long as a Thing
follows the same rules as the rest of the web—that is, shares this
uniform interface—that Thing is truly part of the web. In the end,
the goal of the Web of Things is this: make it possible for any
physical object to be accessed via the same uniform interface as
the rest of the web. This is exactly what the Access layer enables

• Addressable resources—A resource is any concept or piece of data
in an application that needs to be referenced or used. Every
resource must have a unique identi- fier and should be addressable
using a unique referencing mechanism. On the web, this is done
by assigning every resource a unique URL.

• Manipulation of resources through representations—Clients inter-
act with services using multiple representations of their resources.
Those representations include HTML, which is used for browsing
and viewing content on the web, and JSON, which is better for
machine-readable content.

• Self-descriptive messages—Clients must use only the methods pro-
vided by the pro- tocol—GET, POST, PUT, DELETE, and HEAD

3

among others—and stick to their meaning as closely as possible.
Responses to those operations must use only well-known response
codes—HTTP status codes, such as 200, 302, 404, and 500.

• Hypermedia as the engine of the application state (HATEOAS)—Servers
shouldn’t keep track of each client’s state because stateless appli-
cations are easier to scale. Instead, application state should be
addressable via its own URL, and each resource should contain
links and information about what operations are possi- ble in each
state and how to navigate across states.

(a) Principle #1, adressable resources

• REST is a resource-oriented architecture (ROA)
• A resource is explicitly identified and can be individually ad-

dressed, by its URI
• A URI is a sequence of characters that unambiguously iden-

tifies an abstract or physi- cal resource. There are many
possible types of URIs, but the ones we care about here are
those used by HTTP to both identify and locate on a network
a resource on the web, which is called the URL (Uniform Re-
source Locator) for that resource.

• An important and powerful consequence of this is the address-
ability and portability of resource identifiers: they become
unique (internet- or intranet-wide)

• Hierachical naming!

(b) Principle #2, manipulation of resources through representation

• On the web, Multipurpose Internet Mail Extensions (MIME)
types have been introduced as standards to describe various
data for- mats transmitted over the internet, such as images,
video, or audio. The MIME type for an image encoded as
PNG is expressed with image/png and an MP3 audio file
with audio/mp3. The Internet Assigned Numbers Authority
(IANA) maintains the list of the all the official MIME media
types.

• The tangible instance of a resource is called a representation,
which is a standard encoding of a resource using a MIME
type.

• HTTP defines a simple mechanism called content negotiation
that allows clients to request a preferred data format they

4

want to receive from a specific service. Using the Accept
header, clients can specify the format of the representation
they want to receive as a response. Likewise, servers specify
the format of the data they return using the Content-Type
header.

• The Accept: header of an HTTP request can also contain
not just one but a weighted list of media types the client
understands

• MessagePack can be used to pack JSON into a binary format,
to make it lighter.

• A common way of dealing with unofficial MIME types is to
use the x- extension, so if you want your client to ask for
MessagePack, use Content-Type: application/x-msgpack.

(c) Principle #3: self-descriptive messages

• REST emphasizes a uniform interface between components
to reduce coupling between operations and their implemen-
tation. This requires every resource to support a standard,
common set of operations with clearly defined semantics and
behavior.

• The most commonly used among them are GET, POST,
PUT, DELETE, and HEAD. Although it seems that you
could do everything with just GET and POST, it’s impor-
tant to correctly use all four verbs to avoid bad surprises in
your applications or introducing security risks.

• CRUD operations; create, read, update and delete
• HEAD is a GET, but only returns the headers
• POST should be used only to create a new instance of some-

thing that doesn’t have its own URL yet
• PUT is usually modeled as an idempotent but unsafe update

method. You should use PUT to update something that al-
ready exists and has its own URL, but not to create a new
resource

• Unlike POST, it’s idempotent because sending the same PUT
message once or 10 times will have the same effect, whereas
a POST would create 10 different resources.

• A bunch of error codes as well: 200, 201, 202, 401, 404, 500,
501

5

• CORS—ENABLING CLIENT-SIDE JAVASCRIPT TO AC-
CESS RESOURCES

(d) CORS
• Although accessing web resources from different origins lo-

cated on various servers in any server-side application doesn’t
pose any problem, JavaScript applications running in web
browsers can’t easily access resources across origins for secu-
rity reasons. What we mean by this is that a bit of client-side
JavaScript code loaded from the domain apples.com won’t be
allowed by the browser to retrieve particular representations
of resources from the domain oranges.com using particular
verbs.

• This security mechanism is known as the same- origin policy
and is there to ensure that a site can’t load any scripts from
another domain. In particular, it ensures that a site can’t
misuse cookies to use your credentials to log onto another
site.

• Fortunately for us, a new standard mechanism called cross-
origin resource sharing (CORS)9 has been developed and is
well supported by most modern browsers and web servers.

When a script in the browser wants to make a cross-site request, it
needs to include an Origin header containing the origin domain.
The server replies with an Access- Control-Allow-Origin header
that contains the list of allowed origin domains (or * to allow all
origin domains)

• When the browser receives the reply, it will check to see if the
Access-Control- Allow-Origin corresponds to the origin, and
if it does, it will allow the cross-site request.

For verbs other than GET/HEAD, or when using POST with
representations other than application/x-www-form-urlencoded,
multipart/form-data, or text/ plain, an additional request called
preflight is needed. A preflight request is an HTTP request with
the verb OPTIONS that’s used by a browser to ask the target
server whether it’s safe to send the cross-origin request.

(e) Principle #4 : Hypermedia as the Engine of Application State
• contains two subconcepts: hypermedia and application state.
• This fourth principle is centered on the notion of hypermedia,

the idea of using links as connections between related ideas.

6

• Links have become highly popular thanks to web browsers yet
are by no means limited to human use. For example, UUIDs
used to identify RFID tags are also links.

• Based on this representation of the device, you can easily
follow these links to retrieve additional information about
the subresources of the device

• The application state—the AS in HATEOAS—refers to a step
in a process or workflow, similar to a state machine, and
REST requires the engine of application state to be hyper-
media driven.

• Each possible state of your device or application needs to
be a RESTful resource with its own unique URL, where any
client can retrieve a representation of the current state and
also the possible transitions to other states. Resource state,
such as the status of an LED, is kept on the server and each
request is answered with a representation of the current state
and with the necessary information on how to change the
resource state, such as turn off the LED or open the garage
door.

• In other words, applications can be stateful as long as client
state is not kept on the server and state changes within an
application happen by following links, which meets the self-
contained-messages constraint.

• The OPTIONS verb can be used to retrieve the list of op-
erations permitted by a resource, as well as metadata about
invocations on this resource.

(f) Five-step process

• A RESTful architecture makes it possible to use HTTP as a
universal protocol for web-connected devices. We described
the process of web-enabling Things, which are summarized in
the five main steps of the web Things design process:

• Integration strategy—Choose a pattern to integrate Things
to the internet and the web, either directly or through a proxy
or gateway. This will be covered in chapter 7, so we’ll skip
this step for now.

• Resource design—Identify the functionality or services of a
Thing and organize the hierarchy of these services. This is
where we apply design rule #1: address- able resources.

7

• Representation design—Decide which representations will be
served for each resource. The right representation will be
selected by the clients, thanks to design rule #2: content
negotiation.

• Interface design—Decide which commands are possible for
each service, along with which error codes. Here we apply
design rule #3: self-descriptive messages.

• Resource linking design—Decide how the different resources
are linked to each other and especially how to expose those
resources and links, along with the operations and parame-
ters they can use. In this final step we use design rule #4:
Hypermedia as the Engine of Application State.

8. Design rules

(a) #2–CONTENT NEGOTIATION
• Web Things must support JSON as their default representa-

tion.
• Web Things support UTF8 encoding for requests and re-

sponses
• Web Things may offer an HTML interface/representation (UI).

(b) #3 : Self-descriptive messages
• Web Things must support the GET, POST, PUT, and DELETE

HTTP verbs.
• Web Things must implement HTTP status codes 20x, 40x,

50x.
• Web Things must support a GET on their root URL.
• Web Things should support CORS

(c) #4 : HATEOAS
• Web Things should support browsability with links.
• Web Things may support OPTIONS for each of its resources.

1.1.2 EVENT STUFF

1. Events and stuff

• Unfortunately, the request-response model is insufficient for a
number of IoT use cases. More precisely, it doesn’t match event-
driven use cases where events must be communicated (pushed) to
the clients as they happen.

8

• A client-initiated model isn’t practical for applications where no-
tifications need to be sent asynchronously by a device to clients
as soon as they’re produced.

• polling is one way of circumventing the problem, however it’s
inefficient, as the client will need to make many requests which
will simply return the same response. Additionally, we might not
"poll" at the exact time an event takes place.

• Most of the requests will end up with empty responses (304 Not
Modified) or with the same response as long as the value observed
remains unchanged.

2. Publish/subscribe

• What’s really needed on top of the request-response pattern is
a model called publish/subscribe (pub/sub) that allows further
decoupling between data consumers (subscribers) and producers
(publishers). Publishers send messages to a central server, called a
broker, that handles the routing and distribution of the messages
to the various subscribers, depending on the type or content of
messages.

• A publisher can send notifications into a topic, which subscribers
can have subscribed to

3. Webhooks

• The simplest way to implement a publish-subscribe system over
HTTP without break- ing the REST model is to treat every entity
as both a client and a server. This way, both web Things and
web applications can act as HTTP clients by initiating requests to
other servers, and they can host a server that can respond to other
requests at the same time. This pattern is called webhooks or
HTTP callbacks and has become popular on the web for enabling
different servers to talk to each other.

• The implementation of this model is fairly simple. All we need is
to implement a REST API on both the Thing and on the client,
which then becomes a server as well. This means that when the
Thing has an update, it POSTs it via HTTP to the client

• Webhooks are a conceptually simple way to implement bidirec-
tional communication between clients and servers by turning ev-
erything into a server.

9

• webhooks have one big drawback: because they need the sub-
scriber to have an HTTP server to push the notification, this
works only when the subscriber has a publicly accessible URL or
IP address.

4. Comet

• Comet is an umbrella term that refers to a range of techniques
for circumventing the limitations of HTTP polling and webhooks
by introducing event-based communication over HTTP.

• This model enables web servers to push data back to the browser
without the client requesting it explicitly. Since browsers were
initially not designed with server-sent events in mind, web appli-
cation developers have exploited several specification loop- holes
to implement Comet-like behavior, each with different benefits
and drawbacks.

• Among them is a technique called long polling

• With long poll- ing, a client sends a standard HTTP request to the
server, but instead of receiving the response right away, the server
holds the request until an event is received from the sensor, which
is then injected into the response returned to the client’s request
that was held idle. As soon as the client receives the response,
it immediately sends a new request for an update, which will be
held until the next update comes from the sensor, and so on.

5. Websockets

• WebSocket is part of the HTML5 specification. The increasing
support for HTML5 in most recent web and mobile web browsers
means WebSocket is becoming ubiquitously available to all web
apps

• WebSockets enables a full-duplex communication channel over a
single TCP connection. In plain English, this means that it cre-
ates a permanent link between the client and the server that both
the client and the server can use to send messages to each other.
Unlike techniques we’ve seen before, such as Comet, WebSocket is
standard and opens a TCP socket. This means it doesn’t need to
encapsulate custom, non-web content in HTTP messages or keep
the connection artificially alive as is needed with Comet imple-
mentations.

10

• A websockets starts out with a handshake: The first step is to
send an HTTP call to the server with a special header asking
for the protocol to be upgraded to WebSockets. If the web server
sup- ports WebSockets, it will reply with a 101 Switch- ing Proto-
cols status code, acknowledging the opening of a full-duplex TCP
socket.

• Once the initial handshake takes place, the client and the server
will be able to send messages back and forth over the open TCP
connection; these messages are not HTTP messages but Web-
Sockets data frames

• The overhead of each WebSockets data frame is 2 bytes, which is
small compared to the 871-byte overhead of an HTTP message
meta- data (headers and the like)

• the hierarchical structure of Things and their resources as URLs
can be reused as-is for WebSockets.

• we can subscribe to events for a Thing’s resource by using its
corre- sponding URL and asking for a protocol upgrade to Web-
Sockets. Moreover, Web- Sockets do not dictate the format of
messages that are sent back and forth. This means we can hap-
pily use JSON and give messages the structure and semantics we
want.

• Moreover, because WebSockets consist of an initial handshake fol-
lowed by basic message framing layered over TCP, they can be di-
rectly implemented on many plat- forms supporting TCP/IP—not
just web browsers. They can also be used to wrap sev- eral other
internet-compatible protocols to make them web-compatible. One
example is MQTT, a well-known pub/sub protocol for the IoT
that can be inte- grated to the web of browsers via WebSockets

• The drawback, however, is that keeping a TCP connection per-
manently open can lead to an increase in battery consumption
and is harder to scale than HTTP on the server side.

6. HTTP/2

• This new version of HTTP allows multiplexing responses—that is,
sending responses in parallel, This fixes the head-of-line blocking
problem of HTTP/1.x where only one request can be outstanding
on a TCP/IP connection at a time.

11

• HTTP/2 also introduces compressed headers using an efficient
and low-memory compression format.

• Finally, HTTP/2 introduces the notion of server push. Con-
cretely, this means that the server can provide content to clients
without having to wait for them to send a request. In the long run,
widespread adoption of server push over HTTP/2 might even re-
move the need for an additional protocol for push like WebSocket
or webhooks.

1.1.3 SUMMARY

• When applied correctly, the REST architecture is an excellent sub-
strate on which to create large-scale and flexible distributed systems.

• REST APIs are interesting and easily applicable to enable access to
data and ser- vices of physical objects and other devices.

• Various mechanisms, such as content negotiation and caching of Hy-
permedia as the Engine of Application State (HATEOAS), can help in
creating great APIs for Things.

• A five-step design process (integration strategy, resource design, repre-
sentation design, interface design, and resource linking) allows anyone
to create a mean- ingful REST API for Things based on industry best
practices.

• The latest developments in the real-time web, such as WebSockets,
allow creat- ing highly scalable, distributed, and heterogeneous real-
time data processing applications. Devices that speak directly to the
web can easily use web-based push messaging to stream their sensor
data efficiently.

• HTTP/2 will bring a number of interesting optimizations for Things,
such as multiplexing and compression.

1.2 Chapter 7

1.2.1 Connecting to the web

1. Direct Integration

• The most straightforward integration pattern is the direct inte-
gration pattern. It can be used for devices that support HTTP

12

and TCP/IP and can therefore expose a web API directly. This
pattern is particularly useful when a device can directly connect
to the internet; for example, it uses Wi-Fi or Ethernet

2. Gateway Integration

• Second, we explore the gateway integra- tion pattern, where resource-
constrained devices can use non-web protocols to talk to a more
powerful device (the gateway), which then exposes a REST API
for those non-web devices. This pattern is particularly useful for
devices that can’t connect directly to the internet; for example,
they support only Bluetooth or ZigBee or they have limited re-
sources and can’t serve HTTP requests directly.

3. Cloud Integration

• Third, the cloud integration pattern allows a powerful and scal-
able web platform to act as a gateway. This is useful for any
device that can connect to a cloud server over the internet, re-
gardless of whether it uses HTTP or not, and that needs more
capability than it would be able to offer alone.

1.2.2 Five step process

1. Integration strategy—Choose a pattern to integrate Things to the in-
ternet and the web. The patterns are presented in this chapter.

2. Resource design—Identify the functionality or services of a Thing, and
organize the hierarchy of these services.

3. Representation design—Decide which representations will be served for
each resource.

4. Interface design—Decide which commands are possible for each service,
along with which error codes.

5. Resource linking design—Decide how the different resources are linked
to each other.

1. Direct integration

• the direct integration pattern is the perfect choice when the device
isn’t battery powered and when direct access from clients such as
mobile web apps is required.

13

• the resource design. You first need to consider the physical re-
sources on your device and map them into REST resources.

• The next step of the design process is the representation design.
REST is agnostic of a par- ticular format or representation of the
data. We mentioned that JSON is a must to guarantee inter-
operability, but it isn’t the only interesting data representation
available.

• a modular way based on the middleware pattern.

• In essence, a middleware can execute code that changes the re-
quest or response objects and can then decide to respond to the
client or call the next middleware in the stack using the next()
function.

• The core of this implementation is using the Object.observe()
function.9 This allows you to asynchronously observe the changes
happening to an object by registering a callback to be invoked
whenever a change in the observed object is detected.

2. Gateway integration pattern

• Gateway integration pattern. In this case, the web Thing can’t
directly offer a web API because the device might not support
HTTP directly. An application gateway is working as a proxy
for the Thing by offering a web API in the Thing’s name. This
API could be hosted on the router in the case of Bluetooth or on
another device that exposes the web Thing API; for example, via
CoAP.

• The direct integration pattern worked well because your Pi was
not battery powered, had access to a decent bandwidth (Wi-
Fi/Ethernet), and had more than enough RAM and storage for
Node. But not all devices are so lucky. Native sup- port for
HTTP/WS or even TCP/IP isn’t always possible or even desir-
able. For batterypowered devices, Wi-Fi or Ethernet is often too
much of a power drag, so they need to rely on low-power protocols
such as ZigBee or Bluetooth instead. Does it mean those devices
can’t be part of the Web of Things? Certainly not.

• Such devices can also be part of the Web of Things as long as
there’ s an intermedi- ary somewhere that can expose the device’s
functionality through a WoT API like the one we described previ-
ously. These intermediaries are called application gateways (we’ll

14

call them WoT gateways hereafter), and they can talk to Things
using any non-web application protocols and then translate those
into a clean REST WoT API that any HTTP client can use.

• They can add a layer of security or authentication, aggregate and
store data temporarily, expose semantic descriptions for Things
that don’t have any, and so on.

• CoAP is a service layer protocol that is intended for use in resource-
constrained internet devices, such as wireless sensor network nodes.
CoAP is designed to easily translate to HTTP for simplified inte-
gration with the web

• CoAP is an interesting protocol based on REST, but because
it isn’t HTTP and uses UDP instead of TCP, a gateway that
translates CoAP messages from/to HTTP is needed

• It’s therefore ideal for device-to-device communi- cation over low-
power radio communication, but you can’t talk to a CoAP device
from a JavaScript application in your browser without installing
a special plugin or browser extension. Let’s fix this by using your
Pi as a WoT gateway to CoAP devices.

• By proxying, the gateway essentially just send a request to the
CoAP device whenever the gateway receives a request and it’ll
return the value to the requester, once it receives a value from
the CoAP device.

(a) Summary

• For some devices, it might not make sense to support HTTP
or WebSockets directly, or it might not even be possible,
such as when they have very limited resources like mem-
ory or processing, when they can’t connect to the internet
directly (such as your Bluetooth activity tracker), or when
they’re battery-powered. Those devices will use more opti-
mized communication or application protocols and thus will
need to rely on a more powerful gateway that connects them
to the Web of Things, such as your mobile phone to upload
the data from your Bluetooth bracelet, by bridging/translat-
ing various protocols. Here we implemented a simple gate-
way from scratch using Express, but you could also use other
open source alternatives such as OpenHab13 or The Thing
System.

15

3. Cloud Integration pattern

• Cloud integration pattern. In this pattern, the Thing can’t di-
rectly offer a Web API. But a cloud service acts as a powerful
application gateway, offering many more features in the name of
the Thing. In this particular example, the web Thing connects
via MQTT to a cloud service, which exposes the web Thing API
via HTTP and the WebSockets API. Cloud services can also of-
fer many additional features such as unlimited data storage, user
management, data visualization, stream processing, support for
many concurrent requests, and more.

• Using a cloud server has several advantages. First, because it
doesn’t have the physical constraints of devices and gateways, it’s
much more scalable and can process and store a virtually unlim-
ited amount of data. This also allows a cloud platform to support
many protocols at the same time, handle protocol translation effi-
ciently, and act as a scalable intermediary that can support many
more concurrent clients than an IoT device could.

• Second, those platforms can have many features that might take
consid- erable time to build from scratch, from industry-grade
security, to specialized analytics capabilities, to flexible data vi-
sualization tools and user and access management

• Third, because those platforms are natively connected to the web,
data and services from your devices can be easily integrated into
third-party systems to extend your devices.

1.2.3 Summary

• There are three main integration patterns for connecting Things to the
web: direct, gateway, and cloud.

• Regardless of the pattern you choose, you’ll have to work through the
following steps: resource design, representation design, and interface
design.

• Direct integration allows local access to the web API of a Thing. You
tried this by building an API for your Pi using the Express Node
framework.

• The resource design step in Express was implemented using routes,
each route representing the path to the resources of your Pi.

16

• We used the idea of middleware to implement support for different
representa- tions— for example, JSON, MessagePack, and HTML—in
the representation design step.

• The interface design step was implemented using HTTP verbs on routes
as well as by integrating a WebSockets server using the ws Node mod-
ule.

• Gateway integration allows integrating Things without web APIs (or
not sup- porting web or even internet protocols) to the WoT by pro-
viding an API for them. You tried this by integrating a CoAP device
via a gateway on your cloud.

• Cloud integration uses servers on the web to act as shadows or prox-
ies for Things. They augment the API of Things with such features
as scalability, analy- tics, and security. You tried this by using the
EVRYTHNG cloud.

1.3 Chapter 8

• Having a single and common data model that all web Things can share
would further increase interoperability and ease of integration by mak-
ing it possible for applications and services to interact without the need
to tailor the application manually for each specific device.

• The ability to easily discover and understand any entity of the Web of
Things—what it is and what it does—is called findability.

• How to achieve such a level of interoperability—making web Things
findable—is the purpose of the second layer

• The goal of the Find layer is to offer a uniform data model that all web
Things can use to expose their metadata using only web standards and
best practices.

• Metadata means the description of a web Thing, including the URL,
name, current location, and status, and of the services it offers, such
as sensors, actuators, com- mands, and properties

• this is useful for discovering web Things as they get con- nected to a lo-
cal network or to the web. Second, it allows applications, services, and
other web Things to search for and find new devices without installing
a driver for that Thing

17

1.3.1 Findability problem

• For a Thing to be interacted with using HTTP and WebSocket re-
quests, there are three fundamental problems

1. How do we know where to send the requests, such as root URL/resources
of a web Thing?

2. How do we know what requests to send and how; for example,
verbs and the format of payloads?

3. How do we know the meaning of requests we send and responses
we get, that is, semantics?

• The bootstrap problem. This problem is concerned with how the ini-
tial link between two entities on the Web of Things can be established.

• Lets assume the Thing can be found, how is it interacted with, if it
exposes a UI at the root of its URL? In this case, a clean and user-
centric web interface can solve problem 3 because humans would be
able to read and understand how to do this.

• Problem 2 also would be taken care of by the web page, which would
hardcode which request to send to which endpoint.

• But what if the heater has no user interface, only a RESTful API?1
Because Lena is an experienced front-end developer and never watches
TV, she decides to build a sim- ple JavaScript app to control the heater.
Now she faces the second problem: even though she knows the URL
of the heater, how can she find out the structure of the heater API?
What resources (endpoints) are available? Which verbs can she send
to which resource? How can she specify the temperature she wants to
set? How does she know if those parameters need to be in Celsius or
Fahrenheit degrees?

1.3.2 Discovering Things

• The bootstrap problem deals with two scopes:

1. first, how to find web Things that are physically nearby—for ex-
ample, within the same local network

2. second, how to find web Things that are not in the same local
network—for example, find devices over the web.

18

1. Network discovery

• In a computer network, the ability to automatically discover new
participants is common.

• In your LAN at home, as soon as a device connects to the network,
it automatically gets an IP address using DHCP

• Once the device has an IP address, it can then broadcast data
packets that can be caught by other machines on the same net-
work.

• a broadcast or multicast of a message means that this message
isn’t sent to a particular IP address but rather to a group of
addresses (multicast) or to everyone (broadcast), which is done
over UDP.

• This announcement process is called a network discovery proto-
col, and it allows devices and applications to find each other in
local networks. This process is commonly used by various discov-
ery protocols such as multicast Domain Name System (mDNS),
Digital Living Network Alliance (DLNA), and Universal Plug and
Play (UPnP).

• Most internet-connected TVs and media players can use DLNA
to discover network-attached storage (NAS)

• your laptop can find and configure printers on your network with
minimal effort thanks to network-level discovery protocols such
as Apple Bonjour that are built into iOS and OSX.

(a) mDNS

• In mDNS, clients can discover new devices on a network by
listening for mDNS mes- sages such as the one in the following
listing. The client populates the local DNS tables as messages
come in, so, once discovered, the new service—here a web
page of a printer—can be used via its local IP address or via
a URI usually ending with the .local domain. In this example,
it would be http://evt-bw-brother.local.

• The limitation of mDNS, and of most network-level discov-
ery protocols, is that the network-level information can’t be
directly accessed from the web.

(b) Network discovery on the web

19

http://evt-bw-brother.local

• Because HTTP is an Application layer protocol, it doesn’t
know a thing about what’s underneath—the network proto-
cols used to shuffle HTTP requests around.

• The real question here is why the configu- ration and status
of a router is only available through a web page for humans
and not accessible via a REST API. Put simply, why don’t
all routers also offer a secure API where its configuration can
be seen and changed by others’ devices and applications in
your network?

• Providing such an API is easy to do. For example, you can
install an open-source operating system for routers such as
OpenWrt and modify the software to expose the IP addresses
assigned by the DHCP server of the router as a JSON docu-
ment.

• This way, you use the existing HTTP server of your router to
create an API that exposes the IP addresses of all the devices
in your network. This makes sense because almost all net-
worked devices today, from printers to routers, already come
with a web user inter- face. Other devices and applications
can then retrieve the list of IP addresses in the network via
a simple HTTP call (step 2 in figure 8.3) and then retrieve
the metadata of each device in the network by using their IP
address (step 3 of figure 8.3).

(c) Resource discovery on the web

• Although network discovery does the job locally, it doesn’t
propagate beyond the boundaries of local networks.

• how do we find new Things when they connect, how do we
understand the services they offer, and can we search for the
right Things and their data in composite applications?

• On the web, new resources (pages) are discovered through
hyperlinks. Search engines periodically parse all the pages in
their database to find outgoing links to other pages. As soon
as a link to a page not yet indexed is found, that new page is
parsed and added to directory. This process is known as web
crawling.

(d) Crawling

• From the root HTML page of the web Thing, the crawler
can find the sub-resources, such as sensors and actuators, by

20

discovering outgoing links and can then create a resource tree
of the web Thing and all its resources. The crawler then uses
the HTTP OPTIONS method to retrieve all verbs supported
for each resource of the web Thing. Finally, the crawler uses
content negotiation to understand which format is available
for each resource.

(e) HATEOAS and web linking

• The simple way of crawling, of basically looping through links
found is a good start, but it also has several limitations. First,
all links are treated equally because there’s no notion of the
nature of a link; the link to the user interface and the link to
the actuator resource look the same—they’re just URLs.

• Additionally, it requires the web Thing to offer an HTML
interface, which might be too heavy for resource-constrained
devices. Finally, it also means that a client needs to both
understand HTML and JSON to work with our web Things.

• A better solution for discovering the resources of any REST
API is to use the HATEOAS principle to describe relation-
ships between the various resources of a web Thing.

• A simple method to implement HATEOAS with REST APIs
is to use the mechanism of web linking defined in RFC 5988.
The idea is that the response to any HTTP request to a re-
source always contains a set of links to related resources—for
example, the previous, next, or last page that contains the
results of a search. These would be contained in the LINK
header.

• encoding the links as HTTP headers introduces a more gen-
eral framework to define relationships between resources out-
side the representation of the resource—directly at the HTTP
level.

• When doing an HTTP GET on any Web Thing, the response
should include a Link header that contains links to related
resources. In particular, you should be able to get informa-
tion about the device, its resources (API endpoints), and the
documentation of the API using only Link headers.

• The URL of each resource is contained between angle brackets
(<URL>) and the type of the link is denoted by rel="X",
where X is the type of the rela- tion.

21

(f) New HATEOAS rel link things

• REL="MODEL" : This is a link to a Web Thing Model
resource; see section 8.3.1.

• REL="TYPE" : This is a link to a resource that contains
additional metadata about this web Thing.

• REL="HELP" : This relationship type is a link to the docu-
mentation, which means that a GET to devices.webofthings.io/help
would return the documentation for the API in a human-
friendly (HTML) or machine-readable (JSON) format.

• REL="UI" : This relationship type is a link to a graphical
user interface (GUI) for interacting with the web Thing.

1.3.3 Describing web Things

• knowing only the root URL is insufficient to interact with the Web
Thing API because we still need to solve the sec- ond problem men-
tioned at the beginning of this chapter: how can an application know
which payloads to send to which resources of a web Thing?

• how can we formally describe the API offered by any web Thing?

• The simplest solution is to provide a written documentation for the
API of your web Thing so that developers can use it (1 and 2 in figure
8.4).

• This approach, however, is insufficient to automatically find new de-
vices, understand what they are, and what services they offer.

• In addition, manual implementation of the payloads is more error-prone
because the developer needs to ensure that all the requests they send
are valid

• By using a unique data model to define formally the API of any web
Thing (the Web Thing Model), we’ll have a powerful basis to describe
not only the metadata but also the operations of any web Thing in a
standard way (cases 3 and 4 of figure 8.4).

• This is the cornerstone of the Web of Things: creating a model to
describe physical Things with the right balance between expressive-
ness—how flexible the model is—and usability— how easy it is to de-
scribe any web Thing with that model.

22

1. Introducing the Web Thing model

• Once we find a web Thing and understand its API structure, we
still need a method to describe what that device is and does. In
other words, we need a conceptual model of a web Thing that can
describe the resources of a web Thing using a set of well-known
concepts.

• In the previous chapters, we showed how to organize the resources
of a web Thing using the /sensors and /actuators end points. But
this works only for devices that actually have sensors and actua-
tors, not for complex objects and scenarios that are com- mon in
the real world that can’t be mapped to actuators or sensors. To
achieve this, the core model of the Web of Things must be easily
applicable for any entity in the real world, ranging from packages
in a truck, to collectible card games, to orange juice bot- tles.
This section provides exactly such a model, which is called the
Web Thing Model.

(a) Entities

• the Web of Things is composed of web Things.
• A web Thing is a digital representation of a physical object—a

Thing—accessible on the web. Think of it like this: your
Facebook profile is a digital representation of yourself, so a
web Thing is the “Facebook profile” of a physical object.

• The web Thing is a web resource that can be hosted directly
on the device, if it can connect to the web, or on an inter-
mediate in the network such as a gateway or a cloud service
that bridges non-web devices to the web.

• All web Things should have the following resources:
i. Model—A web Thing always has a set of metadata that

defines various aspects about it such as its name, descrip-
tion, or configurations.

ii. Properties—A property is a variable of a web Thing.
Properties represent the internal state of a web Thing.
Clients can subscribe to properties to receive a notifica-
tion message when specific conditions are met; for exam-
ple, the value of one or more properties changed.

iii. Actions—An action is a function offered by a web Thing.
Clients can invoke a function on a web Thing by sending

23

an action to the web Thing. Examples of actions are
“open” or “close” for a garage door, “enable” or “disable”
for a smoke alarm, and “scan” or “check in” for a bottle
of soda or a place. The direc- tion of an action is from
the client to the web Thing.

iv. Things—A web Thing can be a gateway to other devices
that don’t have an inter- net connection. This resource
contains all the web Things that are proxied by this web
Thing. This is mainly used by clouds or gateways because
they can proxy other devices.

i. Metadata
• In the Web Thing Model, all web Things must have some

associated metadata to describe what they are. This is a
set of basic fields about a web Thing, including its iden-
tifiers, name, description, and tags, and also the set of
resources it has, such as the actions and properties. A
GET on the root URL of any web Thing always returns
the metadata using this format, which is JSON by default

ii. Properties
• Web Things can also have properties. A property is a

collection of data values that relate to some aspect of the
web Thing. Typically, you’d use properties to model any
dynamic time series of data that a web Thing exposes,
such as the current and past states of the web Thing or
its sensor values—for example, the temperature or humid-
ity sensor readings.

iii. Actions
• Actions are another important type of resources of a web

Thing because they represent the various commands that
can be sent to that web Thing.

• In theory, you could also use properties to change the
status of a web Thing, but this can be a prob- lem when
both an application and the web Thing itself want to edit
the same property.

• The actions object of the Web Thing Model has an object
called resources, which contains all the types of actions
(commands) supported by this web Thing.

• Actions are sent to a web Thing with a POST to the URL

24

of the action {WT}/actions/{id}, where id is the ID of
the action

iv. Things
• a web Thing can act as a gateway between the web and

devices that aren’t connected to the internet. In this
case, the gateway can expose the resources—properties,
actions, and metadata—of those non-web Things using
the web Thing.

• The web Thing then acts as an Application-layer gateway
for those non-web Things as it converts incoming HTTP
requests for the devices into the various protocols or inter-
faces they support natively. For example, if your WoT Pi
has a Bluetooth dongle, it can find and bridge Bluetooth
devices nearby and expose them as web Things.

• The resource that contains all the web Things proxied by
a web Thing gateway is {WT}/things, and performing
a GET on that resource will return the list of all web
Things currently available

2. The WoT pie model

• A new tree structure, fitting the discussed model, where the dif-
ferent sensors end up in /properties, setLedState ends up in /ac-
tions, we have no /things and /model is the metadata as well as
all sensor data, their properties, the actions, everything.

• Following the model allows for dynamically creating routes and
such, as all information is maintained in the model of the Thing,
/model, /properties, /actions, /things.

3. Summary

• In this section, we introduced the Web Thing Model, a simple
JSON-based data model for a web Thing and its resources. We
also showed how to implement this model using Node.js and run
it on a Raspberry Pi. We showed that this model is quite easy to
understand and use, and yet is sufficiently flexible to represent all
sorts of devices and products using a set of properties and actions.
The goal is to propose a uniform way to describe web Things and
their capabilities so that any HTTP client can find web Things
and interact with them. This is sufficient for most use cases, and

25

this model has all you need to be able to generate user interfaces
for web Things automatically.

1.3.4 The Semantic Web of Things (Ontologies)

• In an ideal world, search engines and any other applications on the web
could also understand the Web Thing Model. Given the root URL of
a web Thing, any applica- tion could retrieve its JSON model and
understand what the web Thing is and how to interact with it.

• The question now is how to expose the Web Thing Model using an
existing web standard so that the resources are described in a way
that means some- thing to other clients. The answer lies in the notion
of the Semantic Web and, more precisely, the notion of linked data
that we introduce in this section.

• Semantic Web refers to an extension of the web that promotes common
data formats to facilitate meaningful data exchange between machines.
Thanks to a set of stan- dards defined by the World Wide Web Con-
sortium (W3C), web pages can offer a stan- dardized way to express
relationships among them so that machines can understand the mean-
ing and content of those pages. In other words, the Semantic Web
makes it easier to find, share, reuse, and process information from any
content on the web thanks to a common and extensible data description
and interchange format.

1. Linked Data and RDFa

• The HTML specification alone doesn’t define a shared vocabu-
lary that allows you to describe in a standard and non-ambiguous
manner the elements on a page and what they relate to.

(a) Linked Data

• Enter the vision of linked data, which is a set of best practices
for publishing and connecting structured data on the web, so
that web resources can be interlinked in a way that allows
computers to automatically understand the type and data of
each resource.

• This vision has been strongly driven by complex and heavy
standards and tools centered on the Resource Description
Framework (RDF)

26

• Although powerful and expressive, RDF would be overkill for
most simple scenarios, and this is why a simpler method to
structure con- tent on the web is desirable.

• RDFa emerged as a lighter version of RDF that can be em-
bedded into HTML code

• Most search engines can use these annotations to generate
better search listings and make it easier to find your websites.

• using RDFa to describe the metadata of a web Thing will
make that web Thing findable and search- able by Google.

(b) RFDa

• vocab defines the vocabulary used for that element, in this
case the Web of Things Model vocabulary defined previously.

• property defines the various fields of the model such as name,
ID, or descrip- tion.

• typeof defines the type of those elements in relation to the
vocabulary of the element.

• This allows other applications to parse the HTML represen-
tation of the device and automatically understand which re-
sources are available and how they work.

(c) JSON-LD

• JSON-LD is an interesting and lightweight semantic annota-
tion format for linked data that, unlike RDFa and Microdata,
is based on JSON.29 It’s a simple way to semanti- cally aug-
ment JSON documents by adding context information and
hyperlinks for describing the semantics of the different ele-
ments of a JSON objects.

(d) Micro-summary

• This simple example already illustrates the essence of JSON-
LD it gives a context to the content of a JSON document.
As a consequence, all clients that understand the http://
schema.org/Product context will be able to automatically
process this informa- tion in a meaningful way. This is the
case with search engines, for example. Google and Yahoo!
process JSON-LD payloads using the Product schema to ren-
der special search results; as soon as it gets indexed, our Pi
will be known by Google and Yahoo! as a Raspberry Pi prod-
uct. This means that the more semantic data we add to our

27

http://schema.org/Product
http://schema.org/Product

Pi, the more findable it will become. As an example, try
adding a location to your Pi using the Place schema,33 and
it will eventually become findable by location.

We could also use this approach to create more specific schemas
on top of the Web Thing Model; for instance, an agreed-upon
schema for the data and functions a wash- ing machine or smart
lock offers. This would facilitate discovery and enable automatic
integration with more and more web clients.

1.3.5 Summary

• The ability to find nearby devices and services is essential in the Web of
Things and is known as the bootstrap problem. Several protocols can
help in discover- ing the root URL of Things, such as mDNS/Bonjour,
QR codes or NFC tags.

• The last step of the web Things design process, resource linking design
(also known as HATEOAS in REST terms), can be implemented using
the web linking mechanism in HTTP headers.

• Beyond finding the root URL and sub-resources, client applications also
need a mechanism to discover and understand what data or services a
web Thing offers.

• The services of Things can be modeled as properties (variables), ac-
tions (func- tions), and links. The Web Thing Model offers a simple,
flexible, fully web-com- patible, and extensible data model to describe
the details of any web Thing. This model is simple to adapt for your
devices and easy to use for your products and applications.

• The Web Thing Model can be extended with more specific semantic
descriptions such as those based on JSON-LD and available from the
Schema.org repository.

1.4 Chapter 9

• In most cases, Internet of Things deployments involve a group of de-
vices that com- municate with each other or with various applications
within closed networks— rarely over open networks such as the inter-
net. It would be fair to call such deploy- ments the “intranets of Things”
because they’re essentially isolated, private net- works that only a few
entities can access. But the real power of the Web of Things lies in

28

opening up these lonely silos and facilitating interconnection between
devices and applications at a large scale.

• when it comes to public data such as data.gov initiatives, real-time
traffic/weather/pollution conditions in a city, or a group of sensors
deployed in a jungle or a volcano, it would be great to ensure that the
general public or researchers anywhere in the world could access that
data. This would enable anyone to create new innovative applications
with it and possibly gener- ate substantial economic, environmental,
and social value.

• How to share this data in secure and flexible way is what Layer 3
provides,

• The Share layer of the Web of Things. This layer focuses on how
devices and their resources must be secured so that they can only be
accessed by authorized users and applications.

• First, we’ll show how Layer 3 of the WoT architecture covers the secu-
rity of Things: how to ensure that only authorized parties can access
a given resource. Then we’ll show how to use existing trusted systems
to allow sharing physical resources via the web.

1.4.1 Securing Things

• Ultimately, every security breach hurts the entire web because it erodes
the overall trust of users in technology.

• Security in the Web of Things is even more critical than in the web.
Because web Things are physical objects that will be deployed every-
where in the real world, the risks associated with IoT attacks can be
catastrophic.

• Digitally augmented devices allow collecting fine-grained information
about people, when they took their last insulin shot, their last jog and
where they ran. It can also be used to remote control cars, houses and
the like.

• the majority of IoT solutions don’t comply with even the most basic se-
curity best practices; think clear-text passwords and communications,
invalid certificates, old software versions with exploitable bugs, and so
on.

29

1. Securing the IoT has three major problems

• First, we must consider how to encrypt the communications be-
tween two enti- ties (for example, between an app and a web
Thing) so that a malicious inter- ceptor—a “man in the mid-
dle”—can’t access the data being transmitted in clear text. This
is referred to as securing the channel

• Second, we must find a way to ensure that when a client talks to
a host, it can ensure that the host is really “himself”

• Third, we must ensure that the correct access control is in place.
We need to set up a method to control which user can access what
resource of what server or Thing and when and then to ensure that
the user is really who they claim to be.

2. Encryption 101

• encryption is an essential ingredient for any secure system.
• Without encryption, any attempt to secure a Thing will be in vain

because attackers can sniff the communication and understand the
security mechanisms that were put in place.

(a) Symmetric Encryption
• The oldest form of encoding a message is symmetric encryp-

tion. The idea is that the sender and receiver share a secret
key that can be used to both encode and decode a message
in a specific way

(b) Assymetric Encryption
• another method called asymmetric encryption has become

popular because it doesn’t require a secret to be shared be-
tween parties. This method uses two related keys, one public
and the other private (secret)

3. Web Security with TLS: The S of HTTPS

• Fortunately , there are standard protocols for securely encrypting
data between clients and servers on the web.

• The best known protocol for this is Secure Sockets Layer (SSL)
• SSL 3.0 has a lot of vulnerabilities (Heartbleed and the like).

These events inked the death of this proto- col, which was replaced
by the much more secure but conceptually similar Transport Layer
Security (TLS)

30

(a) TLS 101
• Despite its name, TLS is an Application layer protocol (see

chapter 5). TLS not only secures HTTP (HTTPS) commu-
nication but is also the basis of secure WebSocket (WSS) and
secure MQTT (MQTTS)

• First, it helps the client ensure that the server is who it says it
is; this is the SSL/TLS authentication. Second, it guarantees
that the data sent over the communication channel can’t be
read by any- one other than the client and the server involved
in the transaction (also known as SSL/TLS encryption).

• The client, such as a mobile app, tells the server, such as
a web Thing, which protocols and encryption algorithms it
supports. This is somewhat similar to the content negotiation
process we described in chapter 6.

• The server sends the public part of its certificate to the client.
The goal here is for the client to make sure it knows who
the server is. All web clients have a list of certificates they
trust.12 In the case of your Pi, you can find them in /etc/ssl/certs.
SSL certificates form a trust chain, meaning that if a client
doesn’t trust certificate S1 that the server sends back, but it
trusts certificate S2 that was used to sign S1, the web client
can accept S1 as well.

• The rest of the process generates a key from the public certifi-
cates. This key is then used to encrypt the data going back
and forth between the server and the client in a secure man-
ner. Because this process is dynamic, only the client and the
server know how to decrypt the data they exchange during
this session. This means the data is now securely encrypted:
if an attacker manages to capture data packets, they will re-
main meaningless.

(b) Beyond Self-signed certificates
• Clearly, having to deal with all these security exceptions isn’t

nice, but these excep- tions exist for a reason: to warn clients
that part of the security usually covered by SSL/ TLS can’t be
guaranteed with the certificate you generated. Basically, al-
though the encryption of messages will work with a self-signed
certificate (the one you created with the previous command),
the authenticity of the server (the Pi) can’t be guaran- teed.
In consequence, the chain of trust is broken—problem 2

31

• In an IoT context, this means that attackers could pretend
to be the Thing you think you’re talk- ing to.

• The common way to generate certificates that guarantee the
authenticity of the server is to get them from a well-known
and trusted certificate authority (CA). There exists an amount
of these; LetsEncrypt, Symantec and GeoTrust.

1.4.2 Authentication and access control

• Once we encrypt the communication between Things and clients as
shown in the pre- vious section, we want to enable only some applica-
tions to access it.

• First, this means that the Things—or a gateway to which Things are
connected—need to be able to know the sender of each request (iden-
tification).

• Second, devices need to trust that the sender really is who they claim
to be (authentication)

• Third, the devices also need to know if they should accept or reject each
request depending on the identity of this sender and which request has
been sent (authorization).

1. Access control with REST and API tokens

• Server-based authentication is used when we use our username/password
to log into a website, we initiate a secure session with the server
that’s stored for a limited time in the server application’s memory
or in a local browser cookie.

• server-based authentication is usually stateful because the state
of the client is stored on the server. But as you saw in chapter 6,
HTTP is a stateless protocol; therefore, using a server-based au-
thentication method goes against this principle and poses certain
problems. First, the performance and scalability of the overall
systems are limited because each session must be stored in mem-
ory and over- head increases when there are many authenticated
users. Second, this authentication method poses certain security
risks—for example, cross-site request forgery.

• alternative method called token-based authentication has become
popular and is used by most web APIs.

32

• Because this token is added to the headers or query parameters
of each HTTP request sent to the server, all interactions remain
stateless.

• API tokens shouldn’t be valid forever. API tokens, just like pass-
words, should change regularly.

2. OAuth: a web authorization framework

• OAuth is an open standard for authorization and is essentially a
mechanism for a web or mobile app to delegate the authentication
of a user to a third-party trusted service; for example, Facebook,
LinkedIn, or Google.

• OAuth dynamically generates access tokens using only web pro-
tocols.

• OUath allows sharing resources and token sharing between appli-
cations.

• In short, OAuth standardizes how to authenticate users, generate
tokens with an expiration date, regenerate tokens, and provide
access to resources in a secure and standard manner over the
web.

• At the end of the token exchange process, the application will
know who the user is and will be able to access resources on the
resource server on behalf of the user. The application can then
also renew the token before it expires using an optional refresh
token or by running the authorization process again.

• OAuth delegated authentication and access flow. The applica-
tion asks the user if they want to give it access to resources on a
third-party trusted service (resource server). If the user accepts,
an authorization grant code is generated. This code can be ex-
changed for an access token with the authorization server. To
make sure the authorization server knows the application, the ap-
plication has to send an app ID and app secret along with the
authorization grant code. The access token can then be used to
access protected resources within a certain scope from the resource
server.

• Implementing an OAuth server on a Linux-based embedded device
such as the Pi or the Intel Edison isn’t hard because the protocol
isn’t really heavy. But maintaining the list of all applications,

33

users, and their access scope on each Thing is clearly not going
to work and scale for the IoT.

(a) OAuth Roles

• A typical OAuth scenario involves four roles
i. A resource owner—This is the user who wants to autho-

rize an application to access one of their trusted accounts;
for example, your Facebook account.

ii. The resource server—Is the server providing access to the
resources the user wants to share? In essence, this is a
web API accepting OAuth tokens as credentials.

iii. The authorization server—This is the OAuth server man-
aging authorizations to

access the resources. It’s a web server offering an OAuth API
to authenticate and authorize users. In some cases, the resource
server and the authorization server can be the same, such as in
the case of Facebook.

i. The application—This is the web or mobile application that
wants to access the resources of the user. To keep the trust
chain, the application has to be known by the authorization
server in advance and has to authenticate itself using a secret
token, which is an API key known only by the authorization
server and the application.

1.4.3 The Social Web of Things

• Using OAuth to manage access control to Things is tempting, but not
if each Thing has to maintain its own list of users and application.
This is where the gateway integration pattern can be used.

• use the notion of delegated authentication offered by OAuth, which
allows you to use the accounts you already have with OAuth providers
you trust, such as Facebook, Twitter, or LinkedIn.

• The Social Web of Things is usually what covers the sharing of access
to devices via existing social network relationships.

1. A Social Web of Things authentication proxy

34

• The idea of the Social Web of Things is to create an authentication
proxy that controls access to all Things it proxies by identifying
users of client applications using trusted third-party services.

• Again, we have four actors: a Thing, a user using a client appli-
cation, an authenti- cation proxy, and a social network (or any
other service with an OAuth server). The client app can use the
authentication proxy and the social network to access resources
on the Thing. This concept can be implemented in three phases:

(a) The first phase is the Thing proxy trust. The goal here is
to ensure that the proxy can access resources on the Thing
securely. If the Thing is protected by an API token (device
token), it could be as simple as storing this token on the
proxy. If the Thing is also an OAuth server, this step follows
an OAuth authentication flow, as shown in figure 9.6. Re-
gardless of the method used to authenticate, after this phase
the auth proxy has a secret that lets it access the resources
of the Thing.

(b) The second phase is the delegated authentication step. Here,
the user in the client app authenticates via an OAuth au-
thorization server as in figure 9.6. The authentication proxy
uses the access token returned by the authorization server to
identify the user of the client app and checks to see if the user
is authorized to access the Thing. If so, the proxy returns the
access token or generates a new one to the client app.

(c) The last phase is the proxied access step. Once the client app
has a token, it can use it to access the resources of the Thing
through the authentication proxy. If the token is valid, the
authentication proxy will forward the request to the Thing
using the secret (device token) it got in phase 1 and send the
response back to the client app.

• All communication is encrypted using TLS

• Social Web of Things authentication proxy: the auth proxy first
establishes a secret with the Thing over a secure channel. Then,
a client app requests access to a resource via the auth proxy. It
authenticates itself via an OAuth server (here Facebook) and gets
back an access token. This token is then used to access resources
on the Thing via the auth proxy. For instance, the /temp resource
is requested by the client app and given access via the auth proxy

35

forwarding the request to the Thing and relaying the response to
the client app.

2. Leveraging Social Networks

• This is the very idea of the Social Web of Things: instead of
creating abstract access control lists, we can reuse existing social
structures as a basis for sharing our Things. Because social net-
works increasingly reflect our social relationships, we can reuse
that knowledge to share access to our Things with friends via
Facebook, or work colleagues via LinkedIn.

3. Implementing Access Control Lists

• In essence, you need to create an access control list (ACL). There
are various ways to implement ACLs, such as by storing them in
the local database.

4. Proxying Resources of Things

• Finally, you need to implement the actual proxying: once a re-
quest is deemed valid by the middleware, you need to contact the
Thing that serves this resource and proxy the results back to the
client.

1.4.4 Beyond book

• But just as HTTP might be too heavy for resource-limited devices,
security pro- tocols such as TLS and their underlying cypher suites
are too heavy for the most resource-constrained devices. This is why
lighter-weight versions of TLS are being developed, such as DTLS,26
which is similar to TLS but runs on top of UDP instead of TCP and
also has a smaller memory footprint

• device democracy.27 In this model, devices become more autonomous
and favor peer-to-peer interactions over centralized cloud services. Se-
curity is ensured using a blockchain mechanism: similar to the way
bitcoin transactions are validated by a number of independent parties
in the bitcoin network, devices could all participate in making the IoT
secure.

36

1.4.5 Summary

• You must cover four basic principles to secure IoT systems: encrypted
commu- nication, server authentication, client authentication, and ac-
cess control.

• Encrypted communication ensures attackers can’t read the content of
mes- sages. It uses encryption mechanisms based on symmetric or
asymmetric keys.

• You should use TLS to encrypt messages on the web. TLS is based on
asymmetric keys: a public key and a private server key.

• Server authentication ensures attackers can’t pretend to be the server.
On the web, this is achieved by using SSL (TLS) certificates. The de-
livery of these certif- icates is controlled through a chain of trust where
only trusted parties called certificate authorities can deliver certificates
to identify web servers.

• Instead of buying certificates from a trusted third party, you can create
self- signed TLS certificates on a Raspberry Pi. The drawback is that
web browsers will flag the communication as unsecure because they
don’t have the CA certifi- cate in their trust store.

• You can achieve client authentication using simple API tokens. Tokens
should rotate on a regular basis and should be generated using crypto
secure random algorithms so that their sequence can’t be guessed.

• The OAuth protocol can be used to generate API tokens in a dynamic,
standard, and secure manner and is supported by many embedded
Linux devices such as the Raspberry Pi.

• The delegated authentication mechanism of OAuth relies on other
OAuth pro- viders to authenticate users and create API tokens. As
an example, a user of a Thing can be identified using Facebook via
OAuth.

• You can implement access control for Things to reflect your social
contacts by creating an authentication proxy using OAuth for clients’
authentication and contacts from social networks.

37

	Accessing and Developing WoT
	Chapter 6
	REST STUFF
	EVENT STUFF
	SUMMARY

	Chapter 7
	Connecting to the web
	Five step process
	Summary

	Chapter 8
	Findability problem
	Discovering Things
	Describing web Things
	The Semantic Web of Things (Ontologies)
	Summary

	Chapter 9
	Securing Things
	Authentication and access control
	The Social Web of Things
	Beyond book
	Summary

