Seventh IEEE International Conference on Peer-to-Peer Computing

Attacking a Swarm with a Band of Liars:
evaluating the impact of attacks on BitTorrent

Marlom A. Konrath, Marinho P. Barcellos, Rodrigo B. Mansilha

PIPCA — Postgraduate Program on Applied Computing
UNISINOS University — Universidade do Vale do Rio dos Sinos
Sao Leopoldo, RS — Brazil

marlomk @unisinos.br, marinho @ acm.org, rmansilha@gmail.com

Abstract

BitTorrent has become one of the most popular Internet
applications, given the number of users and the fraction of
the Internet traffic it consumes. Its wide adoption has ex-
posed some potential problems, like selfish peer behavior.
Related research efforts so far have focused on modeling
the dynamics of swarms, as well as devising incentive mech-
anisms that improve fairness without sacrificing efficiency.
To the best of our knowledge, this is the first paper to evalu-
ate the impact of attacks that exploit BitTorrent vulnerabil-
ities with the sole intention of harming a swarm. The pa-
per sheds light on BitTorrent behavior by presenting state
diagrams, describes two attacks, and then evaluates their
negative impact in realistic swarm settings. To evaluate
the impact of attacks, a discrete-event simulator was de-
veloped and validated against an experimental evaluation
performed in a controlled environment. Our findings show
the seriousness of the problem and should be the basis for
the development of new mechanisms to increase BitTorrent
Security.

1 Introduction

Peer-to-Peer (P2P) file sharing has become one of the
most relevant network applications, allowing the fast dis-
semination of content in the Internet. In this category, Bit-
Torrent [3] is one of the most popular protocols. It is used
everyday by millions of people to share legal as well as
copyrighted content with millions of others [11]. It already
consumes a substantial fraction of the Internet traffic [8].
BitTorrent is now being used as the core technology of con-
tent delivery schemes with proper rights management that
are being put in operation (e.g., Azureus Vuze). Major com-
panies like Warner Brothers, 20" Century Fox and BBC are
distributing content through it.

However, as the popularity of BitTorrent grows, so does
the risk and impact of malicious attacks exploiting its poten-
tial vulnerabilities. This paper identifies attacks to BitTor-

0-7695-2986-0/07 $25.00 © 2007 IEEE
DOI 10.1109/P2P.2007.14

37

rent and evaluates their impact on downloading efficiency
(and eventual success) of peers taking part on a session
(called swarm). Understanding vulnerabilities and their
negative impact, researchers may propose counter-measures
or changes in the architecture in order to improve it. Previ-
ous papers focused on understanding BitTorrent from the
performance point of view, devising analytical models of
BitTorrent and improving its incentive mechanism. The
main contribution of this paper is to identify and measure
the impact of two attacks to BitTorrent. In order to identify
vulnerabilities, we shed light on BitTorrent protocol behav-
ior, contrasting description and traces generated by actual
implementations.

The rest of the paper is organized as follows. Section 2
discusses related work, while Section 3 addresses the com-
ponents and behavior of BitTorrent. In Section 4, we iden-
tify attacks performed by malicious users with the intention
of either slowing down or completely preventing downloads
from happening. Section 5 describes our simulation model,
which was implemented and used to evaluate the impact of
attacks, as presented in Section 6. In Section 7 we conclude
the paper and discuss future work.

2 Related Work

BitTorrent is one of the most popular P2P systems and
the literature about it is rich. A related body of work regards
selfish peer behavior in BitTorrent. Several papers in the lit-
erature demonstrate that the incentive mechanism employed
by BitTorrent cannot guarantee fairness in sharing, and then
propose new interaction mechanisms [18, 9, 10, 15].

Nielson [2] et al. define a taxonomy for rational attacks,
in which an attacker wishes to maximize its utility, but does
not harm the system unless it increases the benefits. Locher
et al. [4] present BitThief, an agent which downloads but
never contributes to the network. Several strategies are dis-
cussed to improve the performance of a free-rider. Siri-
vianos et al. [7] identify an attack in which a free-rider
profits from having a wider view (in number of peers) of
the swarm. The attack is shown to be reasonably success-

IEEE
computer
psoaety

ful by means of experiments in PlanetLab. In [20] Piatek et
al. present BitTyrant, a modified version of Azureus that
adheres to the protocol but uses different policies to im-
prove download performance while reducing upload con-
tributions.

The papers that are closest to ours are [1] and [17]. The
former presents two strategies, namely multiple identities
and garbage upload, that can be combined by a peer to per-
form free-riding. The latter presents three techniques in
which a peer does not respect the protocol and lies about
piece availability or refuses to cooperate.

The common aspect among the previous papers is the fo-
cus on how a peer can maximize the benefit received from
a BitTorrent swarm whilst minimizing the resources it con-
tributes. In contrast, in our work downloading is not rele-
vant to a peer, whose sole intention is to hinder a swarm
(using the minimum amount of resources needed). The idea
is to make use of false piece announcements and/or large
number of sybils to slow down or, ideally, to prevent con-
tent from being distributed. In Section 4 we detail two types
of attacks (Piece Lying and Eclipse) to BitTorrent, and in
Section 6 we evaluate the potential impact they can have on
a swarm. Before, we quickly review BitTorrent and present
diagrams illustrating its behavior.

3 The BitTorrent Architecture

We now summarize the main elements of the BitTorrent
architecture. The content (a set of files) to be distributed is
described through a meta-data file whose extension is typ-
ically .torrent. Such file is created by the user that pub-
lishes the content, and contains information like name and
size of each file, hashes for data, and one or more IP ad-
dresses of trackers. A tracker is a central element that co-
ordinates a swarm and helps peers to find other peers in
the same swarm. Peers can act either as seeders or leech-
ers, depending on if they have or have not already com-
pleted their downloads, respectively. The content published
is organized in pieces, and these are subdivided into blocks.
Blocks are the smallest unit of data exchange between a pair
of peers. Peers establish a connection with each other and
exchange bitfields containing information about piece avail-
ability. A peer requests to one or more peers the download
of blocks that belong to one given piece in which it is in-
terested. Requests are serviced according to a reciprocity-
based incentive mechanism, as explained next.

The incentive mechanism is used to increase the coop-
eration among peers. It works in rounds, typically 10 sec-
onds long. A peer evaluates in a round the three peers that
have most contributed to itself and then favors such peers in
the next round, serving their requests. The remote peers to
whom the local peer is uploading are marked as unchoked,
while others are set as choked. A peer is kept informed
by a remote peer regarding how that peer regards this one
(changes in state from choked to unchoked and vice-versa).
Three peers are marked as unchoked, and a fourth peer
is chosen randomly for uploading between the connected
ones. The choice of this peer, called optimistic unchoking,

38

allows a peer to probe for peers with better download and
upload rates.

In the absence of a formal description of the protocol, we
analyzed the protocol information given in [6] and traces
of popular user agent implementations. The results were
state and time diagrams that attempt to define and illustrate
the behavior of peers in BitTorrent swarms. Note that even
though the diagrams are reasonably accurate, the lack of a
formal specification leads to inevitable ambiguity. Figure
1 represents the state diagram, both globally and with em-
phasis on piece exchange. The main elements are discussed
next.

As shown in Figure 1, a peer begins in state START
and typically follows the transitions WAIT_-TRKCONNECT —
WAIT_PEERLIST — MANAGING.PEERLIST. This means a peer es-
tablishes a connection with a tracker (picked from the .tor-
rent file), obtains a list of peers, and then attempts to open
connections with a subset of the peers in the list, as well
as receives connection requests from remote peers. The
diagram follows a concurrent design: for each success-
fully established connection, a new thread is created (rep-
resented with dashed lines) and assigned with the task of
handling the communication with the corresponding peer.
A thread may begin in state WAIT_.PEERCONNECT, if the lo-
cal peer requested the connection, or in REC_AWAIT_BITFIELD,
if the request was remotely originated. In the former
case, the state transitions would be WAIT_PEERCONNECT —
WAIT_HANDSHAKE — CONNECTED, whereas in the latter would
be REC_AWAIT_BITFIELD — CONNECTED.

The state CONNECTED, marked in the diagram, refers to
the state variations that a thread may suffer reflecting the
interactions with the remote peer that was assigned to the
thread. This relation is driven by two state diagrams: down-
load and upload. The sole connection between the two is
the process of choosing peers, according to the incentive
mechanism, to whom uploading must be conceded. Figures
2 and 3 show the corresponding diagrams.

Regarding downloads (Figure 2), a thread starts in the
state NOT_INTERESTED. Examining the bitmap received from
the remote peer, the thread may find that the remote peer has
one or more pieces that the local peer does not have. If so, it
changes to INTERESTED.CHOKED and informs the remote peer
through an Interested message; however, the thread is being
choked and may not yet request pieces. It will leave the state
to INTERESTED-UNCHOKED when (and if) a message Unchoked
arrives, and thereafter send requests for a block and receive
the desired data, until the remote peer starts choking the
peer, or the peer completes the piece, in which case it tells
other peers about it with a Have message.

Regarding uploads (Figure 3), a thread starts in the state
NON_INTERESTING, reflecting the fact that this peer is not in-
teresting to the remote peer. When the peer receives a mes-
sage Interested, it changes to the state INTERESTING_CHOKING:
the local peer has pieces that are needed by the remote,
but is choking the remote peer. The remote peer may send
a message to inform the local peer that the remote one is
not interested anymore (for example, because the latter ob-
tained all pieces possessed by the local peer). When the

Activation or timeout TCP connection

established with tracker
Requests TCP connection e —

with a tracker Sends HTTP Get

message to tracker

Receives PeerList message
from tracker New TCP connection established

by another peer. Receives Handshake

message and the number of connected
peers equals the superior limit

Closes TCP connection with tracker

Sends Refuse message to other peer
and closes TCP connection

N
(

WAIT_PEERLIST) (MANAGING_PEERLIST)

TCP connnection refused

Sets retry timer with a tracker

Number of connected peers
below the inferior limit B

TCP connection
Requests TCP connection established with peer
with a peer —_—

. Sends Handshake

N message to other Qe\e:
'

Requests TCP connection

(WAITiPEERCONNECT) (WAIT_HANDSHAKE) (CONNECTED) (

When number of peers in list
below inferior limit or timeout

Receives Handshake+bitfield
message from other peer

Sends Bitfield
message to other peer

7T T

New TCP connection established
by another peer. Receives Handshake
message and the number of connected
peers is below superior limit

Sends Handshake+Bitfield message

'
)
'
'
'
’ '
'
'
[
'
H to other peer and sets timer

REC_WAIT_BITFIELD

Timeout

Receives BitField
message from other peer

Closes TCP connection

FINISH

S)
)

Connection refused

Receive Refuse message

Closes TCP connection

from other peer

Figure 1. A State Diagram for BitTorrent

Remote peer has pieces
that the local does not

Sends Interested
message to peer

NOT_INTERESTED

INTERESTED
CHOKED

/—‘l

Receives Piece(Pn,Bj) message containing
block from remote peer, completing piece Pn,
and remote peer does not have any more
pieces that the local desires

Sends Not_Interested message to remote
peer and Have(Pn) message to others

Receives Unchoked
messsage from peer

Sends Request(Pm,Bi)
message to peer

Receives Choked
from remote peer

Receives Piece(Pm,Bi) from
peer containing block, but
block does not complete piece Pn

Sends Request(Pm,Bk) message
to remote peer

INTERESTED
UNCHOKED

Receives Piece(Pn,Bj) message from
peer with block, completing piece Pn, and
remote peer has pieces that the local does not

Sends Request(Pn,Bk) message to
remote peer and Have(Pn) message
to others

Figure 2. State diagrams for threads regarding downloads from remote peers

remote peer is selected for upload, the thread sends Un-
choked to the remote peer and changes to UNCHOKING. The
peer then may receive multiple Request(Pm,Bj) messages,
replying with Piece(Pm,Bj). If the remote peer is unselected
for upload, the thread sends a Choked message and returns
to INTERESTING_CHOKING.

3.1 Piece Selection Policy

The success of a download (and the whole swarm) is
influenced by the piece selection policy employed by the
peer. The selection in BitTorrent follows the Local Rarest
First (LRF) policy, as hinted in Section 2. It is based on the
concept of choosing first the pieces that are less replicated
among peers with whom the peer is connected to; when
there is more than one piece with the smallest degree of
replication, then the choice is random.

There are three exceptions to this rule: when the peer is
beginning its download (situation in which it has less than

39

4 pieces), successfully finishing it (already requested all the
missing blocks) or acting as a seeder (has all pieces).

3.2 Peer Connection Policy

Peers obtain from a tracker the IP addresses from other
peers in the same swarm. Peers that take part in the swarm
periodically connect to the tracker and this way notify their
presence. After a peer connects to the tracker, it informs the
number of peers (numwant) that it wishes to receive, 50 by
default.

In addition to the list of peers, the tracker provides other
information including interval, the time (in seconds) that the
peer must wait before doing another request. This value is
also used to determine the time the tracker will keep the IP
address of the peer in the list of active ones. If the time
exceeds this limit plus a safe margin, the tracker assumes
the peer has silently abandoned the swarm. The list of peers
kept by a tracker defines who belongs to the swarm, and

Receives Interested message
from remote peer

NON_INTERESTING

Reteives Not_lnterested/

message from remote peer

INTERESTING
CHOKING

Remote peer belongs to the
list of the chosen for upload

Sends Unchoked message

Sends Choked message

Receives Not_Interested
from remote peer

Remote peer leaves the list
of the ones benefited with upload

to the remote peer

UNCHOKING

Receives Request(Pm,Bj)
message from remote

Sends Piece(Pm,Bj)
to remote peer

to the remote peer

Figure 3. State diagrams for threads regarding uploads from remote peers

its size can vary from two or three peers to the hundreds
of thousands. Upon request, the tracker randomly mounts a
list of up to numwant peers (which defaults to 50) and sends
it to the requesting peer.

There are several situations in which a peer may ob-
tain the identity of more peers. First, when a peer joins
the swarm, it sends a message Get to the tracker, which re-
sponds with PeerList. Second, when the list shrinks to less
than 20 peers (inferior limit), the peer sends a new Get to the
tracker. The third situation arises when the peer is contacted
by a previously unknown peer in the swarm — i.e. a remote
peer that is not currently in the list kept by the local peer.
There is also an extension to the protocol that allows a peer
to obtain peer IPs from other peers, without involving the
tracker. The maximum number of connections that a peer
may hold is normally limited to 55. Typically, a peer tries
and opens 30 connections to other peers, and the remaining
are left for incoming connection requests from other peers.

4 Subversion and Attack Strategies

This section addresses attacks to BitTorrent swarms.
First, we discuss the Sybil attack in BitTorrent (Subsection
4.1), and then how it can be employed to launch two at-
tacks: piece lying (Subsection 4.2) and the eclipsing of cor-
rect peers (Subsection 4.3).

4.1 Sybil

The Sybil attack [12] in P2P networks consists in a sin-
gle peer presenting itself with multiple, virtual identities,
usually with the aim of exploiting reputation-based systems.
Using this attack, a malicious peer (henceforth called a liar)
may get to represent a substantial fraction of the P2P net-
work, and thus compromise it. Douceur suggests the use
of certification authorities as the best form of protection
against this kind of attack.

In BitTorrent, identities are randomly generated. An at-
tacker, therefore, may exploit this vulnerability and obtain
multiple identities. Peers that refuse to cooperate may be
banned, but it may not be easy to distinguish peers not in-
tentionally cooperating from peers facing connectivity or
overloading problems.

40

4.2 Lying Piece Possession

As discussed in Section 3, peers employ messages Bit-
field and Have to inform peers about piece possession. Fol-
lowing the LRF policy, (correct) peers strive to increase uni-
formity in the amount of copies of each piece. A Piece Ly-
ing attack aims at destroying this balance: a malicious peer
does not adhere to the protocol and announces a piece it
does not have (thus it is a liar). It artificially increases the
level of replication of a piece and therefore induces correct
peers to download other pieces first. In other words, the at-
tack consists in turning pieces gradually rare up to the point
they disappear from the system, causing swarm failure. As
a malicious peer does not wish to deliver the announced
piece, it keeps other peers permanently choked.

The attack effectiveness will be affected by the strength
of the attack and the state of the swarm when it begins. Rel-
evant aspects include the number of pieces being lied by
malicious peers (and the size of the content being shared),
the number of malicious peers, the number of correct leech-
ers and seeders, the degree of dissemination of pieces, and
if malicious peers are acting in collusion.

Also, intuitively it is more effective to lie about a set of
pieces than a single one. However, there exists a relation
between the size of the set and the effectiveness of the at-
tack: to claim the possession of all pieces would not help
making one very rare or nonexistent.

The impact of attacks is generally more effective when
performed by many peers acting in collusion. In the specific
case of making a piece ever rarer, we expect more peers to
make the attack more harmful. The more peers lie about
a given piece, the more frequent it will appear to become,
and thus in practice the rarer in fact it will be. These issues
are discussed in Section 6.

4.3 Eclipsing Correct Peers

If an attacker has enough physical resources or creates a
great number of Sybils, it can attack a swarm using a large
number of malicious peers. The attack is made easier by the
fact that the same set of malicious peers can be used to po-
tentially attack hundreds or thousands of swarms, provided
that only control messages are exchanged between peers.

In an Eclipse attack [19], a set of malicious, colluding

peers arranges for a correct node to peer only with mem-
bers of the coalition. If successful, the attacker can mediate
most or all communication to and from the victim. In the
context of BitTorrent, the Eclipse attack consists in using
a sufficiently high number of malicious peers so that the
correct ones connect mostly (or only) with malicious peers.
The maximum number of connections a correct peer main-
tains, by default, is 55. A malicious peer, in contrast, can
connect to a larger number of correct peers. Therefore, 55
malicious peers might be sufficient to eclipse any number
of correct peers, as long as correct peers only connect to
malicious ones.

In practice, however, during an attack the list of peers a
correct peer will receive from the tracker (if not itself com-
promised) will contain both malicious and correct peers.
The list is generated randomly every time the tracker is con-
sulted. So, the larger the proportion of malicious to correct
peers in the tracker global list, the higher the probability
that the list received will only contain malicious peers.

5 BitTorrent Simulation

To evaluate propositions made in the previous section,
we devised a simulation model of the BitTorrent protocol. It
is based on a combination of the protocol description in [6]
and the analysis of packet traces captured from two popu-
lar implementations (the overall result is formalized through
the state diagrams shown in Section 3). The simulation
model was implemented by extending Simmcast, a packet-
level simulation framework [5].

Although the model is realistic, several simplifying as-
sumptions were made. First, there is a single tracker, while
in actual swarms there may be multiple trackers and peers
alternate among them. Second, there is no real data ex-
change between peers, data messages carrying only control
information. A message BLOCK(p,b) represents the transfer
of a block b of a given piece p. Third, the simulation as-
sumes TCP as the underlying transport protocol, but does
not include details of segment exchange. In the actual im-
plementation of BitTorrent, a block is reliably transferred
through a TCP connection to another peer, potentially em-
ploying multiple segments, requiring acknowledgments and
retransmissions. In the simulation, the BLOCK message is
sent at once and through a single segment. Application-
level flow control is present, though, as a peer is allowed to
keep a single outstanding block to a given other peer.

Swarms are made of seeders, leechers and a tracker.
Peers can start as seeders (having all pieces) or leechers with
no piece. A swarm is created with at least one initial seeder
and zero or more initial leechers; all peers that subsequently
join the swarm start as leechers without pieces. Leech-
ers will gradually become seeders and eventually leave the
swarm. Each leecher has its own arrival time, drawn from
a random distribution (such as Uniform, Gaussian or Ex-
ponential). Leeching time (also called downloading time)
will vary according to multiple factors, including the num-
ber of seeders and leechers in the swarm, piece distribution,
content size and link capacity. Seeders have a configurable

41

600 T

T T
Real, Homogeneous, 64 pieces
Simulation, Homogeneous, 64 pieces
Real, Heterogeneous, 16 pieces ~ *

ion, Heterogeneous, 16 pieces O

500
"
%**"ﬂ
400 P
300 "’x,
/-
o

200 o
o

o xaK ek o L

Total pieces in swarm

100

PR - i
0 100 200 300 400 500 600 700 800
Time (seconds)

Figure 4. Comparison between real and sim-
ulation.

seeding time, which can be individually set either by time or
contribution ratio (in the latter case a seeder will abandon
the swarm as soon as the target ratio is reached). A peer
is configured also with the period to the reconnect to the
tracker. Other parameters are the number of pieces in the
content being shared, the number of blocks per piece, and
size of each block. Regarding the network, all peers are in-
terconnected through a cloud. The link capacity between a
peer and the cloud can be individually set, both downstream
and upstream, in terms of bandwidth and latency.

To validate our simulation model and implementation,
we run a set of experiments with two popular BitTorrent
agents in a small, controlled environment. We evaluated
swarms with different content sizes, piece sizes, bandwidth
rates, and number of peers. Packet traces were collected
using passive monitoring. We then compared the behavior
and performance of the simulated and the real runs for con-
figurations of up to 8 peers with both homogeneous and het-
erogeneous link capacities. To illustrate, consider the sim-
ilarity in Figure 4; it shows the total number of pieces as
the swarm evolves, for two scenarios: homogeneous with
64 pieces and heterogeneous with 16 pieces.

6 Impact Evaluation

In this section we attempt to answer three questions:
first, what is the impact of a Piece Lying attack on the
dynamics of a swarm, compared when there is no attack;
second, what happens when the number of liars increases;
third, in the Eclipse attack, which number of malicious
peers is more effective and why (what happens during the
swarm). Experiments were run multiple times using differ-
ent seeds for the sake of statistical correctness.

The simulation follows the model described in Section
5. We employed either values mentioned in the literature,
like [16], or typically found in real settings. We focus our
analysis on the initial hour or two of a swarm. A swarm
starts with a single peer, the initial seeder; over time, 100

100

T
Seeders
Leechers

Remaining -+

80

Peers
-

40

0 50 100
Time (minutes)

(a) Normal swarm without attack

Peers

100

T
Seeders
Leechers

Remaining -+

80

60

40

20

(‘ Tﬁ
0 ‘—’J

0 50

100
Time (minutes)

150 200

(b) Swarm under Piece Lying attack

Figure 5. Normal swarm dynamics and under attack with piece lying

leechers arrive according to a Poisson process, with Expo-
nential inter-arrival times between peers [13, 14]. The at-
tack begins when the 5th leecher arrives at the swarm; ma-
licious peers act in collusion and therefore enter the swarm
together. Since in our experiments we focus on the first
hours of the swarm (and a hundred peers), we chose the
time after the arrival of the 5! peer as compromise between
hitting too early (1¢ peer) and too late (30*" peer). The
peer-tracker reconnection period is set to 30s. Each time,
the tracker sends a list of up to 50 peers.

The experiments are based on a fair network, whereby
all peers contribute at least the same amount of resources
that they have taken (target contribution ratio for initial
seeder is 2.0, and for all others, 1.0). Anecdotal evidence
suggests that in real-life swarms users are not so altruistic;
hence, depending on the kind of content, seeders may leave
earlier and under such circumstances attacks would be more
successful.

The shared content is of size 640MB, made up by 640
pieces of 64 blocks each, each of which containing 16KB
of data. A peer is set with a maximum leeching time, after
which it gives up and leaves the swarm (timed out down-
loads); the value used equals is set to be at least ten times the
average download in the swarm without attack. A leecher
may also abort its download because the entire swarm has
failed, situation which arises when any piece reaches zero
availability (recall that we assume that peers do not return
to the swarm). If the swarm fails, we consider all current
and future leechers as failed downloads. For the sake of
comparison, a lower bound on swarm failures is considered:
numeric values for failed downloads are the in complement
of 100 leechers.

Download and upload bandwidth dedicated to the swarm
reflect the asymmetry typically found in broadband net-
works: 1Mbps and 256Kbps for downstream and upstream,
respectively. The set of link pairs is, however, homoge-
neous: all peers have the same capacity. It is assumed that
the tracker is connected through a symmetric, more power-
ful link, of 4Mbps. Latency between any two peers (and the
tracker) is set to 100ms.

42

As mentioned previously, we expect the effectiveness of
an attack to be influenced by the numbers of pieces being
lied and peers (denoted as liars or Sybils, depending on the
type of attack) involved. To evaluate the effectiveness of
an attack, we employed two metrics: the increase of down-
load times, expressed in terms of the cumulative number of
completed downloads, and the number of failed or timed out
downloads (leecher gives up waiting). When an attack is ef-
fective, it will have a large number of timed out or aborted
downloads.

Let | L|mae and |S|nae denote the maximum number of
leechers and seeders recorded, respectively. Considering
the scenario previously defined, a swarm will present the
dynamics as in Figure 5(a). It represents the arrival of 100
leechers, their gradual transition to seeders, and departure
from the swarm in around 200 min. There are three curves:
number of leechers, of seeders, and remaining downloads.
The latter represents the number of downloads needed to
reach the total number of downloads (100), so the experi-
ment finishes when this curve reaches O (or, as previously
mentioned, when availability for any piece reaches 0). Fig-
ure 5(a) shows a flash crowd of leechers arriving at the
beginning of the swarm, up to when |S|na: = 59. At
that time, leechers start turning seeders, and the Remaining
curve drops. This remains so until around 100 min, when
the crowd of leechers has diminished and a steady rate of
leechers arrive; compensating these new seeders, on their
turn, there is a steady rate of leechers leaving the swarm as
they contribute until reaching ratio 1.0.

Figure 5(b) shows the same scenario but under attack by
a collusion of 25 liars that falsely announce the possession
of (the same) 4 pieces. Although the attack starts early in the
swarm life, its effects are felt only nearly at 50 min. From
this point on, no progress is done — no additional downloads
are completed. Notice that |L|,,q, = 77, higher than in the
case without attack; this is because leechers are tricked and
prevented from evolving to seeders due to the attack.

Figure 6(a) illustrates the impact of an attack whereby
different numbers of malicious peers lie about 32 pieces,
turning them generally rarer. It is clear from the figure that

100

920

80

70

60

40

Number of Downloads Completed

30 =

5
76 Liars -

" 100 Liars ——

80
Download time (minutes)

100 120 140

(a) Effect of varying number of liars

Peers

100

T
Seeders
Leechers

Remaining -+

80

40

20

Sl

o n
0 50 100
Time (minutes)

150 200

(b) Impact of 10 liars on a given swarm (32 pieces)

Figure 6. Impact of the number of liars

100

920

80

70

60

ybils ——
ybils

ybils x|
ybils.

50

40

-,

30

Number of Downloads Completed

e
ot
.
o

25 oo

PP

80 100
Download time (minutes)

(a) Effect of varying number of eclipsing Sybils

Peers

100

T
Seeders
Leechers
Remaining - |

90

80

70

60

50

40

30

20 |1

0 50 100 150
Time (minutes)

200

(b) Impact of eclipsing Sybils

Figure 7. Impact of Sybils in Eclipse attacks

for sets of up to and including 25 liars, the delay is negligi-
ble. However, some of the downloads failed or timed out,
as detailed below. The diagonal curve that corresponds to
50 liars is a clear divisor: from 50 onwards, the attack adds
substantial delays (a download can take as much as three
times longer). We found that with 75, 100 or more mali-
cious peers the Piece Lying attack was very effective and
led to frequent general swarm failure at early stages. Less
than 10 peers managed to complete their download success-
fully. However, given the proportionally high number of
malicious peers involved, we could not tell if the effect was
more due to the Piece Lying attack or the peer eclipsing ef-
fect.

Figure 6(b) shows in detail a particular swarm where 10
peers lie about 32 pieces. Out of 100 peers, 79 completed
their downloads, whereas 21 did not. This happens because
one or more pieces being lied became unavailable, as cor-
rect leechers employed the LRF policy to select pieces con-
sidered to be rarer. After some time (around 40 min), the
initial crowd of leechers became one of seeders, reached
their ratio of 1.0 and then left the swarm. Around 100 min
the average number of leechers had dropped enough and
there were no more seeders. Consequently, the swarm stag-

43

nated.

In the next experiment, the impact of an Eclipse attack is
evaluated according to the number of malicious peers. Fig-
ure 7(a) illustrates the impact in terms of cumulative down-
loads, for Sybils set sizes between 10 and 1000. Results
indicate that there is a noticeable delay in all cases, which
becomes stronger from 40 Sybils onwards. As malicious
peers are acting in collusion, so once a correct peer attempts
to establish a connection with a malicious one, the latter
will inform other peers (Sybils) about that. With 50 Sybils
or more, the peer list returned by the tracker tends to be
dominated by malicious peers; therefore, the Eclipse attack
becomes very effective: less than 50% of the peers com-
plete their download. From 60 liars onwards, the seeder
and most peers become eclipsed, and all swarms are subject
to failure (all remaining downloads timeout or fail). Con-
sequently, only some of the early correct peers were able to
successfully complete their download (around 5).

Figure 7(b) shows the dynamics of a swarm when it is
subject to an Eclipse attack of 50 Sybils. The maximum
number of leechers reaches a staggering |L|,qz = 95, as
the flash leecher crowd almost entirely fails to complete any
download and become seeder. The curve intersects with Re-

maining downloads at around 140 min, when leechers start
giving up (i.e., timing out) and abandoning the swarm. The
number of leechers drops over 50 min to around 6. Even so,
|S]imaz reaches 9, which means 91 downloads have timed
out or failed due to this attack. In other words, this kind of
attack is very effective.

7 Concluding Remarks

The contribution of this paper is two-fold. First, different
from previous work, it identifies and evaluates the impact of
two attacks that strive to cause a BitTorrent swarm to fail. It
shows that even modest amounts of resources can be used
to attack and hinder BitTorrent swarms, both with Piece Ly-
ing and Eclipse attacks. Second, to increase understanding
about BitTorrent, state diagrams were created according to
the protocol informal description and packet traces. A sim-
ulation model was devised and implemented, and its results
were validated against real experimental results.

Results indicate that BitTorrent is susceptible to attacks
in which malicious peers in collusion lie about the posses-
sion of pieces and make them artificially rarer. This attack
is effective in delaying or failing downloads when there are
around 50 peers or more performing it, for swarms similar
to the one considered in our study. Additional results were
omitted due to lack of space, but we also evaluated factors
like the number of pieces being lied and the time the attack
starts. When between 4 and 64 pieces are lied, the attack
is more successful (16 being the “best” one for the settings
considered); as expected, the earlier the attacks, the more
harmful they are. Further, in scenarios where a large num-
ber of peers refuse to collaborate, and correct peers may be
eclipsed by malicious ones, the effects are much more dam-
aging.

This paper can be extended in four ways. First, the anal-
ysis impact can be enhanced by evaluating other scenarios,
in particular ones with larger numbers of peers. Second,
there are other vulnerabilities in the protocol and imple-
mentations. Third, the paper must lead to the design of
mechanisms or modifications to BitTorrent to eliminate or
reduce the impact of such attacks — this represents a good
research challenge. Last, although we have validated the re-
sults produced by our simulation against packet traces col-
lected from two popular implementations in a controlled en-
vironment, we plan to implement these attacks in a BitTor-
rent agent so that we can measure more precisely delays
induced in real life swarms.

References

[1] Faithfulness in internet algorithms, Portland, OR, USA,
September 2004. ACM SIGCOMM.

[2] A Taxonomy of Rational Attacks, Ithaca, NY, USA, February
2005. Springer Berlin / Heidelberg.

[3] BitTorrent website. http:/www.bittorrent.com/, April 2006.

[4] Free Riding in BitTorrent is Cheap, Irvine, CA, US, Novem-
ber 2006.

44

(3]

(6]
(7]
(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

Simmecast: an object-oriented simulation framework for pro-
tocol and network research. http://inf.unisinos.br/ Simm-
cast/, December 2006.

Bittorrent protocol specification v1.0.
http://wiki.theory.org/BitTorrentSpecification, May 2007.
Free-riding in BitTorrent with the Large View Exploit, Belle-
vue, WA, US, February 2007.

M. Barbera, A. Lombardo, G. Schembra, and M. Tribastone.
A markov model of a freerider in a bittorrent P2P network.
In IEEE Global Telecommunications Conference (GLOBE-
COM ’05), volume 2, pages 985-989, St. Louis, MO, USA,
November 2005.

A. R. Bharambe, C. Herley, and V. N. Padmanabhan. Some
observations on bittorrent performance. In Proceedings of
the 2005 ACM SIGMETRICS international conference on
Measurement and modeling of computer systems (SIGMET-
RICS 2005), volume 33, pages 398-399, New York, NY,
USA, June 2005. ACM Press.

A. R. Bharambe, C. Herley, and V. N. Padmanabhan. Under-
standing and deconstructing BitTorrent performance. Tech-
nical Report MSR-TR-2005-03, Microsoft Research, March
2005.

S. Das, S. Tewari, and L. Kleinrock. The case for servers in a
peer-to-peer world. In 2006 IEEE International Conference
on Communications, volume 1, pages 331-336, Washing-
ton, DC, USA, June 2006. IEEE Computer Society.

J. R. Douceur. The sybil attack. In /st International Work-
shop on Peer-to-Peer Systems, pages 251-260, Cambridge,
MA, USA, March 2002.

K. Eger and U. Killat. Bandwidth trading in unstructured
p2p content distribution networks. In 6th IEEE Interna-
tional Conference on Peer-to-Peer Computing, 2006 (P2P
2006), pages 39—-48, Washington, DC, USA, September
2006. IEEE Computer Society.

L. Guo, S. Chen, Z. Xiao, E. Tan, X. Ding, and X. Zhang.
Measurements, analysis, and modeling of bittorrent-like sys-
tems. In Internet Measurement Conference (IMC ’05), pages
35-48, 2005.

S. Jun and M. Ahamad. Incentives in BitTorrent induce
free riding. In ACM SIGCOMM Workshop on Economics of
Peer-to-Peer systems (P2P-ECON), pages 116-121, 2005.
A. Legout, G. Urvoy-Keller, and P. Michiardi. Rarest First
and Choke Algorithms Are Enough. Technical report, IN-
RIA, June 2006.

N. Liogkas, R. Nelson, E. Kohler, and L. Zhang. Exploit-
ing bittorrent for fun (but not profit). In 5th International
Workshop on Peer-to-Peer Systems (IPTPS 2006), February
2006.

D. Purandare and R. Guha. Preferential and strata based
p2p model: Selfishness to altruism and fairness. In 12th In-
ternational Conference on Parallel and Distributed Systems,
2006. ICPADS 2006, volume 1, pages 561-570, July 2006.
A. Singh, T.-W. Ngan, P. Druschel, and D. S. Wallach.
Eclipse attacks on overlay networks: Threats and defenses.
In 25th Conference on Computer Communications (INFO-
COM 2006). IEEE, 2006.

USENIX. Do incentives build robustness in BitTorrent?,
Cambridge, MA, April 2007.

