
notes

alex

December 13, 2018

Contents

1 Structured P2P Networks 2

1.1 Chord . 2
1.1.1 Introduction . 2
1.1.2 System Model . 4
1.1.3 The Base Chord Protocol 5
1.1.4 Concurrenct operations and failures 7
1.1.5 Simulations and Experimental Results 8
1.1.6 Conclusion . 9

1.2 Pastry . 9
1.2.1 Introduction . 9
1.2.2 Design of Pastry . 11
1.2.3 Conclusion . 16

1.3 Kademlia . 17
1.3.1 Abstract . 17
1.3.2 Introduction . 17
1.3.3 System Description . 18
1.3.4 Implementation Notes 23
1.3.5 Summary . 24

1.4 Bouvin notes . 24

2 Mobile Ad-hoc Networks and Wireless Sensor Networks 25

2.1 Routing in Mobile Ad-hoc Networks 25
2.1.1 Introduction . 25
2.1.2 Basic Routing Protocols 25
2.1.3 MANET Routing . 28

2.2 Energy E�cient MANET Routing 37
2.2.1 Introduction to energy e�cient routing 37

1

2.2.2 The power-control approach 38
2.2.3 Power-save approach 38

3 Accessing and Developing WoT 41

3.1 Chapter 6 . 41
3.1.1 REST STUFF . 41
3.1.2 EVENT STUFF . 48
3.1.3 SUMMARY . 52

3.2 Chapter 7 . 52
3.2.1 Connecting to the web 52
3.2.2 Five step process . 53
3.2.3 Summary . 56

4 Discovery and Security for the Web of Things 57

4.1 Chapter 8 . 57
4.1.1 Findability problem 58
4.1.2 Discovering Things . 58
4.1.3 Describing web Things 62
4.1.4 The Semantic Web of Things (Ontologies) 66
4.1.5 Summary . 68

4.2 Chapter 9 . 68
4.2.1 Securing Things . 69
4.2.2 Authentication and access control 72
4.2.3 The Social Web of Things 74
4.2.4 Beyond book . 76
4.2.5 Summary . 77

1 Structured P2P Networks

TODO, potentially read all of the experiments performed in pastry. Poten-
tially not, who cares. Also the math in Kademlia.

1.1 Chord

1.1.1 Introduction

� A fundamental problem that confronts peer-to-peer applications is to
e�ciently locate the node that stores a particular data item.

� Chord provides support for just one operation: given a key, it maps
the key onto a node.

2

� Data location can be easily implemented on top of Chord by associating
a key with each data item, and storing the key/data item pair at the
node to which the key maps.

� Peer-to-peer systems and applications are distributed systems without
any centralised control or hierarchical structure or organisation and
each peer is equivalent in functionality.

� Peer-to-peer applications can promote a lot of features, such as re-
dundant storage, permanence, selection of nearby server, anonymity,
search, authentication and hierarchical naming (note the structure is
still peer-to-peer, the names are just attributes and data the peers
hold)

� Core operation in most P2P systems is e�cient location of data items.

� Chord is a scalable protocol for lookup in a dynamic peer-to-peer sys-
tem with frequent node arrivals and departures.

� Chord uses a variant of consistent hashing to assign keys to Chord
nodes.

� Consistent hashing is a special kind of hashing such that when a hash
table is resized, only K/n keys need to be remapped on average, where
K is the number of keys and n is the number of slots.

� Additionally, consistent hashing tends to balance load, as each node
will receive roughly the same amount of keys.

� Each Chord node needs "routing" information about only a few others
nodes, leading to better scaling.

� Each node maintains information about O(log N) other nodes and
resolves lookups via O(log N) messages. A change in the network
results in no more than O(log2 N) messages.

� Chords performance degrades gracefully, when information is out of
date in the nodes routing tables. It's di�cult to maintain consistency
of O(log N) states. Chord only requires one piece of information per
node to be correct, in order to guarantee correct routing.

� Finger tables only forward looking

� I.e messages arriving at a peer tell it nothing useful, knowledge must
be gained explicitly

3

� Rigid routing structure

� Locality di�cult to establish

1.1.2 System Model

� Chord simpli�es the design of P2P systems and applications based on
it by addressing the following problems:

1. Load balance: Chord acts as a Distributed Hash Function,
spreading keys evenly over the nodes, which provides a natural
load balance

2. Decentralization: Chord is fully distributed. Improves robust-
ness and is nicely suited for loosely-organised p2p applications

3. Scalability: The cost of a lookup grows as the log of the number
of nodes

4. Availability: Chord automatically adjusts its internal tables to
re�ect newly joined nodes as well as node failures, ensur- ing
that, barring major failures in the underlying network, the node
responsible for a key can always be found. This is true even if the
system is in a continuous state of change.

5. Flexible naming: No constraints on the structure of the keys it
looks up

1. Use cases of Chord

� Cooperative Mirroring: Essentially a load balancer

� Time-Shared Storage: If a person wishes some data to be always
available machine is only occasionally available, they can o�er to
store others' data while they are up, in return for having their
data stored elsewhere when they are down.

� Distributed Indexes: A key in this application could be a few
keywords and values would be machines o�ering documents with
those keywords

� Large-scale Combinatorial Search: Keys are candidate solutions
to the problem; Chord maps these keys to the machines respon-
sible for testing them as solutions.

4

1.1.3 The Base Chord Protocol

� The Chord protocol speci�es how to �nd the locations of keys, how
new nodes join the system, and how to recover from the failure (or
planned departure) of existing nodes.

1. Overview

� Chord improves the scalability of consistent hashing by avoid- ing
the requirement that every node know about every other node.

2. Consistent Hashing

� The consistent hash function assigns each node and key an m-bit
identi�er using a base hash function such as SHA-1. A node's
identi�er is chosen by hashing the node's IP address, while a key
identi�er is produced by hashing the key.

� Identi�ers are ordered in an identi�er circle modulo 2m

� Key k is assigned to the �rst node whose identi�er is equal to or
follows (the identi�er of) k in the identi�er space.

� This node is called the successor node of key k, succ(k). It's the
�rst node clockwise from k, if identi�ers are presented as a circle.

� To maintain the consistent hashing mapping when a node n joins
the network, certain keys previously assigned to n's successor now
become assigned to n. When node n leaves the network, all of its
assigned keys are reassigned to n's successor.

� The claims about the e�eciency of consistent hashing, relies on
the identi�ers being chosen uniformly randomly. SHA-1 is very
much deterministic, as is all hash functions. As such, an adversary
could in theory pick a bunch of identi�ers close to each other and
thus force a single node to carry a lot of �les, ruining the balance.
However, it's considered di�cult to break these hash functions,
as such we can't produce �les with speci�c hashes.

� When consistent hashing is implemented as described above, the
theorem proves a bound of eps = O(log N). The consistent hash-
ing paper shows that eps can be reduced to an arbitrarily small
constant by having each node run O(log N) �virtual nodes� each
with its own identi�er.

� This is di�cult to pre-determine, as the load on the system is
unknown a priori.

5

3. Scalable Key Location

� A very small amount of routing information su�ces to imple-
ment consistent hashing in a distributed environment. Each node
need only be aware of its successor node on the circle.

� Queries for a given identi�er can be passed around the circle via
these suc- cessor pointers until they �rst encounter a node that
succeeds the identi�er; this is the node the query maps to.

� To avoid having to potentialy traverse all N nodes, if the identi�ers
are "unlucky", Chord maintains extra information.

� m is the number of bits in the keys

� Each node n maintains a routing table with at most m entries,
called the �nger table.

� The i'th entry in the table at node n contains the identity of the
�rst node, s, that succeeds n by at least 2(i-1) on the identi�er
circle, s = succ(n+2(i-1)) for 1 <= i <= m and everything i mod
2m

� Node s in the ith �nger of node n is n.�nger[i].node

� A �nger table entry includes both the Chord identi�er and the IP
address (and port number) of the relevant node.

� First, each node stores information about only a small number of
other nodes, and knows more about nodes closely following it on
the identi�er circle than about nodes farther away.

� The nodes keep an interval for each key implicitly, which essen-
tially covers the keys that the the speci�c key is the predecessor
for. This allows for quickly looking up a key, if it's not known,
since one can �nd the interval which contains it!

� The �nger pointers at repeatedly doubling distances around the
circle cause each iteration of the loop in �nd predecessor to halve
the distance to the target identi�er.

4. Node Joins

� In dynamic networks, nodes can join and leave at any time. Thus
the main challenge is to preserve the ability to lookup of every
key.

� There are to invariants:

(a) Each node's succ is correctly maintained

6

(b) For every key k, node succ(k) is responsible for k

� We also want the �nger tables to be correct

� To simplify the join and leave mechanisms, each node in Chord
maintains a predecessor pointer.

� To preserve the invariants stated above, Chord must perform
three tasks when a node n joins the network:

(a) Initialise the predecessor and �ngers of node n

(b) Update the �ngers and predecessors of existings node to re-
�ect the addition of n

(c) Notify the higher layer software so that it can transfer state
(e.g. values) associated with keys that node n is now respon-
sible for.

(a) Initializing �ngers and predecessor

� Node n learns its pre- decessor and �ngers by asking n' to
look them up

(b) Updating �ngers of existing nodes

� Thus, for a given n, the algorithm starts with the ith �nger of
node n, and then continues to walk in the counter-clock-wise
direction on the identi�er circle until it encounters a node
whose ith �nger precedes n.

(c) Transfering keys

� Node n contacts it's the node immediately following itself and
simply asks for the transfering of all appropriate values

1.1.4 Concurrenct operations and failures

1. Stabilitzation

� The join algorithm in Section 4 aggressively maintains the �nger
tables of all nodes as the network evolves. Since this invariant is
di�cult to maintain in the face of concurrent joins in a large net-
work, we separate our correctness and performance goals.

� A basic �stabilization� protocol is used to keep nodes' successor
pointers up to date, which is su�cient to guarantee correctness
of lookups. Those successor pointers are then used to verify and
correct �n- ger table entries, which allows these lookups to be fast
as well as correct.

7

� Joining nodes can a�ect performance in three ways, all tables are
still correct and result is found, succ is correct but �ngers aren't,
result will still be found and everything is wrong, in which case
nothing might be found. The lookup can then be retried shortly
after.

� Our stabilization scheme guarantees to add nodes to a Chord ring
in a way that preserves reachability of existing nodes

� We have not discussed the adjustment of �ngers when nodes join
because it turns out that joins don't substantially damage the
per- formance of �ngers. If a node has a �nger into each interval,
then these �ngers can still be used even after joins.

2. Failures and Replication

� When a node n fails, nodes whose �nger tables include n must �nd
n's successor. In addition, the failure of n must not be allowed to
disrupt queries that are in progress as the system is re-stabilizing.

� The key step in failure recovery is maintaining correct successor
pointers

� To help achieve this, each Chord node maintains a �successor-list�
of its r nearest successors on the Chord ring.

� If node n notices that its successor has failed, it replaces it with
the �rst live en- try in its successor list. At that point, n can
direct ordinary lookups for keys for which the failed node was
the successor to the new successor. As time passes, stabilize will
correct �nger table entries and successor-list entries pointing to
the failed node.

1.1.5 Simulations and Experimental Results

� The probability that a particular bin does not contain any is for large
values of N approximately 0.368

� As we discussed earlier, the consistent hashing paper solves this prob-
lem by associating keys with virtual nodes, and mapping mul- tiple
virtual nodes (with unrelated identi�ers) to each real node. Intuitively,
this will provide a more uniform coverage of the iden- ti�er space.

8

1.1.6 Conclusion

� Attractive features of Chord include its simplicity, provable cor- rect-
ness, and provable performance even in the face of concurrent node
arrivals and departures. It continues to function correctly, al- beit at
degraded performance, when a node's information is only partially cor-
rect. Our theoretical analysis, simulations, and exper- imental results
con�rm that Chord scales well with the number of nodes, recovers from
large numbers of simultaneous node failures and joins, and answers
most lookups correctly even during recov- ery.

1.2 Pastry

� Pastry, a scalable, distributed object location and routing substrate for
wide-area peer-to-peer applications.

� It can be used to support a variety of peer-to-peer applications, in-
cluding global data storage, data sharing, group communication and
naming.

� Each node in the Pastry network has a unique identi�er (nodeId).
When presented with a message and a key, a Pastry node e�ciently
routes the message to the node with a nodeId that is numerically closest
to the key, among all currently live Pastry nodes. Each Pastry node
keeps track of its immediate neighbors in the nodeId space, and noti�es
applications of new node arrivals, node failures and recoveries.

� Pastry takes into account network locality; it seeks to minimize the
distance messages travel, according to a to scalar proximity metric like
the number of IP routing hops.

� Experimental results obtained with a prototype implementation on an
emulated network of up to 100,000 nodes con�rm Pastry's scalability
and e�ciency, its ability to self-organize and adapt to node failures,
and its good network locality properties.

1.2.1 Introduction

� Pastry is completely decentralized, fault-resilient, scalable, and reli-
able. Moreover, Pastry has good route locality properties.

9

� Pastry is intended as general substrate for the construction of a va-
riety of peer-to- peer Internet applications like global �le sharing, �le
storage, group communication and naming systems.

� Several application have been built on top of Pastry to date, including
a global, persistent storage utility called PAST [11, 21] and a scalable
publish/subscribe system called SCRIBE 1. Other applications are un-
der development.

� Each node in the Pastry network has a unique numeric identi�er
(nodeId)

� When presented with a message and a numeric key, a Pastry node
e�ciently routes the message to the node with a nodeId that is numeri-
cally closest to the key, among all currently live Pastry nodes.

� The expected number of routing steps is O(log N), where N is the
number of Pastry nodes in the network.

� At each Pastry node along the route that a message takes, the appli-
cation is noti�ed and may perform application-speci�c computations
related to the message.

� Pastry takes into account network locality; it seeks to minimize the
distance mes- sages travel, according to a scalar proximity metric like
the number of IP routing hops.

� Because nodeIds are randomly assigned, with high probability, the set
of nodes with adjacent nodeId is diverse in geography, ownership, ju-
risdiction, etc. Applications can leverage this, as Pastry can route to
one of nodes that are numerically closest to the key.

� A heuristic ensures that among a set of nodes with the closest nodeIds
to the key, the message is likely to �rst reach a node �near� the node
from which the message originates, in terms of the proximity metric.

1. PAST

� PAST, for instance, uses a �leId, computed as the hash of the
�le's name and owner, as a Pastry key for a �le. Replicas of the
�le are stored on the k Pastry nodes with nodeIds numerically
closest to the �leId. A �le can be looked up by sending a message

1
DEFINITION NOT FOUND.

10

via Pastry, using the �leId as the key. By de�nition, the lookup
is guaranteed to reach a node that stores the �le as long as one
of the k nodes is live.

� Moreover, it follows that the message is likely to �rst reach a node
near the client, among the k nodes; that node delivers the �le and
consumes the message. Pastry's noti�cation mechanisms allow
PAST to maintain replicas of a �le on the nodes closest to the
key, despite node failure and node arrivals, and using only local
coordination among nodes with adjacent nodeIds.

2. SCRIBE

� in the SCRIBE publish/subscribe System, a list of subscribers is
stored on the node with nodeId numerically closest to the topicId
of a topic, where the topicId is a hash of the topic name. That
node forms a rendez-vous point for publishers and subscribers.
Subscribers send a message via Pastry using the topicId as the
key; the registration is recorded at each node along the path. A
publisher sends data to the rendez-vous point via Pastry, again
using the topicId as the key. The rendez-vous point forwards the
data along the multicast tree formed by the reverse paths from
the rendez-vous point to all subscribers.

1.2.2 Design of Pastry

� A Pastry system is a self-organizing overlay network of nodes, where
each node routes client requests and interacts with local instances of
one or more applications.

� Each node in the Pastry peer-to-peer overlay network is assigned a
128-bit node identi�er (nodeId).

� The nodeId is used to indicate a node's position in a circular nodeId
space, which ranges from 0 to 2128 - 1 (sounds like a modular ring type
thing, as in Chord).

� Nodeids are distributed uniformly in the 128-bit nodeid space, such as
computing the hash of IP.

� As a result of this random assignment of nodeIds, with high probabil-
ity, nodes with adjacent nodeIds are diverse in geography, ownership,
jurisdiction, network attachment, etc.

11

� Under normal conditions, in a network of N nodes, Pastry can route
to the numerically closest node to a given key in less than log(2b) N
steps. b is some random con�guration parameter.

� For the purpose of routing, nodeIds and keys are thought of as a se-
quence of digits with base 2b.

� In each routing step, a node normally forwards the message to a node
whose nodeId shares with the key a pre�x that is at least one digit (or
bits) longer than the pre�x that the key shares with the present node's
id. If no such node is known, the message is forwarded to a node whose
nodeId shares a pre�x with the key as long as the current node, but is
numerically closer to the key than the present node's id. To support
this routing procedure, each node maintains some routing state

� Despite concurrent node failures, eventual delivery is guaranteed un-
less |L|/2 nodes with adjacent nodeIds fail simul- taneously (|L| is a
con�guration parameter with a typical value of 16 or 32).

1. Pastry Node State

� Each Pastry node maintains a routing table, a neighborhood set
and a leaf set.

� A node's routing table, R, is organized into log(2b) N rows with

2b - 1 entries each.

� The 2b - 1 entries at row n each refer to a node whose nodeid
shares the present node's nodeid in the �rst n digits, but whose
n+1th digit has one of the 2b - 1 possible values other than then
n+1th digit in the present node's id.

� Each entry in the routing table contains the IP address of one
of potentially many nodes whose nodeId have the appropriate
pre�x; in practice, a node is chosen that is close to the present
node, according to the proximity metric.

� If no node is known with a suitable nodeId, then the routing table
entry is left empty.

� The neighborhood set M contains the nodeIds and IP addresses
of the |M| nodes that are closest (according the proximity metric)
to the local node.

� Applications are responsible for providing proximity metrics

12

� The neighborhood set is not normally used in routing messages;
it is useful in maintaining locality properties

� The leaf set L is the set of nodes with the |L|/2 numerically clos-
est larger nodeIds, and the |L|/2 nodes with numerically closest
smaller nodeIds, relative to the present node's nodeId. The leaf
set is used during the message routing

2. Routing

� Given a message, the node �rst checks to see if the key falls within
the range of nodeIds covered by its leaf set

� If so, the message is forwarded directly to the destination node,
namely the node in the leaf set whose nodeId is closest to the key
(possibly the present node)

� If the key is not covered by the leaf set, then the routing table
is used and the message is forwarded to a node that shares a
common pre�x with the key by at least one more digit

� In certain cases, it is possible that the appropriate entry in the
routing table is empty or the associated node is not reachable, in
which case the message is forwarded to a node that shares a pre�x
with the key at least as long as the local node, and is numerically
closer to the key than the present node's id.

� Such a node must be in the leaf set unless the message has already
arrived at the node with numerically closest nodeId. And, unless
|L|/2 adjacent nodes in the leaf set have failed simultaneously, at
least one of those nodes must be live.

� It can be shown that the expected number of routing steps is
log(2b) N steps.

� If a message is forwarded using the routing table, then the set of
nodes whose ids have a longer pre�x match with the key is reduced
by a factor of 2b in each step, which means the destination is
reached in log(2b) N steps.

� If the key is within range of the leaf set, then the destination node
is at most one hop away.

� The third case arises when the key is not covered by the leaf set
(i.e., it is still more

than one hop away from the destination), but there is no routing table
entry. Assuming accurate routing tables and no recent node failures,
this means that a node with the appropriate pre�x does not exist.

13

� The likelihood of this case, given the uniform distribution of
nodeIds, depends on |L|. Analysis shows that with |L| = 2b and |L|
= 2 * 2b, the probability that this case arises during a given mes-
sage transmission is less than .02 and 0.006, respectively. When
it happens, no more than one additional routing step results with
high probability.

3. Pastry API

� Substrate: not an application itself, rather it provides Application
Program Interface (API) to be used by applications. Runs on all
nodes joined in a Pastry network

� Pastry exports following operations; nodeId and route.

� Applications layered on top of PAstry must export the following
operations; deliver, forward, newLeafs.

4. Self-organization and adaptation

(a) Node Arrival

� When a new node arrives, it needs to initialize its state ta-
bles, and then inform other nodes of its presence. We assume
the new node knows initially about a nearby Pastry node A,
according to the proximity metric, that is already part of the
system.

� Let us assume the new node's nodeId is X.

� Node X then asks A to route a special �join� message with
the key equal to X. Like any message, Pastry routes the join
message to the existing node Z whose id is numerically closest
to X.

� In response to receiving the �join� request, nodes A, Z, and
all nodes encountered on the path from A to Z send their
state tables to X.

� Node X initialized its routing table by obtaining the i-th row
of its routing table from the i-th node encountered along the
route from A to Z to

� X can use Z's leaf set as basis, since Z is closest to X.

� X use A's neighborhood to initialise its own

� Finally, X transmits a copy of its resulting state to each of
the nodes found in its neighborhood set, leaf set, and routing

14

table. Those nodes in turn update their own state based on
the information received.

(b) Node Depature

� A Pastry node is considered failed when its immediate neigh-
bors in the nodeId space can no longer communicate with the
node.

� To replace a failed node in the leaf set, its neighbor in the
nodeId space contacts the live node with the largest index
on the side of the failed node, and asks that node for its leaf
table.

� The failure of a node that appears in the routing table of
another node is detected when that node attempts to contact
the failed node and there is no response.

� To replace a failed node in a routing table entry, a node con-
tacts the other nodes in the row of the failed node and asks
if any of them knows a node with the same pre�x.

� a node attempts to contact each member of the neighborhood
set periodically to see if it is still alive.

5. Locality

� Pastry's notion of network proximity is based on a scalar proxim-
ity metric, such as the number of IP routing hops or geographic
distance.

� It is assumed that the application provides a function that allows
each Pastry node to determine the �distance� of a node with a
given IP address to itself.

� Throughout this discussion, we assume that the proximity space
de�ned by the cho- sen proximity metric is Euclidean; that is, the
triangulation inequality holds for dis- tances among Pastry nodes.

� If the triangulation inequality does not hold, Pastry's basic rout-
ing is not a�ected; however, the locality properties of Pastry
routes may su�er.

(a) Route Locality

� although it cannot be guaranteed that the distance of a mes-
sage from its source increases monotonically at each step, a

15

message tends to make larger and larger strides with no pos-
sibility of returning to a node within di of any node i encoun-
tered on the route, where di is the distance of the routing step
taken away from node i. Therefore, the messag ehas nowhere
to go but towards its destination.

(b) Locating the nearest among k nodes

� Recall that Pastry routes messages towards the node with
the nodeId closest to the key, while attempting to travel the
smallest possible distance in each step.

� Pastry makes only local routing decisions, minimizing the
distance traveled on the next step with no sense of global
direction.

6. Arbitrary node failures and network partitions

� As routing is deterministic by default, a malicious node can fuck
things up. Randomized routing �xes this.

� Another challenge are IP routing anomalies in the Internet that
cause IP hosts to be unreachable from certain IP hosts but not
others.

� However, Pastry's self-organization protocol may cause the cre-
ation of multiple, isolated Pastry overlay networks during periods
of IP routing failures. Because Pastry relies almost exclusively on
information exchange within the overlay network to self-organize,
such isolated overlays may persist after full IP connectivity re-
sumes.

� One solution to this problem involves the use of IP multicast.

1.2.3 Conclusion

� This paper presents and evaluates Pastry, a generic peer-to-peer con-
tent location and routing system based on a self-organizing overlay
network of nodes connected via the Internet. Pastry is completely de-
centralized, fault-resilient, scalable, and reliably routes a message to
the live node with a nodeId numerically closest to a key. Pastry can be
used as a building block in the construction of a variety of peer-to-peer
Internet applications like global �le sharing, �le storage, group commu-
nication and naming systems. Results with as many as 100,000 nodes
in an emulated network con�rm that Pastry is e�cient and scales well,

16

that it is self-organizing and can gracefully adapt to node failures, and
that it has good locality properties.

1.3 Kademlia

1.3.1 Abstract

� A peer-to-peer distributed hash table with provable consistency and
performance in a fault-prone environment

� system routes queries and locates nodes using a novel XOR-based met-
ric topology

� The topology has the property that every message exchanged conveys
or reinforces useful contact information.

� The system exploits this information to send parallel, asynchronous
query messages that tolerate node failures without imposing timeout
delays on users.

1.3.2 Introduction

� Kademlia is a P2P DHT

� Kademlia has a number of desirable features not simultaneously of-
fered by any previous DHT. It minimizes the number of con�guration
messages nodes must send to learn about each other.

� Con�guration information spreads automatically as a side-e�ect of key
lookups.

� Kademlia uses parallel, asynchronous queries to avoid timeout delays
from failed nodes.

� Keys are opaque, 160-bit quantities (e.g., the SHA-1 hash of some
larger data)

� Participating computers each have a node ID in the 160-bit key space.

� (key,value) pairs are stored on nodes with IDs �close� to the key for
some notion of closeness.

� XOR is symmetric, allowing Kademlia participants to receive lookup
queries from precisely the same distribution of nodes contained in their
routing tables

17

� Without this property, systems such as Chord do not learn useful rout-
ing information from queries they receive.

� Worse yet, asymmetry leads to rigid routing tables. Each entry in a
Chord node's �nger table must store the precise node preceding some
interval in the ID space.

� Each entry in a Chord node's �nger table must store the precise node
preceding some interval in the ID space. Any node actually in the
interval would be too far from nodes preceding it in the same interval.
Kademlia, in contrast, can send a query to any node within an interval,
allowing it to select routes based on latency or even send parallel,
asynchronous queries to several equally appropriate nodes.

� Kademlia most resembles Pastry's �rst phase, which (though not de-
scribed this way by the authors) successively �nds nodes roughly half
as far from the target ID by Kademlia's XOR metric.

� In a second phase, however, Pastry switches distance metrics to the
numeric di�erence between IDs. It also uses the second, numeric dif-
ference metric in replication. Unfortunately, nodes close by the second
metric can be quite far by the �rst, creating discontinuities at particu-
lar node ID values, reducing performance, and complicating attempts
at formal analysis of worst-case behavior.

1.3.3 System Description

� Kademlia assign 160-bit opaque IDs to nodes and provide a lookup
algorithm that locates successively �closer� nodes to any desired ID,
converging to the lookup target in logarithmically many steps

� An identi�er is opaque if it provides no information about the thing it
identi�es other than being a seemingly random string or number

� Kademlia e�ectively treats nodes as leaves in a binary tree, with each
node's position determined by the shortest unique pre�x of its ID

� For any given node, we divide the binary tree into a series of succes-
sively lower subtrees that don't contain the node. The highest subtree
consists of the half of the binary tree not containing the node.

� The next subtree consists of the half of the remaining tree not contain-
ing the node, and so forth

18

� The Kademlia protocol ensures that every node knows of at least one
node in each of its subtrees, if that subtree contains a node. With this
guarantee, any node can locate any other node by its ID

1. XOR Metric

� Each Kademlia node has a 160-bit node ID. Node IDs are cur-
rently just random 160-bit identi�ers, though they could equally
well be constructed as in Chord.

� Every message a node transmits includes its node ID, permitting
the recipient to record the sender's existence if necessary.

� Keys, too, are 160-bit identi�ers. To assign hkey,valuei pairs to
particular nodes, Kademlia relies on a notion of distance between
two identi�ers. Given two 160-bit identi�ers, x and y, Kademlia
de�nes the distance between them as their bitwise exclusive or
(XOR) intepreted as an integer.

� XOR is nice, as it is symmetric, o�ers the triangle property even
though it's non-euclidean.

� We next note that XOR captures the notion of distance implicit
in our binary-tree-based sketch of the system.

� In a fully-populated binary tree of 160-bit IDs, the magnitude of
the distance between two IDs is the height of the smallest subtree
containing them both. When a tree is not fully populated, the
closest leaf to an ID x is the leaf whose ID shares the longest
common pre�x of x.

� Overlap in regards to closest might happen. In this case the
closest leaf to x will be the closest leaf to ID x~ produced by
�ipping the bits in corresponding to the empty branches of the
tree (???)

� Like Chord's clockwise circle metric, XOR is unidirectional. For
any given point x and distance > 0, there is exactly one point y
such that d(x, y) = . Unidirectionality ensures that all lookups
for the same key converge along the same path, regardless of the
originating node. Thus, caching hkey,valuei pairs along the lookup
path alleviates hot spots.

2. Node state

19

� For each 0 i < 160, every node keeps a list of (IP address, UDP
port, Node ID) triples for nodes of distance between 2i and 2i+1
from itself. We call these lists k-buckets.

� Each k-bucket is kept sorted by time last seen�least-recently seen
node at the head, most-recently seen at the tail. For small values
of i, the k-buckets will generally be empty (as no appropriate
nodes will exist). For large values of i, the lists can grow up to
size k, where k is a system-wide replication parameter.

� k is chosen such that it is unlikely that k nodes will fail at the
same time.

� When a message is received, request or reply, from another node,
the receiver updates its appropriate k-bucket, for the sender's
node id. If the node is already present there, it's moved to the
tail, if it's not there and there is room, it's inserted. If the bucket
is full, the least recently seen node is pinged, if it doesn't respond,
it gets replaced, if it does respond, the new node is discarded.

� k-buckets e�ectively implement a least-recently seen eviction pol-
icy, except that live nodes are never removed from the list.

� This works well for systems with an otherwise high churn rate, as
nodes who are alive for a longer period, are more likely to stay
alive.

� A second bene�t of k-buckets is that they provide resistance to
certain DoS attacks. One cannot �ush nodes' routing state by
�ooding the system with new nodes, as new nodes are only in-
serted, once the old ones die.

3. Kademlia Protocol

� The Kademlia protocol consists of four RPCs: ping, store, �nd
node, and �nd value.

� The ping RPC probes a node to see if it is online.

� store a node to store a (key, value) pair for later retrieval

� �nd node takes a 160-bit ID as an argument. The recipient of the
RPC returns (IP address, UDP port, Node ID) triples for the k
nodes it knows aboutclosest to the target ID. These triples can
come from a single k-bucket, or they may come from multiple k-
buckets if the closest k-bucket is not full. In any case, the RPC
recipient must return k items (unless there are fewer than k nodes

20

in all its k-buckets combined, in which case it returns every node
it knows about).

� �nd value behaves like �nd node�returning (IP address, UDP
port, Node ID) triples�with one exception. If the RPC recipient
has received a store RPC for the key, it just returns the stored
value.

� In all RPCs, the recipient must echo a 160-bit random RPC ID,
which provides some resistance to address forgery. pings can also
be piggy-backed on RPC replies for the RPC recipient to obtain
additional assurance of the sender's network address.

(a) Node lookup

i. Node lookup is performed recursively. The lookup initiator
starts by picking alpha nodes from its closest k-bucket (is the
closest to the iniator or closest to the node we wish to lookup
??).

ii. The iniator then sends parallel async �ndnode RPCs to these
alpha nodes.

iii. In the recursive step, the initiator resends the �nd node to
nodes it has learned about from previous RPCs. (This re-
cursion can begin before all of the previous RPCs have re-
turned).

iv. If a response is not found the alpha nodes queried, the iniator
instead query all of the k nodes which were returned.

v. Lookup terminates when all k has responded or failed to re-
spond.

vi. When = 1, the lookup algorithm resembles Chord's in terms
of message cost and the latency of detecting failed nodes.
However, can route for lower latency because it has the �ex-
ibility of choosing any one of k nodes to forward a request
to.

(b) Store

� Most operations are implemented in terms of the above
lookup procedure. To store a (key,value) pair, a participant
locates the k closest nodes to the key and sends them store
RPCs

� Additionally, each node re-publishes (key,value) pairs as nec-
essary to keep them alive

21

� For �le sharing, it's required that the original publisher of a
(key,value) pair to republish it every 24 hours. Otherwise,
(key,value) pairs expire 24 hours after publication, so as to
limit stale index information in the system.

(c) Find value

� To �nd a (key,value) pair, a node starts by performing a
lookup to �nd the k nodes with IDs closest to the key. How-
ever, value lookups use �nd value rather than �nd node RPCs.
Moreover, the procedure halts immediately when any node
returns the value. For caching purposes, once a lookup suc-
ceeds, the requesting node stores the (key,value) pair at the
closest node it observed to the key that did not return the
value.

� Because of the unidirectionality of the topology, future
searches for the key are likely to hit cached entries before
querying the closest node.

� To avoid overcaching, the expiration time of any key-value
pair is determined by the distance between the current node
and the node whose ID is closest to the key ID.

(d) Refreshing buckets

� To handle pathological cases in which there are no lookups
for a particular ID range, each node refreshes any bucket to
which it has not performed a node lookup in the past hour.
Refreshing means picking a random ID in the bucket's range
and performing a node search for that ID

(e) Joining network

� To join the network, a node u must have a contact to an
already participating node w. u inserts w into the appropriate
k-bucket. u then performs a node lookup for its own node
ID. Finally, u refreshes all k-buckets further away than its
closest neighbor. During the refreshes, u both populates its
own k-buckets and inserts itself into other nodes' k-buckets
as necessary.

4. Routing Table

� The routing table is a binary tree whose leaves are k-buckets.

� each k-bucket covers some range of the ID space, and together
the k-buckets cover the entire 160-bit ID space with no overlap.

22

� When a node u learns of a new contact and this can be inserted
into a bucket, this is done. Otherwise, if the k-bucket's range
includes u's own node ID, then the bucket is split into two new
buckets, the old contents divided between the two, and the in-
sertion attempt repeated. This is what leads to one side of the
binary tree being one large bucket, as it won't get split

� If tree is highly unbalanced, issues may arise (what issues ??). To
avoid these, buckets may split, regardless of the node's own ID
residing in these.

� nodes split k-buckets as required to ensure they have complete
knowledge of a surrounding subtree with at least k nodes.

5. E�cient key re-publishing

� Keys must be periodically republished as to avoid data disappear-
ing from the network or that data is stuck on un-optimal nodes,
as new nodes closer to the data might join the network.

� To compensate for nodes leaving the network, Kademlia repub-
lishes each key-value pair once an hour.

� As long as republication intervals are not exactly synchronized,
only one node will republish a given key-value pair every hour.

1.3.4 Implementation Notes

1. Optimized contact accounting

� To reduce tra�c, Kademlia delays probing contacts until it has
useful messages to send them. When a Kademlia node receives an
RPC from an unknown contact and the k-bucket for that contact
is already full with k entries, the node places the new contact
in a replacement cache of nodes eligible to replace stale k-bucket
entries.

� When a contact fails to respond to 5 RPCs in a row, it is con-
sidered stale. If a k-bucket is not full or its replacement cache is
empty, Kademlia merely �ags stale contacts rather than remove
them. This ensures, among other things, that if a node's own net-
work connection goes down teporarily, the node won't completely
void all of its k-buckets.

� This is nice because Kademlia uses UDP.

23

2. Accelerated lookups

� Another optimization in the implementation is to achieve fewer
hops per lookup by increasing the routing table size. Conceptu-
ally, this is done by considering IDs b bits at a time instead of
just one bit at a time

� This also changes the way buckets are split.

� This also changes the XOR-based routing apparently.

1.3.5 Summary

� With its novel XOR-based metric topology, Kademlia is the �rst
peer-to-peer system to combine provable consistency and performance,
latency-minimizingrouting, and a symmetric, unidirectional topology.
Kademlia furthermore introduces a concurrency parameter, , that lets
people trade a constant factor in bandwidth for asynchronous lowest-
latency hop selection and delay-free fault recovery. Finally, Kademlia
is the �rst peer-to-peer system to exploit the fact that node failures
are inversely related to uptime.

1.4 Bouvin notes

� While �rst generation of structured P2P networks were largely appli-
cation speci�c and had few guarantees, usually using worst case O(N)
time, the second generation is based on structured network overlays.
They are typically capable of guaranteeing O(log N) time and space
and exact matches.

� Much more scalable than unstructured P2P networks measured in
number of hops for routing However, churn results in control traf-
�c; slow peers can slowdown entire system (especially in Chord); weak
peers may be overwhelmed by control tra�c

� The load is evenly distributed across the network, based on the uni-
formness of the ID space More powerful peers can choose to host several
virtual peers

� Most systems have various provisions for maintaining proper routing
and defending against malicious peers

� A backhoe is unlikely to take out a major part of the system � at least
if we store at k closest nodes

24

2 Mobile Ad-hoc Networks and Wireless Sensor

Networks

2.1 Routing in Mobile Ad-hoc Networks

2.1.1 Introduction

� Routing is the process of passing some data, a message, along in a
network.

� The message originates from a source host, travels through intermedi-
ary hosts and ends up at a destination host.

� Intermediary hosts are called routers

� Usually a few questions has to be answered when a message is routed:

1. How do the hosts acting as routers know which way to send the
message?

2. What should be done if multiple paths connect the sender and
receiver?

3. Does an answer to the message have to follow the same path as
the original message?

� Simple solution: Broadcast message, i.e. send it to every single person
you know, every time.

� Creates a lot of tra�c, it's also known as �ooding.

� The responsibility of a routing protocol is to answer the three questions
posed.

2.1.2 Basic Routing Protocols

� A routing protocol must enable a path or route to be found, through
the network

� A network is usually modelled as a graph, inside the computers.

� This allows for edges to be weighted. Can either be distance, tra�c or
some metric like that

� There are two classes, Link State (LS) and Distance Vector (DS). Main
di�erence being whether or not they use global information.

25

� Algorithms using global information are "Link State", as all nodes need
to maintain state information about all links in the network.

� Distance Vector algorithms do not rely on global information.

1. Link State

� All nodes and links with weights are known to all nodes.

� This makes the problem a SSSP problem (single-source shortest
path)

(a) Djikstra

� A set W is initialised, containing only the source node v.

� In each iteration, the edge e with the lowest cost connecting
W with a node u which isn't in W, is chosen and u is added
to the set.

� Algorithm loops n-1 times, and then the shortest path to all
other nodes have been found.

� Requires each router to have complete knowledge of the net-
work.

� Can be accomplished by broadcasting the identities and costs
of all of the outgoing links to all other routers in the network.
This has to be done, every time a weight or link changes.

� Unrealistic for anything but very small networks.

� Works great for small stable networks however.

2. Distance Vector

� No global knowledge is needed

� The shortest distance to any given node is calculated in coopera-
tion between the nodes.

� Based on Bellman-Ford.

� Apparently original Bellman-Ford requires global knowledge.
This is a knock-o� algorithm.

(a) Bellman-Ford

� Decentralised, no global information is needed

� Requires the information of the neighbours and the link costs
between them and the node

26

� Each node stores a distance table

� The distance table is just a mapping between a node name
and the distance to it. It's over all known nodes, so not just
neighbours.

� When a new node is encountered, this is simply added

� Node sends updates to its neighbours. This message states
that the distance from the node v to node u has changed. As
such, the neighbours can compute their distance to this node
u as well and update their table.

� This update may cause a chain of updates, as the neighbours
might discover that this new distance is better than what
they currently had.

� The route calculation is bootstrapped by having all nodes
broadcast their distances to their neighbours, when the net-
work is created.

� Algorithm

i. Distance table is initialised for node x

ii. Node x sends initial updates to neighbours

iii. The algorithm loops, waiting for updates or link cost
changes of directly connected links (neighbours (?))

iv. Whenever either event is received, the appropriate actions
are taken, such as sending updates or changing values in
the distance table

� Generates less tra�c, since only neighbours are needed to be
known.

� Doesn't need global knowledge, general advantage in large
networks or networks with high churn rate

� Doesn't have to recompute the entire distance table whenever
a single value changes, as Djikstras algorithm has to.

� Su�ers from the "Count-to-in�nity" problem, which happens
when a route pass twice through the same node and a link
starts going towards in�nity. If there is a network A - B - C
- D. A dies. B sets the distance to in�nity. When tables are
shared, B sees that C knows a route to A of distance 2, as
such it updates its distance to 3. (1 to C, 2 from C to A). C
then has to update its distance to A to 4 and so it goes.

� A way of avoiding this, is only sending information to the
neighbours that are not exclusive links to the destination, so

27

C shouldn't send any information to B about A, as B is the
only way to A.

2.1.3 MANET Routing

� Both Djikstra and Bellman-Ford were designed to operate in fairly
stable networks.

� MANETs are usually quite unstable, as possibly all nodes are mobile
and may be moving during communication.

� MANETs typically consist of resource-poor, energy constrained devices
with limited bandwidth and high error rates.

� Also has missing infrastructure and high mobility

� According to Belding-Royer (who he??), the focus should be on the
following properties

1. Minimal control overhead (due to limited energy and bandwidth)

2. Minimal processing overhead (Typically small processors)

3. Multihop routing capability (No infrastructure, nodes must act
as routers)

4. Dynamic topology maintenance (High churn rates forces topology
to be dynamic and be capable of easily adapting)

5. Loop prevention (Loops just take a lot of bandwidth)

� MANET routing protocols are typically either pro-active or re-active.

1. Proactive

� Every node maintains a routing table of routes to all other nodes
in the network

� Routing tables are updated whenever a change occurs in the net-
work

� When a node needs to send a message to another node, it has a
route to that node in its routing table

� Two examples of proactive protocols

(a) Destination-sequenced distance vector (DSDV)

(b) Optimised link state routing (OSLR)

28

2. Reactive

� Called on-demand routing protocols

� Does not maintain routing tables at all times

� A route is discovered when it is needed, i.e. when the source has
some data to send

� Two examples of reactive protocols

(a) Ad-hoc on demand distance vector (AODV)

(b) Dynamic source routing (DSR)

3. Combination of proactive and reactive

� Zone Routing Protocol (ZRP)

4. Local connectivity management

� MANET protocols have in common, that they need to have a
mechanism that allows discovery of neighbours

� Neighbours are nodes within broadcast range, i.e. they can be
reached within one hop

� Neighbours can be found by periodically broadcasting "Hello"
messages. These won't be relayed. These messages contain infor-
mation about the neighbours known by the sending node.

� When a hello message from x is received by y, y can check, if
y is in the neighbour list of x. If y is there, the link must be
bi-directional. Otherwise, it's likely uni-directional.

5. Destination-Sequenced Distance Vector

� Uses sequence numbers to avoid loops.

� Has message overhead which grows as O(n²), when a change oc-
curs in the network.

(a) Using sequence numbers

� Each node maintains a counter that represents its current
sequence number. This counter starts at zero and is incre-
mented by two whenever it is updated.

� A sequence number set by a node itself, will always be even.

� The number of a node is propagared through the network in
the update messages that are sent to the neighbours.

29

� Whenever an update message is sent, the sender increments
its number and pre�xes this to the message.

� Whenever an update message is received, the receiver can
get the number. This information is stored in the receiving
nodes route table and is further propagated in the network
in subsequent update messages sent, regarding routes to that
destination.

� Like this, the sequence number set by the destination node is
stamped on every route to that node.

� Update messages thus contain; a destination node, a cost of
the route, a next-hop node and the latest known destination
sequence number.

� On receiving an update message, these rules apply:

i. If the sequence number of the updated route is higher
than what is currently stored, the route table is updated.

ii. If the numbers are the same, the route with the lowest
cost is chosen.

� If a link break is noticed, the noticer sets the cost to be inf to
that node and increments the gone node's sequence number
by one and sends out an update.

� Thus, the sequence number is odd, whenever a node discovers
a link breakage.

� Because of this, any further updates from the disappeared
node, will automatically supersede this number

� This makes DSDV loop free

� Sequence numbers are changed in the following ways

i. When a line breaks. The number is changed by a neigh-
bouring node. Link breakage can't form a loop

ii. When a node sends an update message. The node changes
its own sequence number and broadcasts this. This in-
formation is passed on from the neighbours.

� Thus, the closer you are, the more recent sequence number
you know.

� When picking routes, we trust the routers who knows the
most recent sequence number, in addition to picking the
shortest route.

(b) Sending updates

30

� Two types of updates; full and incremental

� Full updates contain information about all routes known by
the sender. These are sent infrequently.

� Incremental updates contain only changed routes. These are
sent regularly.

� Decreases control bandwidth.

� Full updates are sent in some relatively large interval

� Incremental updates are sent frequently

� Full updates are allowed to use multiple network protocol
data units, NPDUs (??????), whereas incremental can only
use one. Too many incremental to �t in a single -> send full
instead

� When an update to a route is received, di�erent actions are
taken, depending on the information:

i. If it's a new route, schedule for immediate update, send
incremental update ASAP

ii. If a route has improved, send in next incremental update

iii. If sequence number has changed, but route hasn't, send
in next incremental if space

(c) Issue

� Su�ers from routing �uctuations

� A node could repeatedly switch between a couple of routes

� Essentially, one route is slower, but for some reason the up-
date comes from that �rst, while the other is quicker, but the
number comes slower. You receive an update and update the
route to be the slowest. Then you receive the slower update
and have to to another update, as the new route is shorter.

� Fixed by introduction delay. If the cost to a destination
changes this information is scheduled for advertisement at
a time depending on the average settling time for that desti-
nation.

6. Optimised Link State Routing

� Designed to be e�ective in an environment with a dense popula-
tion of mobile devices, which communicate often.

� Introduces multi point relay (MPR) sets. These are a subset
of one-hop neighbours of a node, that is used for routing the
messages of that node. These routers are called MPR selectors.

31

(a) Multipoint relay set

� Selected independently by each node as a subset of its neigh-
bours.

� Selected such that the set covers all nodes that are two hops
away

� Doesn't have to be optimal

� Each node stores a list of both one-hop and two-hop neigh-
bours. Collected from the hello messages which are broad-
casted regardless. These should also contain neighbours. This
means that all neighbours of the one-hop neighbours, must
be the set of two-hop neighbours. We can then simply check
if we know all.

(b) Routing with MPR

� A topology control (TC) message is required to create a rout-
ing table for the entire network

� This is sent via the MPR and will eventually reach the en-
tire network. It's not as much �ooding as the standard LS
algorithm.

7. Ad-hoc On-Demand Distance Vector

� Reactive

� Routes are acquired when they are needed

� Assumes symmetrical links

� Uses sequence numbers to avoid loops

(a) Path Discovery

� When a node wishes to send something, a path discovery
mechanism is triggered

� If node x wishes to send something to node y, but it doesn't
know a route to y, a route request (RREQ) message is send
to x's neighbours. The RREG contains:

i. Source address

ii. Source seq no

iii. Broadcast id - A unique id of the current RREQ

iv. Destination addr

v. Destionation seq no

32

vi. Hop count - The number of hops so far, incremented when
RREQ is forwarded

� (source addr, broadcast id) uniquely identi�es a RREQ. This
can be used to check if RREG has been seen before.

� When RREQ is received, two actions can be taken

i. If a route to the destination is known and that path has a
sequence number equal or greater than the destionation
seq no in the RREQ, it responds to the RREQ by sending
a RREP (route reply) back to the source.

ii. If it doesn't have a recent route, it broadcasts the RREQ
to neighbours with an increased hop count.

� When a RREQ is received, the address of the neighbour from
whom this was received, is recorded. This allows for the
generation of a reverse path, should the destination node be
found.

� RREP contains source, destination addr, destionation seq no,
the total number of hops from source to dest and a lifetime
value for the route.

� If multiple RREPs are received by an intermediary node, only
the �rst one is forwarded and the rest are forwarded if their
destination sequence number is higher or they have a lower
hop count, but the same dest seq no.

� When the RREP is send back to the source, the intermediary
nodes record which node they received the RREP from, to
generate a forward path to route data along.

(b) Evaluation

� Tries to minimise control tra�c �owing, by having nodes only
maintain active routes.

� Loops prevented with sequence numbers

� No system wide broadcasts of entire routing tables

� Every route is only maintained, as long as it's used. It has a
timeout and is discarded, if this timeout is reached.

� Path �nding can be costly, as a long of RREG gets propagated
through the network

� Expanding ring algorithm can help control the amount of
messages going out, but if the receiver isn't close, this can be
even more costly than the standard way

33

� Upon link failure; Upstream neighbour sends RREP with seq.
no. +1 and hop count set to in�nity to any active neigh-
bours�that is neighbours that are using the route.

8. Dynamic Source Routing

� On-demand protocol

� DSR is a source routing protocol. This is main di�erence between
DSR and AODV

� Source routing is a technique, where every message contains a
header describing the entire path that the message must follow.

� When a message is received, the node checks if it's the destination
node, if not, it forwards the message to the next node in the path.

� There is no need for intermediate nodes to keep any state about
active routes, as was the case in the AODV protocol.

� DSR doesn't assume symmetrical links and can use uni-directional
links, i.e. one route can be used from A to B and then a di�erent
route from B to A.

(a) Path Discovery

� Discovery is similiar to AODV

� RREQ contains the source and destination address and a re-
quest id.

� Source address and request id de�nes the RREQ

� When an intermediate node receives a RREQ it does a few
things.

i. If it has no route to the dest, it appends itself to the list of
nodes in the RREQ and then forwards it to its neighbours

ii. If it does have a route to the dest, it appends this route
to the list of nodes and sends a RREP back to the source,
containing this route.

� This system uses the same amount of messages, as AODV,
and �nds the same routes.

� When a node is ready to send RREP back to source, it can
do one of 3 things:

i. If it already has a route to the source, it can send RREP
back along this path

34

ii. It can reverse the route in the RREP (i.e., the list the
nodes append themselves to, when forwarding)

iii. It can initiate a new RREQ to �nd a route to the source

� The second option assumes symmetrical links.

� The third approach can cause a loop, as the source and the
dest host can endlessly look for each other

� Can be avoided by piggybacking the RREP on the second
RREQ message. The receiver of this RREQ will be given a
path to use when returning the reply.

(b) Route cache

� There is no route table

� DSR use a route cache of currently known routes. The route
cache of a node is in e�ect a tree rooted at the node

� This tree can contain multiple routes to a single destination

� This means it's most robust against broken links, as even
though a link breaks, another can maybe be used

� Might take up O(n²) space

(c) Promiscuous mode operation

� DSR takes advantage of the fact that wireless devices can
overhear messages that aren't addressed to them.

� Since messages tend to be broadcasted, other nodes within
the range of the broadcast, can also read the message

� Having nodes overhear messages that are not addressed to
them, is called promiscuous mode operation.

� It's not required for DSR to work, but it improves the proto-
col.

� When two nodes on a path moves out of transmission range,
some sort of acking mechanism must be used. This is usually
done by using link-layer acks, but if such functionality isn't
available, this must be done through other means.

� A passive ack is when a host, after sending a message to the
next hop host in a path, overhears that the receiving host is
transmitting the message again. This can be taken as a sign,
that the host has in fact received the message and is now in
the process of forwarding it towards the next hop.

� A host that overhears a message may add the route of the
message to its route cache

35

� It might also be an error message, then the route cache can
be corrected.

� Can also be used for route shortening, if A sends to B who
sends to C, but C overhears the message to B, C can send an
RREP to A and let A know the route can be shortened.

(d) Evaluation

� Like AODV, DSR only uses active routes, i.e. routes timeout

� Control messages used are kept low by using same optimisa-
tions as AODV

� Storage overhead is O(n) - Route cache and information
about recently received RREQ

� Loops are easily avoided in source routing, since nodes can
just check if they're already a part of a path. If so, message
is discarded.

9. Zone Routing Protocol

� Hybrid protocol

� In ZRP, each node de�nes a zone consisting of all of it's n-hop
neighbours, where n may be varied.

� Within this zone, the node proactively maintains a routing ta-
ble of routes to all other nodes in the zone. This is done using
intrazone routing protocol, which is LS based.

� These zones can be used, when sending to nodes within the zone

� Outside the zone, a re-active interzone routing scheme is used.

� This uses a concept called bordercasting.

� The source node sends a route request (essentially an RREQ mes-
sage) to all of the nodes on the border of its zone.

� These border nodes check if they can reach the dest directly. If
not, they propagate the message to their border nodes.

(a) Evaluation

� Less control tra�c when doing route discovery, as messages
are either sent to border nodes (skipping a lot of intermediary
hops) or they're sent directly to someone within the zone.

� More control messages within limited range of the zones
though.

36

� Storage complexity of O(n²) where n is the number of neigh-
bours within the zone.

� Since LS is used, the running time is O(m + n log n), where
m is edges connecting the n nodes in the zone.

� In dense scenarios, ZRP won't be feasible.

2.2 Energy E�cient MANET Routing

� All mentioned protocols in chapter 2 try to minimise control tra�c,
which, albeit does save energy since transmitting fewer messages is
nice, but this is done primarily to avoid wasting bandwidth.

2.2.1 Introduction to energy e�cient routing

� Two main approaches

1. Power-save

2. power-control

� Power-save is concerned with sleep states. In a power-save protocol
the mobile nodes utilise that their network interfaces can enter into a
sleep state where less energy is consumed.

� Power-control utilises no sleep states. Instead the power used when
transmitting data is varied; which also varies transmission range of
nodes.

� Power-control can save some energy, but the real energy saver is in
power-save, as the real waste in most MANETs is idle time.

� As such, power-save is the most important, but power-control can be
used to complement it.

� Goal of the energy e�ciency is important to de�ne:

� One approach is to maximise overall lifetime of the entire network

� Stronger nodes that have a longer battery life, may be asked to do a
lot of the heavy lifting.

� Another approach is to use minimum energy when routing, such that
the route using the minimum amount of energy is taken.

37

� The physical position of nodes can be important when making routing
decisions.

� Protocols tend to assume there is some positioning mechanism avail-
able, such as GPS.

� This is not assumed here.

� A third energy saving approach is load balancing. The protocol at-
tempts to balance the load in such a way that it maximises overall life-
time. (This sounds a lot like having a few strong nodes do heavylifting)

2.2.2 The power-control approach

� Power-control protocols cut down on energy consumption by control-
ling the transmission power of the wireless interfaces.

� Turning down transmission power when sending to neighbours is nice.
It consumes less energy for the sender, since the range is lowered, less
nodes have to spend energy overhearing the message.

� There is a non-linear relation between transmission range and energy
used, thus, more hops might in fact yield less energy spent.

� System called PARO uses this, as it allows more intermediary nodes,
if this lowers the overall cost of the path.

2.2.3 Power-save approach

� Protocols that use the power-save approach cut down on energy con-
sumption by utilising the sleep states of the network interfaces

� When a node sleeps, it can't participate in the network

� This means these protocols have to either

1. use retransmissions of messages to make sure that a message is
received

2. make sure that all of the nodes do not sleep at the same time,
and thus delegate the work of routing data to the nodes that are
awake.

38

� Power-save protocols de�ne ways in which nodes can take turns sleep-
ing and being awake, so that none, or at least a very small percentage
of the messages sent in the network are lost, due to nodes being in the
sleep state.

� They are speci�cations of how it is possible to maximise the amount of
time that nodes are sleeping, while still retaining the same connectivity
and loss rates comparable to a network where no nodes are sleeping.

� IEEE 802.11 ad hoc power saving mode, part of the IEEE standard,
uses sleep states.

� It uses the protocol on the link layer and is as such independent of
which routing protocol is used on network layer.

� BECA/AFECA uses retransmissions

� Span speci�ces when nodes can sleep and delegates routing to the rest

1. IEEE

� Beacon interval within which each node can take a number of
actions

� In the end of each beacon interval, the nodes compete for trans-
mission of the next beacon, the one who �rst transmits, win.

� In the beginning of ea h bea on interval all nodes must be awake.

� It works in a few phases, where nodes can announce to receivers
that they want to send stu�. After this phase, any node which
wasn't contacted, can safely sleep.

2. BECA/AFECA

� The di�erence between BECA and AFECA is that AFECA takes
node density into consideration when determining the period of
time that a node may sleep.

� Both approaches are only power saving algorithms and not routing
protocols. This means that they need to work together with some
existing MANET routing protocol.

� It makes sense to choose an on-demand routing protocol for this
purpose, as pro-active would keep the nodes alive.

(a) Basic Energy-Conserving algorithm (BECA)

39

� Based on retransmissions

� Consists of timing information that de�nes the periods that
nodes spend in the di�erent states de�ned by the algorithm,
and a speci�cation of how many retransmissions are needed.

� BECA has three states

i. sleeping

ii. listening

iii. active

� Some rules to ensure no messages are lost

i. Tlisten = Tretransmissions

ii. Tsleep = k * Tretransmissions, for some k

iii. Numberofretrans >= k + 1

iv. Tidle = Tretransmissions

� If A sends to B, but B sleeps, the message will be retrans R
>= k + 1 times with interval Trestrans, until the message has
been received.

� Since Tsleep is de�ned as k * Tretrans, at least one of the retrans
will be received, even when B sleeps just before A transmits
the message.

� Incurs higher latency, worst case k * Tretrans and on average
(k * Tretrans) / 2. This latency is added for each hop.

� Thus, to keep this low, k must be somewhat small, which
counteracts the energy saving.

� Thus, one needs to �nd a nice ratio.

� Apparently k = 1 is nice.

� A nice feature of BECA, which also applies to AFECA, is
that in high tra�c scenarios, where all nodes are on at all
times, nodes are simply kept in the active state. In this way
the power saving mechanism is disabled and the performance
of the protocol is thus as good as the underlying protocol.

(b) Adaptive Fidelity energy-conserving algorithm (AFECA)

� Same power save model as BECA, except instead of Tsleep, it
has Tvariasleep

� Tvs is varied according to amount of neighbours surrounding
a node.

� This is estimated when in listening state, according to how
many are overheard.

40

� Nodes are removed from the estimation after they timeout at
Tgone time.

� Tvs is then de�ned as Tvs = Random(1, amountofneighbours)
* Tsleep

� Sleep time of (N * Tsleep) / 2 on average

� Favours nodes in dense areas, due to N, which is amountofneighbours.

� When numberofretrans isn't changed, but the sleep time is,
packets might be lost. A �x could be to make this variable
as well.

� Apparently doubles the overall lifetime, as network density
rises.

3. Span

3 Accessing and Developing WoT

3.1 Chapter 6

3.1.1 REST STUFF

� The �rst layer is called access. This layer is aptly named Access be-
cause it covers the most fundamental piece of the WoT puzzle: how to
connect a Thing to the web so that it can be accessed using standard
web tools and libraries.

� REST provides a set of architectural constraints that, when applied as
a whole, empha- sizes scalability of component interactions, generality
of interfaces, independent deploy- ment of components, and interme-
diary components to reduce interaction latency, enforce security, and
encapsulate legacy systems.

� In short, if the architecture of any distributed system follows the REST
constraints, that system is said to be RESTful.

� Maximises interoperability and scalability

� Five constraints: Client/server, Uniform interfaces, Stateless, Cacheable,
Layered system

1. Client/server

41

� Maximises decoupling, as client doesn't need to know how the
server works and vice versa

� Such a separation of concerns between data, control logic, and
presentation improves scalability and portability because loose
coupling means each component can exist and evolve indepen-
dently.

2. Uniform interfaces

� Loose coupling between components can be achieved only when
using a uniform interface that all components in the system re-
spect.

� This is also essential for the Web of Things because new, unknown
devices can be added to and removed from the system at any time,
and interacting with them will require min- imal e�ort.

3. Stateless

� The client context and state should be kept only on the client,
not on the server.

� Each request to server should contain client state, visibility (mon-
itoring and debugging of the server), robustness (recovering from
network or application failures) and scalability are improved.

4. Cacheable

� Caching is a key element in the performance (loading time) of the
web today and therefore its usability.

� Servers can de�ne policies as when data expires and when updates
must be reloaded from the server.

5. Layered

� For example, in order to scale, you may make use of a proxy
behaving like a load balancer. The sole purpose of the proxy
would then be to forward incoming requests to the appropriate
server instance.

� Another layer may behave like a gateway, and translate HTTP
requests to other protocols.

� Similarly, there may be another layer in the architecture respon-
sible for caching responses in order to minimize the work needed
to be done by the server.

42

6. HATEOAS

� Servers shouldn't keep track of each client's state because stateless
applications are easier to scale. Instead, application state should
be addressable via its own URL, and each resource should contain
links and information about what operations are possible in each
state and how to navigate across states. HATEOAS is particularly
useful at the Find layer

7. Principles of the uniform interface of the web

� Our point here is that what REST and HTTP have done for the
web, they can also do for the Web of Things. As long as a Thing
follows the same rules as the rest of the web�that is, shares this
uniform interface�that Thing is truly part of the web. In the end,
the goal of the Web of Things is this: make it possible for any
physical object to be accessed via the same uniform interface as
the rest of the web. This is exactly what the Access layer enables

� Addressable resources�A resource is any concept or piece of data
in an application that needs to be referenced or used. Every
resource must have a unique identi- �er and should be addressable
using a unique referencing mechanism. On the web, this is done
by assigning every resource a unique URL.

� Manipulation of resources through representations�Clients inter-
act with services using multiple representations of their resources.
Those representations include HTML, which is used for browsing
and viewing content on the web, and JSON, which is better for
machine-readable content.

� Self-descriptive messages�Clients must use only the methods
provided by the pro- tocol�GET, POST, PUT, DELETE, and
HEAD among others�and stick to their meaning as closely as
possible. Responses to those operations must use only well-known
response codes�HTTP status codes, such as 200, 302, 404, and
500.

� Hypermedia as the engine of the application state (HATEOAS)�Servers
shouldn't keep track of each client's state because stateless appli-
cations are easier to scale. Instead, application state should be
addressable via its own URL, and each resource should contain
links and information about what operations are possi- ble in each
state and how to navigate across states.

43

(a) Principle #1, adressable resources

� REST is a resource-oriented architecture (ROA)

� A resource is explicitly identi�ed and can be individually ad-
dressed, by its URI

� A URI is a sequence of characters that unambiguously iden-
ti�es an abstract or physi- cal resource. There are many
possible types of URIs, but the ones we care about here are
those used by HTTP to both identify and locate on a network
a resource on the web, which is called the URL (Uniform Re-
source Locator) for that resource.

� An important and powerful consequence of this is the address-
ability and portability of resource identi�ers: they become
unique (internet- or intranet-wide)

� Hierachical naming!

(b) Principle #2, manipulation of resources through representation

� On the web, Multipurpose Internet Mail Extensions (MIME)
types have been introduced as standards to describe various
data for- mats transmitted over the internet, such as images,
video, or audio. The MIME type for an image encoded as
PNG is expressed with image/png and an MP3 audio �le
with audio/mp3. The Internet Assigned Numbers Authority
(IANA) maintains the list of the all the o�cial MIME media
types.

� The tangible instance of a resource is called a representation,
which is a standard encoding of a resource using a MIME
type.

� HTTP de�nes a simple mechanism called content negotiation
that allows clients to request a preferred data format they
want to receive from a speci�c service. Using the Accept
header, clients can specify the format of the representation
they want to receive as a response. Likewise, servers specify
the format of the data they return using the Content-Type
header.

� The Accept: header of an HTTP request can also contain
not just one but a weighted list of media types the client
understands

� MessagePack can be used to pack JSON into a binary format,
to make it lighter.

44

� A common way of dealing with uno�cial MIME types is to
use the x- extension, so if you want your client to ask for
MessagePack, use Content-Type: application/x-msgpack.

(c) Principle #3: self-descriptive messages

� REST emphasizes a uniform interface between components
to reduce coupling between operations and their implemen-
tation. This requires every resource to support a standard,
common set of operations with clearly de�ned semantics and
behavior.

� The most commonly used among them are GET, POST,
PUT, DELETE, and HEAD. Although it seems that you
could do everything with just GET and POST, it's impor-
tant to correctly use all four verbs to avoid bad surprises in
your applications or introducing security risks.

� CRUD operations; create, read, update and delete

� HEAD is a GET, but only returns the headers

� POST should be used only to create a new instance of some-
thing that doesn't have its own URL yet

� PUT is usually modeled as an idempotent but unsafe update
method. You should use PUT to update something that al-
ready exists and has its own URL, but not to create a new
resource

� Unlike POST, it's idempotent because sending the same PUT
message once or 10 times will have the same e�ect, whereas
a POST would create 10 di�erent resources.

� A bunch of error codes as well: 200, 201, 202, 401, 404, 500,
501

� CORS�ENABLING CLIENT-SIDE JAVASCRIPT TO AC-
CESS RESOURCES

(d) CORS

� Although accessing web resources from di�erent origins lo-
cated on various servers in any server-side application doesn't
pose any problem, JavaScript applications running in web
browsers can't easily access resources across origins for secu-
rity reasons. What we mean by this is that a bit of client-side
JavaScript code loaded from the domain apples.com won't be
allowed by the browser to retrieve particular representations

45

of resources from the domain oranges.com using particular
verbs.

� This security mechanism is known as the same- origin policy
and is there to ensure that a site can't load any scripts from
another domain. In particular, it ensures that a site can't
misuse cookies to use your credentials to log onto another
site.

� Fortunately for us, a new standard mechanism called cross-
origin resource sharing (CORS)9 has been developed and is
well supported by most modern browsers and web servers.

When a script in the browser wants to make a cross-site request, it
needs to include an Origin header containing the origin domain.
The server replies with an Access- Control-Allow-Origin header
that contains the list of allowed origin domains (or * to allow all
origin domains)

� When the browser receives the reply, it will check to see if the
Access-Control- Allow-Origin corresponds to the origin, and
if it does, it will allow the cross-site request.

For verbs other than GET/HEAD, or when using POST with
representations other than application/x-www-form-urlencoded,
multipart/form-data, or text/ plain, an additional request called
pre�ight is needed. A pre�ight request is an HTTP request with
the verb OPTIONS that's used by a browser to ask the target
server whether it's safe to send the cross-origin request.

(e) Principle #4 : Hypermedia as the Engine of Application State

� contains two subconcepts: hypermedia and application state.

� This fourth principle is centered on the notion of hypermedia,
the idea of using links as connections between related ideas.

� Links have become highly popular thanks to web browsers yet
are by no means limited to human use. For example, UUIDs
used to identify RFID tags are also links.

� Based on this representation of the device, you can easily
follow these links to retrieve additional information about
the subresources of the device

� The application state�the AS in HATEOAS�refers to a step
in a process or work�ow, similar to a state machine, and
REST requires the engine of application state to be hyper-
media driven.

46

� Each possible state of your device or application needs to
be a RESTful resource with its own unique URL, where any
client can retrieve a representation of the current state and
also the possible transitions to other states. Resource state,
such as the status of an LED, is kept on the server and each
request is answered with a representation of the current state
and with the necessary information on how to change the
resource state, such as turn o� the LED or open the garage
door.

� In other words, applications can be stateful as long as client
state is not kept on the server and state changes within an
application happen by following links, which meets the self-
contained-messages constraint.

� The OPTIONS verb can be used to retrieve the list of op-
erations permitted by a resource, as well as metadata about
invocations on this resource.

(f) Five-step process

� A RESTful architecture makes it possible to use HTTP as a
universal protocol for web-connected devices. We described
the process of web-enabling Things, which are summarized in
the �ve main steps of the web Things design process:

� Integration strategy�Choose a pattern to integrate Things
to the internet and the web, either directly or through a proxy
or gateway. This will be covered in chapter 7, so we'll skip
this step for now.

� Resource design�Identify the functionality or services of a
Thing and organize the hierarchy of these services. This is
where we apply design rule #1: address- able resources.

� Representation design�Decide which representations will be
served for each resource. The right representation will be
selected by the clients, thanks to design rule #2: content
negotiation.

� Interface design�Decide which commands are possible for
each service, along with which error codes. Here we apply
design rule #3: self-descriptive messages.

� Resource linking design�Decide how the di�erent resources
are linked to each other and especially how to expose those
resources and links, along with the operations and parame-

47

ters they can use. In this �nal step we use design rule #4:
Hypermedia as the Engine of Application State.

8. Design rules

(a) #2�CONTENT NEGOTIATION

� Web Things must support JSON as their default representa-
tion.

� Web Things support UTF8 encoding for requests and re-
sponses

� Web Things may o�er an HTML interface/representation
(UI).

(b) #3 : Self-descriptive messages

� Web Things must support the GET, POST, PUT, and
DELETE HTTP verbs.

� Web Things must implement HTTP status codes 20x, 40x,
50x.

� Web Things must support a GET on their root URL.

� Web Things should support CORS

(c) #4 : HATEOAS

� Web Things should support browsability with links.

� Web Things may support OPTIONS for each of its resources.

3.1.2 EVENT STUFF

1. Events and stu�

� Unfortunately, the request-response model is insu�cient for a
number of IoT use cases. More precisely, it doesn't match event-
driven use cases where events must be communicated (pushed) to
the clients as they happen.

� A client-initiated model isn't practical for applications where no-
ti�cations need to be sent asynchronously by a device to clients
as soon as they're produced.

� polling is one way of circumventing the problem, however it's
ine�cient, as the client will need to make many requests which
will simply return the same response. Additionally, we might not
"poll" at the exact time an event takes place.

48

� Most of the requests will end up with empty responses (304 Not
Modi�ed) or with the same response as long as the value observed
remains unchanged.

2. Publish/subscribe

� What's really needed on top of the request-response pattern is
a model called publish/subscribe (pub/sub) that allows further
decoupling between data consumers (subscribers) and producers
(publishers). Publishers send messages to a central server, called a
broker, that handles the routing and distribution of the messages
to the various subscribers, depending on the type or content of
messages.

� A publisher can send noti�cations into a topic, which subscribers
can have subscribed to

3. Webhooks

� The simplest way to implement a publish-subscribe system over
HTTP without break- ing the REST model is to treat every entity
as both a client and a server. This way, both web Things and
web applications can act as HTTP clients by initiating requests to
other servers, and they can host a server that can respond to other
requests at the same time. This pattern is called webhooks or
HTTP callbacks and has become popular on the web for enabling
di�erent servers to talk to each other.

� The implementation of this model is fairly simple. All we need is
to implement a REST API on both the Thing and on the client,
which then becomes a server as well. This means that when the
Thing has an update, it POSTs it via HTTP to the client

� Webhooks are a conceptually simple way to implement bidirec-
tional communication between clients and servers by turning ev-
erything into a server.

� webhooks have one big drawback: because they need the sub-
scriber to have an HTTP server to push the noti�cation, this
works only when the subscriber has a publicly accessible URL or
IP address.

4. Comet

49

� Comet is an umbrella term that refers to a range of techniques
for circumventing the limitations of HTTP polling and webhooks
by introducing event-based communication over HTTP.

� This model enables web servers to push data back to the browser
without the client requesting it explicitly. Since browsers were
initially not designed with server-sent events in mind, web appli-
cation developers have exploited several speci�cation loop- holes
to implement Comet-like behavior, each with di�erent bene�ts
and drawbacks.

� Among them is a technique called long polling

� With long poll- ing, a client sends a standard HTTP request to the
server, but instead of receiving the response right away, the server
holds the request until an event is received from the sensor, which
is then injected into the response returned to the client's request
that was held idle. As soon as the client receives the response,
it immediately sends a new request for an update, which will be
held until the next update comes from the sensor, and so on.

5. Websockets

� WebSocket is part of the HTML5 speci�cation. The increasing
support for HTML5 in most recent web and mobile web browsers
means WebSocket is becoming ubiquitously available to all web
apps

� WebSockets enables a full-duplex communication channel over a
single TCP connection. In plain English, this means that it cre-
ates a permanent link between the client and the server that both
the client and the server can use to send messages to each other.
Unlike techniques we've seen before, such as Comet, WebSocket is
standard and opens a TCP socket. This means it doesn't need to
encapsulate custom, non-web content in HTTP messages or keep
the connection arti�cially alive as is needed with Comet imple-
mentations.

� A websockets starts out with a handshake: The �rst step is to
send an HTTP call to the server with a special header asking
for the protocol to be upgraded to WebSockets. If the web server
sup- ports WebSockets, it will reply with a 101 Switch- ing Proto-
cols status code, acknowledging the opening of a full-duplex TCP
socket.

50

� Once the initial handshake takes place, the client and the server
will be able to send messages back and forth over the open TCP
connection; these messages are not HTTP messages but Web-
Sockets data frames

� The overhead of each WebSockets data frame is 2 bytes, which is
small compared to the 871-byte overhead of an HTTP message
meta- data (headers and the like)

� the hierarchical structure of Things and their resources as URLs
can be reused as-is for WebSockets.

� we can subscribe to events for a Thing's resource by using its
corre- sponding URL and asking for a protocol upgrade to Web-
Sockets. Moreover, Web- Sockets do not dictate the format of
messages that are sent back and forth. This means we can hap-
pily use JSON and give messages the structure and semantics we
want.

� Moreover, because WebSockets consist of an initial handshake fol-
lowed by basic message framing layered over TCP, they can be di-
rectly implemented on many plat- forms supporting TCP/IP�not
just web browsers. They can also be used to wrap sev- eral other
internet-compatible protocols to make them web-compatible. One
example is MQTT, a well-known pub/sub protocol for the IoT
that can be inte- grated to the web of browsers via WebSockets

� The drawback, however, is that keeping a TCP connection per-
manently open can lead to an increase in battery consumption
and is harder to scale than HTTP on the server side.

6. HTTP/2

� This new version of HTTP allows multiplexing responses�that is,
sending responses in parallel, This �xes the head-of-line blocking
problem of HTTP/1.x where only one request can be outstanding
on a TCP/IP connection at a time.

� HTTP/2 also introduces compressed headers using an e�cient
and low-memory compression format.

� Finally, HTTP/2 introduces the notion of server push. Con-
cretely, this means that the server can provide content to clients
without having to wait for them to send a request. In the long run,

51

widespread adoption of server push over HTTP/2 might even re-
move the need for an additional protocol for push like WebSocket
or webhooks.

3.1.3 SUMMARY

� When applied correctly, the REST architecture is an excellent sub-
strate on which to create large-scale and �exible distributed systems.

� REST APIs are interesting and easily applicable to enable access to
data and ser- vices of physical objects and other devices.

� Various mechanisms, such as content negotiation and caching of Hy-
permedia as the Engine of Application State (HATEOAS), can help in
creating great APIs for Things.

� A �ve-step design process (integration strategy, resource design, repre-
sentation design, interface design, and resource linking) allows anyone
to create a mean- ingful REST API for Things based on industry best
practices.

� The latest developments in the real-time web, such as WebSockets,
allow creat- ing highly scalable, distributed, and heterogeneous real-
time data processing applications. Devices that speak directly to the
web can easily use web-based push messaging to stream their sensor
data e�ciently.

� HTTP/2 will bring a number of interesting optimizations for Things,
such as multiplexing and compression.

3.2 Chapter 7

3.2.1 Connecting to the web

1. Direct Integration

� The most straightforward integration pattern is the direct inte-
gration pattern. It can be used for devices that support HTTP
and TCP/IP and can therefore expose a web API directly. This
pattern is particularly useful when a device can directly connect
to the internet; for example, it uses Wi-Fi or Ethernet

2. Gateway Integration

52

� Second, we explore the gateway integra- tion pattern, where
resource-constrained devices can use non-web protocols to talk
to a more powerful device (the gateway), which then exposes a
REST API for those non-web devices. This pattern is particu-
larly useful for devices that can't connect directly to the internet;
for example, they support only Bluetooth or ZigBee or they have
limited resources and can't serve HTTP requests directly.

3. Cloud Integration

� Third, the cloud integration pattern allows a powerful and scal-
able web platform to act as a gateway. This is useful for any
device that can connect to a cloud server over the internet, re-
gardless of whether it uses HTTP or not, and that needs more
capability than it would be able to o�er alone.

3.2.2 Five step process

1. Integration strategy�Choose a pattern to integrate Things to the in-
ternet and the web. The patterns are presented in this chapter.

2. Resource design�Identify the functionality or services of a Thing, and
organize the hierarchy of these services.

3. Representation design�Decide which representations will be served for
each resource.

4. Interface design�Decide which commands are possible for each service,
along with which error codes.

5. Resource linking design�Decide how the di�erent resources are linked
to each other.

1. Direct integration

� the direct integration pattern is the perfect choice when the device
isn't battery powered and when direct access from clients such as
mobile web apps is required.

� the resource design. You �rst need to consider the physical re-
sources on your device and map them into REST resources.

� The next step of the design process is the representation design.
REST is agnostic of a par- ticular format or representation of the

53

data. We mentioned that JSON is a must to guarantee inter-
operability, but it isn't the only interesting data representation
available.

� a modular way based on the middleware pattern.

� In essence, a middleware can execute code that changes the re-
quest or response objects and can then decide to respond to the
client or call the next middleware in the stack using the next()
function.

� The core of this implementation is using the Object.observe()
function.9 This allows you to asynchronously observe the changes
happening to an object by registering a callback to be invoked
whenever a change in the observed object is detected.

2. Gateway integration pattern

� Gateway integration pattern. In this case, the web Thing can't
directly o�er a web API because the device might not support
HTTP directly. An application gateway is working as a proxy
for the Thing by o�ering a web API in the Thing's name. This
API could be hosted on the router in the case of Bluetooth or on
another device that exposes the web Thing API; for example, via
CoAP.

� The direct integration pattern worked well because your Pi was
not battery powered, had access to a decent bandwidth (Wi-
Fi/Ethernet), and had more than enough RAM and storage for
Node. But not all devices are so lucky. Native sup- port for
HTTP/WS or even TCP/IP isn't always possible or even desir-
able. For batterypowered devices, Wi-Fi or Ethernet is often too
much of a power drag, so they need to rely on low-power protocols
such as ZigBee or Bluetooth instead. Does it mean those devices
can't be part of the Web of Things? Certainly not.

� Such devices can also be part of the Web of Things as long as
there' s an intermedi- ary somewhere that can expose the device's
functionality through a WoT API like the one we described previ-
ously. These intermediaries are called application gateways (we'll
call them WoT gateways hereafter), and they can talk to Things
using any non-web application protocols and then translate those
into a clean REST WoT API that any HTTP client can use.

54

� They can add a layer of security or authentication, aggregate and
store data temporarily, expose semantic descriptions for Things
that don't have any, and so on.

� CoAP is a service layer protocol that is intended for use in
resource-constrained internet devices, such as wireless sensor net-
work nodes. CoAP is designed to easily translate to HTTP for
simpli�ed integration with the web

� CoAP is an interesting protocol based on REST, but because
it isn't HTTP and uses UDP instead of TCP, a gateway that
translates CoAP messages from/to HTTP is needed

� It's therefore ideal for device-to-device communi- cation over low-
power radio communication, but you can't talk to a CoAP device
from a JavaScript application in your browser without installing
a special plugin or browser extension. Let's �x this by using your
Pi as a WoT gateway to CoAP devices.

� By proxying, the gateway essentially just send a request to the
CoAP device whenever the gateway receives a request and it'll
return the value to the requester, once it receives a value from
the CoAP device.

(a) Summary

� For some devices, it might not make sense to support HTTP
or WebSockets directly, or it might not even be possible,
such as when they have very limited resources like mem-
ory or processing, when they can't connect to the internet
directly (such as your Bluetooth activity tracker), or when
they're battery-powered. Those devices will use more opti-
mized communication or application protocols and thus will
need to rely on a more powerful gateway that connects them
to the Web of Things, such as your mobile phone to upload
the data from your Bluetooth bracelet, by bridging/translat-
ing various protocols. Here we implemented a simple gate-
way from scratch using Express, but you could also use other
open source alternatives such as OpenHab13 or The Thing
System.

3. Cloud Integration pattern

� Cloud integration pattern. In this pattern, the Thing can't di-
rectly o�er a Web API. But a cloud service acts as a powerful

55

application gateway, o�ering many more features in the name of
the Thing. In this particular example, the web Thing connects
via MQTT to a cloud service, which exposes the web Thing API
via HTTP and the WebSockets API. Cloud services can also of-
fer many additional features such as unlimited data storage, user
management, data visualization, stream processing, support for
many concurrent requests, and more.

� Using a cloud server has several advantages. First, because it
doesn't have the physical constraints of devices and gateways, it's
much more scalable and can process and store a virtually unlim-
ited amount of data. This also allows a cloud platform to support
many protocols at the same time, handle protocol translation e�-
ciently, and act as a scalable intermediary that can support many
more concurrent clients than an IoT device could.

� Second, those platforms can have many features that might take
consid- erable time to build from scratch, from industry-grade
security, to specialized analytics capabilities, to �exible data vi-
sualization tools and user and access management

� Third, because those platforms are natively connected to the web,
data and services from your devices can be easily integrated into
third-party systems to extend your devices.

3.2.3 Summary

� There are three main integration patterns for connecting Things to the
web: direct, gateway, and cloud.

� Regardless of the pattern you choose, you'll have to work through the
following steps: resource design, representation design, and interface
design.

� Direct integration allows local access to the web API of a Thing. You
tried this by building an API for your Pi using the Express Node
framework.

� The resource design step in Express was implemented using routes,
each route representing the path to the resources of your Pi.

� We used the idea of middleware to implement support for di�erent
representa- tions� for example, JSON, MessagePack, and HTML�in
the representation design step.

56

� The interface design step was implemented using HTTP verbs on routes
as well as by integrating a WebSockets server using the ws Node mod-
ule.

� Gateway integration allows integrating Things without web APIs (or
not sup- porting web or even internet protocols) to the WoT by pro-
viding an API for them. You tried this by integrating a CoAP device
via a gateway on your cloud.

� Cloud integration uses servers on the web to act as shadows or prox-
ies for Things. They augment the API of Things with such features
as scalability, analy- tics, and security. You tried this by using the
EVRYTHNG cloud.

4 Discovery and Security for the Web of Things

4.1 Chapter 8

� Having a single and common data model that all web Things can share
would further increase interoperability and ease of integration by mak-
ing it possible for applications and services to interact without the need
to tailor the application manually for each speci�c device.

� The ability to easily discover and understand any entity of the Web of
Things�what it is and what it does�is called �ndability.

� How to achieve such a level of interoperability�making web Things
�ndable�is the purpose of the second layer

� The goal of the Find layer is to o�er a uniform data model that all web
Things can use to expose their metadata using only web standards and
best practices.

� Metadata means the description of a web Thing, including the URL,
name, current location, and status, and of the services it o�ers, such
as sensors, actuators, com- mands, and properties

� this is useful for discovering web Things as they get con- nected to a lo-
cal network or to the web. Second, it allows applications, services, and
other web Things to search for and �nd new devices without installing
a driver for that Thing

57

4.1.1 Findability problem

� For a Thing to be interacted with using HTTP and WebSocket re-
quests, there are three fundamental problems

1. How do we know where to send the requests, such as root
URL/resources of a web Thing?

2. How do we know what requests to send and how; for example,
verbs and the format of payloads?

3. How do we know the meaning of requests we send and responses
we get, that is, semantics?

� The bootstrap problem. This problem is concerned with how the ini-
tial link between two entities on the Web of Things can be established.

� Lets assume the Thing can be found, how is it interacted with, if it
exposes a UI at the root of its URL? In this case, a clean and user-
centric web interface can solve problem 3 because humans would be
able to read and understand how to do this.

� Problem 2 also would be taken care of by the web page, which would
hardcode which request to send to which endpoint.

� But what if the heater has no user interface, only a RESTful API?1
Because Lena is an experienced front-end developer and never watches
TV, she decides to build a sim- ple JavaScript app to control the heater.
Now she faces the second problem: even though she knows the URL
of the heater, how can she �nd out the structure of the heater API?
What resources (endpoints) are available? Which verbs can she send
to which resource? How can she specify the temperature she wants to
set? How does she know if those parameters need to be in Celsius or
Fahrenheit degrees?

4.1.2 Discovering Things

� The bootstrap problem deals with two scopes:

1. �rst, how to �nd web Things that are physically nearby�for ex-
ample, within the same local network

2. second, how to �nd web Things that are not in the same local
network�for example, �nd devices over the web.

58

1. Network discovery

� In a computer network, the ability to automatically discover new
participants is common.

� In your LAN at home, as soon as a device connects to the network,
it automatically gets an IP address using DHCP

� Once the device has an IP address, it can then broadcast data
packets that can be caught by other machines on the same net-
work.

� a broadcast or multicast of a message means that this message
isn't sent to a particular IP address but rather to a group of
addresses (multicast) or to everyone (broadcast), which is done
over UDP.

� This announcement process is called a network discovery proto-
col, and it allows devices and applications to �nd each other in
local networks. This process is commonly used by various discov-
ery protocols such as multicast Domain Name System (mDNS),
Digital Living Network Alliance (DLNA), and Universal Plug and
Play (UPnP).

� Most internet-connected TVs and media players can use DLNA
to discover network-attached storage (NAS)

� your laptop can �nd and con�gure printers on your network with
minimal e�ort thanks to network-level discovery protocols such
as Apple Bonjour that are built into iOS and OSX.

(a) mDNS

� In mDNS, clients can discover new devices on a network by
listening for mDNS mes- sages such as the one in the following
listing. The client populates the local DNS tables as messages
come in, so, once discovered, the new service�here a web
page of a printer�can be used via its local IP address or via
a URI usually ending with the .local domain. In this example,
it would be http://evt-bw-brother.local.

� The limitation of mDNS, and of most network-level discov-
ery protocols, is that the network-level information can't be
directly accessed from the web.

(b) Network discovery on the web

59

http://evt-bw-brother.local

� Because HTTP is an Application layer protocol, it doesn't
know a thing about what's underneath�the network proto-
cols used to shu�e HTTP requests around.

� The real question here is why the con�gu- ration and status
of a router is only available through a web page for humans
and not accessible via a REST API. Put simply, why don't
all routers also o�er a secure API where its con�guration can
be seen and changed by others' devices and applications in
your network?

� Providing such an API is easy to do. For example, you can
install an open-source operating system for routers such as
OpenWrt and modify the software to expose the IP addresses
assigned by the DHCP server of the router as a JSON docu-
ment.

� This way, you use the existing HTTP server of your router to
create an API that exposes the IP addresses of all the devices
in your network. This makes sense because almost all net-
worked devices today, from printers to routers, already come
with a web user inter- face. Other devices and applications
can then retrieve the list of IP addresses in the network via
a simple HTTP call (step 2 in �gure 8.3) and then retrieve
the metadata of each device in the network by using their IP
address (step 3 of �gure 8.3).

(c) Resource discovery on the web

� Although network discovery does the job locally, it doesn't
propagate beyond the boundaries of local networks.

� how do we �nd new Things when they connect, how do we
understand the services they o�er, and can we search for the
right Things and their data in composite applications?

� On the web, new resources (pages) are discovered through
hyperlinks. Search engines periodically parse all the pages in
their database to �nd outgoing links to other pages. As soon
as a link to a page not yet indexed is found, that new page is
parsed and added to directory. This process is known as web
crawling.

(d) Crawling

� From the root HTML page of the web Thing, the crawler
can �nd the sub-resources, such as sensors and actuators, by

60

discovering outgoing links and can then create a resource tree
of the web Thing and all its resources. The crawler then uses
the HTTP OPTIONS method to retrieve all verbs supported
for each resource of the web Thing. Finally, the crawler uses
content negotiation to understand which format is available
for each resource.

(e) HATEOAS and web linking

� The simple way of crawling, of basically looping through links
found is a good start, but it also has several limitations. First,
all links are treated equally because there's no notion of the
nature of a link; the link to the user interface and the link to
the actuator resource look the same�they're just URLs.

� Additionally, it requires the web Thing to o�er an HTML
interface, which might be too heavy for resource-constrained
devices. Finally, it also means that a client needs to both
understand HTML and JSON to work with our web Things.

� A better solution for discovering the resources of any REST
API is to use the HATEOAS principle to describe relation-
ships between the various resources of a web Thing.

� A simple method to implement HATEOAS with REST APIs
is to use the mechanism of web linking de�ned in RFC 5988.
The idea is that the response to any HTTP request to a re-
source always contains a set of links to related resources�for
example, the previous, next, or last page that contains the
results of a search. These would be contained in the LINK
header.

� encoding the links as HTTP headers introduces a more gen-
eral framework to de�ne relationships between resources out-
side the representation of the resource�directly at the HTTP
level.

� When doing an HTTP GET on any Web Thing, the response
should include a Link header that contains links to related
resources. In particular, you should be able to get informa-
tion about the device, its resources (API endpoints), and the
documentation of the API using only Link headers.

� The URL of each resource is contained between angle brackets
(<URL>) and the type of the link is denoted by rel="X",
where X is the type of the rela- tion.

61

(f) New HATEOAS rel link things

� REL="MODEL" : This is a link to a Web Thing Model
resource; see section 8.3.1.

� REL="TYPE" : This is a link to a resource that contains
additional metadata about this web Thing.

� REL="HELP" : This relationship type is a link to the docu-
mentation, which means that a GET to devices.webofthings.io/help
would return the documentation for the API in a human-
friendly (HTML) or machine-readable (JSON) format.

� REL="UI" : This relationship type is a link to a graphical
user interface (GUI) for interacting with the web Thing.

4.1.3 Describing web Things

� knowing only the root URL is insu�cient to interact with the Web
Thing API because we still need to solve the sec- ond problem men-
tioned at the beginning of this chapter: how can an application know
which payloads to send to which resources of a web Thing?

� how can we formally describe the API o�ered by any web Thing?

� The simplest solution is to provide a written documentation for the
API of your web Thing so that developers can use it (1 and 2 in �gure
8.4).

� This approach, however, is insu�cient to automatically �nd new de-
vices, understand what they are, and what services they o�er.

� In addition, manual implementation of the payloads is more error-prone
because the developer needs to ensure that all the requests they send
are valid

� By using a unique data model to de�ne formally the API of any web
Thing (the Web Thing Model), we'll have a powerful basis to describe
not only the metadata but also the operations of any web Thing in a
standard way (cases 3 and 4 of �gure 8.4).

� This is the cornerstone of the Web of Things: creating a model to
describe physical Things with the right balance between expressive-
ness�how �exible the model is�and usability� how easy it is to de-
scribe any web Thing with that model.

62

1. Introducing the Web Thing model

� Once we �nd a web Thing and understand its API structure, we
still need a method to describe what that device is and does. In
other words, we need a conceptual model of a web Thing that can
describe the resources of a web Thing using a set of well-known
concepts.

� In the previous chapters, we showed how to organize the resources
of a web Thing using the /sensors and /actuators end points. But
this works only for devices that actually have sensors and actua-
tors, not for complex objects and scenarios that are com- mon in
the real world that can't be mapped to actuators or sensors. To
achieve this, the core model of the Web of Things must be easily
applicable for any entity in the real world, ranging from packages
in a truck, to collectible card games, to orange juice bot- tles.
This section provides exactly such a model, which is called the
Web Thing Model.

(a) Entities

� the Web of Things is composed of web Things.

� A web Thing is a digital representation of a physical object�a
Thing�accessible on the web. Think of it like this: your
Facebook pro�le is a digital representation of yourself, so a
web Thing is the �Facebook pro�le� of a physical object.

� The web Thing is a web resource that can be hosted directly
on the device, if it can connect to the web, or on an inter-
mediate in the network such as a gateway or a cloud service
that bridges non-web devices to the web.

� All web Things should have the following resources:

i. Model�A web Thing always has a set of metadata that
de�nes various aspects about it such as its name, descrip-
tion, or con�gurations.

ii. Properties�A property is a variable of a web Thing.
Properties represent the internal state of a web Thing.
Clients can subscribe to properties to receive a noti�ca-
tion message when speci�c conditions are met; for exam-
ple, the value of one or more properties changed.

iii. Actions�An action is a function o�ered by a web Thing.
Clients can invoke a function on a web Thing by sending

63

an action to the web Thing. Examples of actions are
�open� or �close� for a garage door, �enable� or �disable�
for a smoke alarm, and �scan� or �check in� for a bottle
of soda or a place. The direc- tion of an action is from
the client to the web Thing.

iv. Things�A web Thing can be a gateway to other devices
that don't have an inter- net connection. This resource
contains all the web Things that are proxied by this web
Thing. This is mainly used by clouds or gateways because
they can proxy other devices.

i. Metadata

� In the Web Thing Model, all web Things must have some
associated metadata to describe what they are. This is a
set of basic �elds about a web Thing, including its iden-
ti�ers, name, description, and tags, and also the set of
resources it has, such as the actions and properties. A
GET on the root URL of any web Thing always returns
the metadata using this format, which is JSON by default

ii. Properties

� Web Things can also have properties. A property is a
collection of data values that relate to some aspect of the
web Thing. Typically, you'd use properties to model any
dynamic time series of data that a web Thing exposes,
such as the current and past states of the web Thing or
its sensor values�for example, the temperature or humid-
ity sensor readings.

iii. Actions

� Actions are another important type of resources of a web
Thing because they represent the various commands that
can be sent to that web Thing.

� In theory, you could also use properties to change the
status of a web Thing, but this can be a prob- lem when
both an application and the web Thing itself want to edit
the same property.

� The actions object of the Web Thing Model has an object
called resources, which contains all the types of actions
(commands) supported by this web Thing.

� Actions are sent to a web Thing with a POST to the URL

64

of the action {WT}/actions/{id}, where id is the ID of
the action

iv. Things

� a web Thing can act as a gateway between the web and
devices that aren't connected to the internet. In this
case, the gateway can expose the resources�properties,
actions, and metadata�of those non-web Things using
the web Thing.

� The web Thing then acts as an Application-layer gateway
for those non-web Things as it converts incoming HTTP
requests for the devices into the various protocols or inter-
faces they support natively. For example, if your WoT Pi
has a Bluetooth dongle, it can �nd and bridge Bluetooth
devices nearby and expose them as web Things.

� The resource that contains all the web Things proxied by
a web Thing gateway is {WT}/things, and performing
a GET on that resource will return the list of all web
Things currently available

2. The WoT pie model

� A new tree structure, �tting the discussed model, where the dif-
ferent sensors end up in /properties, setLedState ends up in /ac-
tions, we have no /things and /model is the metadata as well as
all sensor data, their properties, the actions, everything.

� Following the model allows for dynamically creating routes and
such, as all information is maintained in the model of the Thing,
/model, /properties, /actions, /things.

3. Summary

� In this section, we introduced the Web Thing Model, a simple
JSON-based data model for a web Thing and its resources. We
also showed how to implement this model using Node.js and run
it on a Raspberry Pi. We showed that this model is quite easy to
understand and use, and yet is su�ciently �exible to represent all
sorts of devices and products using a set of properties and actions.
The goal is to propose a uniform way to describe web Things and
their capabilities so that any HTTP client can �nd web Things
and interact with them. This is su�cient for most use cases, and

65

this model has all you need to be able to generate user interfaces
for web Things automatically.

4.1.4 The Semantic Web of Things (Ontologies)

� In an ideal world, search engines and any other applications on the web
could also understand the Web Thing Model. Given the root URL of
a web Thing, any applica- tion could retrieve its JSON model and
understand what the web Thing is and how to interact with it.

� The question now is how to expose the Web Thing Model using an
existing web standard so that the resources are described in a way
that means some- thing to other clients. The answer lies in the notion
of the Semantic Web and, more precisely, the notion of linked data
that we introduce in this section.

� Semantic Web refers to an extension of the web that promotes common
data formats to facilitate meaningful data exchange between machines.
Thanks to a set of stan- dards de�ned by the World Wide Web Con-
sortium (W3C), web pages can o�er a stan- dardized way to express
relationships among them so that machines can understand the mean-
ing and content of those pages. In other words, the Semantic Web
makes it easier to �nd, share, reuse, and process information from any
content on the web thanks to a common and extensible data description
and interchange format.

1. Linked Data and RDFa

� The HTML speci�cation alone doesn't de�ne a shared vocabu-
lary that allows you to describe in a standard and non-ambiguous
manner the elements on a page and what they relate to.

(a) Linked Data

� Enter the vision of linked data, which is a set of best practices
for publishing and connecting structured data on the web, so
that web resources can be interlinked in a way that allows
computers to automatically understand the type and data of
each resource.

� This vision has been strongly driven by complex and heavy
standards and tools centered on the Resource Description
Framework (RDF)

66

� Although powerful and expressive, RDF would be overkill for
most simple scenarios, and this is why a simpler method to
structure con- tent on the web is desirable.

� RDFa emerged as a lighter version of RDF that can be em-
bedded into HTML code

� Most search engines can use these annotations to generate
better search listings and make it easier to �nd your websites.

� using RDFa to describe the metadata of a web Thing will
make that web Thing �ndable and search- able by Google.

(b) RFDa

� vocab de�nes the vocabulary used for that element, in this
case the Web of Things Model vocabulary de�ned previously.

� property de�nes the various �elds of the model such as name,
ID, or descrip- tion.

� typeof de�nes the type of those elements in relation to the
vocabulary of the element.

� This allows other applications to parse the HTML represen-
tation of the device and automatically understand which re-
sources are available and how they work.

(c) JSON-LD

� JSON-LD is an interesting and lightweight semantic annota-
tion format for linked data that, unlike RDFa and Microdata,
is based on JSON.29 It's a simple way to semanti- cally aug-
ment JSON documents by adding context information and
hyperlinks for describing the semantics of the di�erent ele-
ments of a JSON objects.

(d) Micro-summary

� This simple example already illustrates the essence of JSON-
LD it gives a context to the content of a JSON docu-
ment. As a consequence, all clients that understand the
http://schema.org/Product context will be able to auto-
matically process this informa- tion in a meaningful way. This
is the case with search engines, for example. Google and Ya-
hoo! process JSON-LD payloads using the Product schema
to render special search results; as soon as it gets indexed,
our Pi will be known by Google and Yahoo! as a Raspberry
Pi product. This means that the more semantic data we add

67

http://schema.org/Product

to our Pi, the more �ndable it will become. As an example,
try adding a location to your Pi using the Place schema,33
and it will eventually become �ndable by location.

We could also use this approach to create more speci�c schemas
on top of the Web Thing Model; for instance, an agreed-upon
schema for the data and functions a wash- ing machine or smart
lock o�ers. This would facilitate discovery and enable automatic
integration with more and more web clients.

4.1.5 Summary

� The ability to �nd nearby devices and services is essential in the Web of
Things and is known as the bootstrap problem. Several protocols can
help in discover- ing the root URL of Things, such as mDNS/Bonjour,
QR codes or NFC tags.

� The last step of the web Things design process, resource linking design
(also known as HATEOAS in REST terms), can be implemented using
the web linking mechanism in HTTP headers.

� Beyond �nding the root URL and sub-resources, client applications also
need a mechanism to discover and understand what data or services a
web Thing o�ers.

� The services of Things can be modeled as properties (variables), ac-
tions (func- tions), and links. The Web Thing Model o�ers a simple,
�exible, fully web-com- patible, and extensible data model to describe
the details of any web Thing. This model is simple to adapt for your
devices and easy to use for your products and applications.

� The Web Thing Model can be extended with more speci�c semantic
descriptions such as those based on JSON-LD and available from the
Schema.org repository.

4.2 Chapter 9

� In most cases, Internet of Things deployments involve a group of de-
vices that com- municate with each other or with various applications
within closed networks� rarely over open networks such as the inter-
net. It would be fair to call such deploy- ments the �intranets of Things�
because they're essentially isolated, private net- works that only a few
entities can access. But the real power of the Web of Things lies in

68

opening up these lonely silos and facilitating interconnection between
devices and applications at a large scale.

� when it comes to public data such as data.gov initiatives, real-time
tra�c/weather/pollution conditions in a city, or a group of sensors
deployed in a jungle or a volcano, it would be great to ensure that the
general public or researchers anywhere in the world could access that
data. This would enable anyone to create new innovative applications
with it and possibly gener- ate substantial economic, environmental,
and social value.

� How to share this data in secure and �exible way is what Layer 3
provides,

� The Share layer of the Web of Things. This layer focuses on how
devices and their resources must be secured so that they can only be
accessed by authorized users and applications.

� First, we'll show how Layer 3 of the WoT architecture covers the secu-
rity of Things: how to ensure that only authorized parties can access
a given resource. Then we'll show how to use existing trusted systems
to allow sharing physical resources via the web.

4.2.1 Securing Things

� Ultimately, every security breach hurts the entire web because it erodes
the overall trust of users in technology.

� Security in the Web of Things is even more critical than in the web.
Because web Things are physical objects that will be deployed every-
where in the real world, the risks associated with IoT attacks can be
catastrophic.

� Digitally augmented devices allow collecting �ne-grained information
about people, when they took their last insulin shot, their last jog and
where they ran. It can also be used to remote control cars, houses and
the like.

� the majority of IoT solutions don't comply with even the most basic se-
curity best practices; think clear-text passwords and communications,
invalid certi�cates, old software versions with exploitable bugs, and so
on.

69

1. Securing the IoT has three major problems

� First, we must consider how to encrypt the communications be-
tween two enti- ties (for example, between an app and a web
Thing) so that a malicious inter- ceptor�a �man in the mid-
dle��can't access the data being transmitted in clear text. This
is referred to as securing the channel

� Second, we must �nd a way to ensure that when a client talks to
a host, it can ensure that the host is really �himself�

� Third, we must ensure that the correct access control is in place.
We need to set up a method to control which user can access what
resource of what server or Thing and when and then to ensure that
the user is really who they claim to be.

2. Encryption 101

� encryption is an essential ingredient for any secure system.

� Without encryption, any attempt to secure a Thing will be in vain
because attackers can sni� the communication and understand the
security mechanisms that were put in place.

(a) Symmetric Encryption

� The oldest form of encoding a message is symmetric encryp-
tion. The idea is that the sender and receiver share a secret
key that can be used to both encode and decode a message
in a speci�c way

(b) Assymetric Encryption

� another method called asymmetric encryption has become
popular because it doesn't require a secret to be shared be-
tween parties. This method uses two related keys, one public
and the other private (secret)

3. Web Security with TLS: The S of HTTPS

� Fortunately , there are standard protocols for securely encrypting
data between clients and servers on the web.

� The best known protocol for this is Secure Sockets Layer (SSL)

� SSL 3.0 has a lot of vulnerabilities (Heartbleed and the like).
These events inked the death of this proto- col, which was replaced
by the much more secure but conceptually similar Transport Layer
Security (TLS)

70

(a) TLS 101

� Despite its name, TLS is an Application layer protocol (see
chapter 5). TLS not only secures HTTP (HTTPS) commu-
nication but is also the basis of secure WebSocket (WSS) and
secure MQTT (MQTTS)

� First, it helps the client ensure that the server is who it says it
is; this is the SSL/TLS authentication. Second, it guarantees
that the data sent over the communication channel can't be
read by any- one other than the client and the server involved
in the transaction (also known as SSL/TLS encryption).

� The client, such as a mobile app, tells the server, such as
a web Thing, which protocols and encryption algorithms it
supports. This is somewhat similar to the content negotiation
process we described in chapter 6.

� The server sends the public part of its certi�cate to the
client. The goal here is for the client to make sure it knows
who the server is. All web clients have a list of certi�cates
they trust.12 In the case of your Pi, you can �nd them in
/etc/ssl/certs. SSL certi�cates form a trust chain, meaning
that if a client doesn't trust certi�cate S1 that the server
sends back, but it trusts certi�cate S2 that was used to sign
S1, the web client can accept S1 as well.

� The rest of the process generates a key from the public certi�-
cates. This key is then used to encrypt the data going back
and forth between the server and the client in a secure man-
ner. Because this process is dynamic, only the client and the
server know how to decrypt the data they exchange during
this session. This means the data is now securely encrypted:
if an attacker manages to capture data packets, they will re-
main meaningless.

(b) Beyond Self-signed certi�cates

� Clearly, having to deal with all these security exceptions isn't
nice, but these excep- tions exist for a reason: to warn clients
that part of the security usually covered by SSL/ TLS can't be
guaranteed with the certi�cate you generated. Basically, al-
though the encryption of messages will work with a self-signed
certi�cate (the one you created with the previous command),
the authenticity of the server (the Pi) can't be guaran- teed.
In consequence, the chain of trust is broken�problem 2

71

� In an IoT context, this means that attackers could pretend
to be the Thing you think you're talk- ing to.

� The common way to generate certi�cates that guarantee
the authenticity of the server is to get them from a well-
known and trusted certi�cate authority (CA). There exists
an amount of these; LetsEncrypt, Symantec and GeoTrust.

4.2.2 Authentication and access control

� Once we encrypt the communication between Things and clients as
shown in the pre- vious section, we want to enable only some applica-
tions to access it.

� First, this means that the Things�or a gateway to which Things are
connected�need to be able to know the sender of each request (iden-
ti�cation).

� Second, devices need to trust that the sender really is who they claim
to be (authentication)

� Third, the devices also need to know if they should accept or reject each
request depending on the identity of this sender and which request has
been sent (authorization).

1. Access control with REST and API tokens

� Server-based authentication is used when we use our user-
name/password to log into a website, we initiate a secure ses-
sion with the server that's stored for a limited time in the server
application's memory or in a local browser cookie.

� server-based authentication is usually stateful because the state
of the client is stored on the server. But as you saw in chapter 6,
HTTP is a stateless protocol; therefore, using a server-based au-
thentication method goes against this principle and poses certain
problems. First, the performance and scalability of the overall
systems are limited because each session must be stored in mem-
ory and over- head increases when there are many authenticated
users. Second, this authentication method poses certain security
risks�for example, cross-site request forgery.

� alternative method called token-based authentication has become
popular and is used by most web APIs.

72

� Because this token is added to the headers or query parameters
of each HTTP request sent to the server, all interactions remain
stateless.

� API tokens shouldn't be valid forever. API tokens, just like pass-
words, should change regularly.

2. OAuth: a web authorization framework

� OAuth is an open standard for authorization and is essentially a
mechanism for a web or mobile app to delegate the authentication
of a user to a third-party trusted service; for example, Facebook,
LinkedIn, or Google.

� OAuth dynamically generates access tokens using only web pro-
tocols.

� OUath allows sharing resources and token sharing between appli-
cations.

� In short, OAuth standardizes how to authenticate users, generate
tokens with an expiration date, regenerate tokens, and provide
access to resources in a secure and standard manner over the
web.

� At the end of the token exchange process, the application will
know who the user is and will be able to access resources on the
resource server on behalf of the user. The application can then
also renew the token before it expires using an optional refresh
token or by running the authorization process again.

� OAuth delegated authentication and access �ow. The applica-
tion asks the user if they want to give it access to resources on a
third-party trusted service (resource server). If the user accepts,
an authorization grant code is generated. This code can be ex-
changed for an access token with the authorization server. To
make sure the authorization server knows the application, the ap-
plication has to send an app ID and app secret along with the
authorization grant code. The access token can then be used to
access protected resources within a certain scope from the resource
server.

� Implementing an OAuth server on a Linux-based embedded device
such as the Pi or the Intel Edison isn't hard because the protocol
isn't really heavy. But maintaining the list of all applications,

73

users, and their access scope on each Thing is clearly not going
to work and scale for the IoT.

(a) OAuth Roles

� A typical OAuth scenario involves four roles

i. A resource owner�This is the user who wants to autho-
rize an application to access one of their trusted accounts;
for example, your Facebook account.

ii. The resource server�Is the server providing access to the
resources the user wants to share? In essence, this is a
web API accepting OAuth tokens as credentials.

iii. The authorization server�This is the OAuth server man-
aging authorizations to

access the resources. It's a web server o�ering an OAuth API
to authenticate and authorize users. In some cases, the resource
server and the authorization server can be the same, such as in
the case of Facebook.

i. The application�This is the web or mobile application that
wants to access the resources of the user. To keep the trust
chain, the application has to be known by the authorization
server in advance and has to authenticate itself using a secret
token, which is an API key known only by the authorization
server and the application.

4.2.3 The Social Web of Things

� Using OAuth to manage access control to Things is tempting, but not
if each Thing has to maintain its own list of users and application.
This is where the gateway integration pattern can be used.

� use the notion of delegated authentication o�ered by OAuth, which
allows you to use the accounts you already have with OAuth providers
you trust, such as Facebook, Twitter, or LinkedIn.

� The Social Web of Things is usually what covers the sharing of access
to devices via existing social network relationships.

1. A Social Web of Things authentication proxy

74

� The idea of the Social Web of Things is to create an authentication
proxy that controls access to all Things it proxies by identifying
users of client applications using trusted third-party services.

� Again, we have four actors: a Thing, a user using a client appli-
cation, an authenti- cation proxy, and a social network (or any
other service with an OAuth server). The client app can use the
authentication proxy and the social network to access resources
on the Thing. This concept can be implemented in three phases:

(a) The �rst phase is the Thing proxy trust. The goal here is
to ensure that the proxy can access resources on the Thing
securely. If the Thing is protected by an API token (device
token), it could be as simple as storing this token on the
proxy. If the Thing is also an OAuth server, this step follows
an OAuth authentication �ow, as shown in �gure 9.6. Re-
gardless of the method used to authenticate, after this phase
the auth proxy has a secret that lets it access the resources
of the Thing.

(b) The second phase is the delegated authentication step. Here,
the user in the client app authenticates via an OAuth au-
thorization server as in �gure 9.6. The authentication proxy
uses the access token returned by the authorization server to
identify the user of the client app and checks to see if the user
is authorized to access the Thing. If so, the proxy returns the
access token or generates a new one to the client app.

(c) The last phase is the proxied access step. Once the client app
has a token, it can use it to access the resources of the Thing
through the authentication proxy. If the token is valid, the
authentication proxy will forward the request to the Thing
using the secret (device token) it got in phase 1 and send the
response back to the client app.

� All communication is encrypted using TLS

� Social Web of Things authentication proxy: the auth proxy �rst
establishes a secret with the Thing over a secure channel. Then,
a client app requests access to a resource via the auth proxy. It
authenticates itself via an OAuth server (here Facebook) and gets
back an access token. This token is then used to access resources
on the Thing via the auth proxy. For instance, the /temp resource
is requested by the client app and given access via the auth proxy

75

forwarding the request to the Thing and relaying the response to
the client app.

2. Leveraging Social Networks

� This is the very idea of the Social Web of Things: instead of
creating abstract access control lists, we can reuse existing social
structures as a basis for sharing our Things. Because social net-
works increasingly re�ect our social relationships, we can reuse
that knowledge to share access to our Things with friends via
Facebook, or work colleagues via LinkedIn.

3. Implementing Access Control Lists

� In essence, you need to create an access control list (ACL). There
are various ways to implement ACLs, such as by storing them in
the local database.

4. Proxying Resources of Things

� Finally, you need to implement the actual proxying: once a re-
quest is deemed valid by the middleware, you need to contact the
Thing that serves this resource and proxy the results back to the
client.

4.2.4 Beyond book

� But just as HTTP might be too heavy for resource-limited devices,
security pro- tocols such as TLS and their underlying cypher suites
are too heavy for the most resource-constrained devices. This is why
lighter-weight versions of TLS are being developed, such as DTLS,26
which is similar to TLS but runs on top of UDP instead of TCP and
also has a smaller memory footprint

� device democracy.27 In this model, devices become more autonomous
and favor peer-to-peer interactions over centralized cloud services. Se-
curity is ensured using a blockchain mechanism: similar to the way
bitcoin transactions are validated by a number of independent parties
in the bitcoin network, devices could all participate in making the IoT
secure.

76

4.2.5 Summary

� You must cover four basic principles to secure IoT systems: encrypted
commu- nication, server authentication, client authentication, and ac-
cess control.

� Encrypted communication ensures attackers can't read the content of
mes- sages. It uses encryption mechanisms based on symmetric or
asymmetric keys.

� You should use TLS to encrypt messages on the web. TLS is based on
asymmetric keys: a public key and a private server key.

� Server authentication ensures attackers can't pretend to be the server.
On the web, this is achieved by using SSL (TLS) certi�cates. The de-
livery of these certif- icates is controlled through a chain of trust where
only trusted parties called certi�cate authorities can deliver certi�cates
to identify web servers.

� Instead of buying certi�cates from a trusted third party, you can create
self- signed TLS certi�cates on a Raspberry Pi. The drawback is that
web browsers will �ag the communication as unsecure because they
don't have the CA certi�- cate in their trust store.

� You can achieve client authentication using simple API tokens. Tokens
should rotate on a regular basis and should be generated using crypto
secure random algorithms so that their sequence can't be guessed.

� The OAuth protocol can be used to generate API tokens in a dynamic,
standard, and secure manner and is supported by many embedded
Linux devices such as the Raspberry Pi.

� The delegated authentication mechanism of OAuth relies on other
OAuth pro- viders to authenticate users and create API tokens. As
an example, a user of a Thing can be identi�ed using Facebook via
OAuth.

� You can implement access control for Things to re�ect your social
contacts by creating an authentication proxy using OAuth for clients'
authentication and contacts from social networks.

77

	Structured P2P Networks
	Chord
	Introduction
	System Model
	The Base Chord Protocol
	Concurrenct operations and failures
	Simulations and Experimental Results
	Conclusion

	Pastry
	Introduction
	Design of Pastry
	Conclusion

	Kademlia
	Abstract
	Introduction
	System Description
	Implementation Notes
	Summary

	Bouvin notes

	Mobile Ad-hoc Networks and Wireless Sensor Networks
	Routing in Mobile Ad-hoc Networks
	Introduction
	Basic Routing Protocols
	MANET Routing

	Energy Efficient MANET Routing
	Introduction to energy efficient routing
	The power-control approach
	Power-save approach

	Accessing and Developing WoT
	Chapter 6
	REST STUFF
	EVENT STUFF
	SUMMARY

	Chapter 7
	Connecting to the web
	Five step process
	Summary

	Discovery and Security for the Web of Things
	Chapter 8
	Findability problem
	Discovering Things
	Describing web Things
	The Semantic Web of Things (Ontologies)
	Summary

	Chapter 9
	Securing Things
	Authentication and access control
	The Social Web of Things
	Beyond book
	Summary

