backgammon/bot.py

53 lines
1.5 KiB
Python

from cup import Cup
import tensorflow as tf
from network import Network
import numpy as np
from board import Board
import random
class Bot:
def __init__(self, sym):
self.cup = Cup()
self.sym = sym
self.graph = tf.Graph()
with self.graph.as_default():
self.session = tf.Session()
self.network = Network(self.session)
self.network.restore_model()
def roll(self):
print("{} rolled: ".format(self.sym))
roll = self.cup.roll()
# print(roll)
return roll
def switch(self,cur):
return -1 if cur == 1 else 1
def restore_model(self):
with self.graph.as_default():
self.network.restore_model()
def get_session(self):
return self.session
def get_sym(self):
return self.sym
def get_network(self):
return self.network
def make_move(self, board, sym, roll):
# print(Board.pretty(board))
legal_moves = Board.calculate_legal_states(board, sym, roll)
moves_and_scores = [ (move, self.network.eval_state(np.array(move).reshape(1,26))) for move in legal_moves ]
scores = [ x[1] for x in moves_and_scores ]
best_move_pair = moves_and_scores[np.array(scores).argmax()]
#print("Found the best state, being:", np.array(move_scores).argmax())
return best_move_pair
# return random.choice(list(legal_moves))