42 lines
759 B
Python
42 lines
759 B
Python
import time
|
|
import numpy as np
|
|
import tensorflow as tf
|
|
|
|
tf.enable_eager_execution()
|
|
|
|
|
|
|
|
output_size = 1
|
|
hidden_size = 40
|
|
input_size = 30
|
|
|
|
|
|
|
|
model = tf.keras.Sequential([
|
|
tf.keras.layers.Dense(40, activation="sigmoid", input_shape=(1,30)),
|
|
tf.keras.layers.Dense(1, activation="sigmoid")
|
|
])
|
|
|
|
input = [0, 2, 0, 0, 0, 0, -5, 0, -3, 0, 0, 0, 5, -5, 0, 0, 0, 3, 0, 5, 0, 0, 0, 0, -2, 0, 0, 0, 1, 0]
|
|
|
|
all_input = np.array([input for _ in range(8500)])
|
|
|
|
single_in = np.array(input).reshape(1,-1)
|
|
|
|
|
|
start = time.time()
|
|
|
|
all_predictions = model.predict_on_batch(all_input)
|
|
|
|
print(all_predictions)
|
|
print(time.time() - start)
|
|
|
|
|
|
|
|
start = time.time()
|
|
all_predictions = [model(single_in) for _ in range(8500)]
|
|
|
|
print(all_predictions[:10])
|
|
print(time.time() - start)
|
|
|