from network import Network import tensorflow as tf import random import numpy as np from board import Board import main config = main.config.copy() config['model'] = "tesauro_blah" config['force_creation'] = True network = Network(config, config['model']) session = tf.Session() session.run(tf.global_variables_initializer()) network.restore_model(session) initial_state = Board.initial_state initial_state_1 = ( 0, 0, 0, 0, 2, 0, -5, 0, -3, 0, 0, 0, 0, -5, 0, 0, 0, 3, 5, 0, 0, 0, 0, 5, -2, 0 ) initial_state_2 = ( 0, -5, -5, -3, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 15, 0, 0, 0, 0, 0, 0, 0, 0, 0 ) boards = {initial_state, initial_state_1, initial_state_2 } print("-"*30) print(network.do_ply(session, boards, 1)) print(" "*10 + "network_test") print(" "*20 + "Depth 1") print(network.n_ply(1, session, boards, 1)) print(" "*20 + "Depth 2") print(network.n_ply(2, session, boards, 1)) # #print(x.shape) # with graph_lol.as_default(): # session_2 = tf.Session(graph = graph_lol) # network_2 = Network(session_2) # network_2.restore_model() # print(network_2.eval_state(initial_state)) # print(network.eval_state(initial_state))