from network import Network import tensorflow as tf import random import numpy as np from board import Board import main config = main.config.copy() config['model'] = "eager_testings" config['force_creation'] = True config['board_representation'] = 'quack-fat' network = Network(config, config['model']) network.restore_model() initial_state = Board.initial_state initial_state_1 = ( 0, 0, 0, 0, 2, 0, -5, 0, -3, 0, 0, 0, 0, -5, 0, 0, 0, 3, 5, 0, 0, 0, 0, 5, -2, 0 ) initial_state_2 = ( 0, -5, -5, -3, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 15, 0, 0, 0, 0, 0, 0, 0, 0, 0 ) boards = {initial_state, initial_state_1, initial_state_2 } board = network.board_trans_func(Board.initial_state, 1) pair = network.make_move(Board.initial_state, [3,2], 1) print(pair[1]) network.do_backprop(board, 0.9) network.print_variables() network.save_model(2) print(network.calculate_1_ply(Board.initial_state, [3,2], 1))