Compare commits
59 Commits
non-eager-
...
master
Author | SHA1 | Date | |
---|---|---|---|
ea4efc5a2b | |||
26c0b469eb | |||
f170bad9b1 | |||
6e061171da | |||
40c228ef01 | |||
c2c6c89e9f | |||
b7708b3675 | |||
bad870c27a | |||
653d6e30a8 | |||
7e51b44e33 | |||
1fd6c35baa | |||
d426c1c3b5 | |||
5ab144cffc | |||
cef8e54709 | |||
2efbc446f2 | |||
c54f7aca24 | |||
c31bc39780 | |||
6133cb439f | |||
5acd79b6da | |||
|
b11e783b30 | ||
f834b10e02 | |||
72f01a2a2d | |||
d14e6c5994 | |||
a266293ecd | |||
e9a46c79df | |||
816cdfae00 | |||
ff9664eb38 | |||
3e379b40c4 | |||
90fad334b9 | |||
a77c13a0a4 | |||
260c32d909 | |||
00974b0f11 | |||
2c02689577 | |||
926a331df0 | |||
d932663519 | |||
2312c9cb2a | |||
9f1bd56c0a | |||
ba4ef86bb5 | |||
c3f5e909d6 | |||
1aa9cf705f | |||
383dd7aa4b | |||
93188fe06b | |||
ffbc98e1a2 | |||
03e61a59cf | |||
93224864a4 | |||
504308a9af | |||
3b57c10b5a | |||
4fa10861bb | |||
6131d5b5f4 | |||
1aedc23de1 | |||
2d84cd5a0b | |||
396d5b036d | |||
4efb229d34 | |||
f2a67ca92e | |||
9cfdd7e2b2 | |||
6429e0732c | |||
cb7e7b519c | |||
9a2d87516e | |||
7b308be4e2 |
141
app.py
Normal file
141
app.py
Normal file
|
@ -0,0 +1,141 @@
|
|||
from flask import Flask, request, jsonify
|
||||
from flask_json import FlaskJSON, as_json_p
|
||||
from flask_cors import CORS
|
||||
from board import Board
|
||||
from eval import Eval
|
||||
import main
|
||||
import random
|
||||
from network import Network
|
||||
|
||||
app = Flask(__name__)
|
||||
|
||||
|
||||
app.config['JSON_ADD_STATUS'] = False
|
||||
app.config['JSON_JSONP_OPTIONAL'] = False
|
||||
|
||||
json = FlaskJSON(app)
|
||||
CORS(app)
|
||||
|
||||
config = main.config.copy()
|
||||
config['model'] = "player_testings"
|
||||
config['ply'] = "0"
|
||||
config['board_representation'] = 'tesauro'
|
||||
network = Network(config, config['model'])
|
||||
|
||||
network.restore_model()
|
||||
|
||||
|
||||
def calc_move_sets(from_board, roll, player):
|
||||
board = from_board
|
||||
sets = []
|
||||
total = 0
|
||||
for r in roll:
|
||||
# print("Value of r:", r)
|
||||
sets.append([Board.calculate_legal_states(board, player, [r, 0]), r])
|
||||
total += r
|
||||
sets.append([Board.calculate_legal_states(board, player, roll), total])
|
||||
return sets
|
||||
|
||||
|
||||
def tmp_name(from_board, to_board, roll, player, total_moves, is_quad=False):
|
||||
sets = calc_move_sets(from_board, roll, player)
|
||||
return_board = from_board
|
||||
print("To board:\n",to_board)
|
||||
print("All sets:\n",sets)
|
||||
for idx, board_set in enumerate(sets):
|
||||
board_set[0] = list(board_set[0])
|
||||
# print(to_board)
|
||||
# print(board_set)
|
||||
if to_board in board_set[0]:
|
||||
# print("To board:", to_board)
|
||||
# print(board_set[0])
|
||||
# print(board_set[1])
|
||||
total_moves -= board_set[1]
|
||||
# if it's not the sum of the moves
|
||||
if idx < (4 if is_quad else 2):
|
||||
roll[idx] = 0
|
||||
else:
|
||||
roll = [0, 0]
|
||||
return_board = to_board
|
||||
break
|
||||
|
||||
# print("Return board!:\n",return_board)
|
||||
return total_moves, roll, return_board
|
||||
|
||||
def calc_move_stuff(from_board, to_board, roll, player, total_roll, is_quad):
|
||||
|
||||
total_moves, roll, board = tmp_name(from_board, to_board, list(roll), player, total_roll, is_quad)
|
||||
return board, total_moves, roll
|
||||
|
||||
|
||||
@app.route('/get_board', methods=['GET'])
|
||||
@as_json_p
|
||||
def get_board():
|
||||
return {'board':'0, 2, 0, 0, 0, 0, -5, 0, -3, 0, 0, 0, 5, -5, 0, 0, 0, 3, 0, 5, 0, 0, 0, 0, -2, 0'}
|
||||
|
||||
|
||||
|
||||
def check_move(prev, curr):
|
||||
|
||||
# TODO: Decide on player system and implement roll properly
|
||||
legal_states = Board.calculate_legal_states(tuple(prev), -1, [1,2])
|
||||
|
||||
truth_list = [list(curr) == list(ele) for ele in legal_states]
|
||||
|
||||
return any(truth_list)
|
||||
|
||||
|
||||
|
||||
@app.route('/bot_move', methods=['POST'])
|
||||
def bot_move():
|
||||
data = request.get_json(force=True)
|
||||
|
||||
board = [int(x) for x in data['board'].split(',')]
|
||||
use_pubeval = bool(data['pubeval'])
|
||||
|
||||
roll = (random.randrange(1, 7), random.randrange(1, 7))
|
||||
|
||||
if use_pubeval:
|
||||
board, value = Eval.make_pubeval_move(tuple(board), 1, roll)
|
||||
else:
|
||||
board, _ = network.make_move(tuple(board), roll, 1)
|
||||
|
||||
# print("Board!:",board)
|
||||
|
||||
return ",".join([str(x) for x in list(board)])
|
||||
|
||||
|
||||
|
||||
@app.route('/post_board', methods=['POST'])
|
||||
def post_board():
|
||||
data = request.get_json(force=True)
|
||||
|
||||
# TODO: Fix hardcoded player
|
||||
player = -1
|
||||
|
||||
board = [int(x) for x in data['board'].split(',')]
|
||||
prev_board = [int(x) for x in data['prevBoard'].split(',')]
|
||||
print(data['roll'])
|
||||
roll = [int(x) for x in data['roll'].split(',')]
|
||||
print(roll)
|
||||
quad = data['quad'] == "true"
|
||||
|
||||
|
||||
# print(board)
|
||||
|
||||
total_roll = int(data['totalRoll'])
|
||||
print("total roll is:", total_roll)
|
||||
return_board, total_moves, roll = calc_move_stuff(tuple(prev_board), tuple(board), tuple(roll), player, total_roll, quad)
|
||||
|
||||
str_board = ",".join([str(x) for x in return_board])
|
||||
str_roll = ",".join([str(x) for x in roll])
|
||||
|
||||
|
||||
return_string = str_board + "#" + str(total_moves) + "#" + str_roll
|
||||
|
||||
print(return_string)
|
||||
|
||||
return return_string
|
||||
|
||||
if __name__ == '__main__':
|
||||
app.run(host = '0.0.0.0', port=35270)
|
78
bin/0-ply-tests.rb
Normal file
78
bin/0-ply-tests.rb
Normal file
|
@ -0,0 +1,78 @@
|
|||
def run_stuff(board_rep, model_name, ply)
|
||||
epi_count = 0
|
||||
system("python3 main.py --train --model #{model_name} --board-rep #{board_rep} --episodes 1 --ply #{ply}")
|
||||
while epi_count < 200000 do
|
||||
system("python3 main.py --eval --model #{model_name} --eval-methods dumbeval --episodes 250 --ply #{ply} --repeat-eval 3")
|
||||
system("python3 main.py --eval --model #{model_name} --eval-methods pubeval --episodes 250 --ply #{ply} --repeat-eval 3")
|
||||
system("python3 main.py --train --model #{model_name} --episodes 2000 --ply #{ply}")
|
||||
epi_count += 2000
|
||||
end
|
||||
end
|
||||
|
||||
|
||||
### ///////////////////////////////////////////////////////////////
|
||||
# QUACK TESTINGS
|
||||
### ///////////////////////////////////////////////////////////////
|
||||
|
||||
board_rep = "quack"
|
||||
model_name = "quack_test_0_ply"
|
||||
ply = 0
|
||||
|
||||
run_stuff(board_rep, model_name, ply)
|
||||
|
||||
|
||||
# board_rep = "quack"
|
||||
# model_name = "quack_test_1_ply"
|
||||
# ply = 1
|
||||
|
||||
# run_stuff(board_rep, model_name, ply)
|
||||
|
||||
### ///////////////////////////////////////////////////////////////
|
||||
# QUACK-FAT TESTING
|
||||
### ///////////////////////////////////////////////////////////////
|
||||
|
||||
board_rep = "quack-fat"
|
||||
model_name = "quack-fat_test_0_ply"
|
||||
ply = 0
|
||||
|
||||
run_stuff(board_rep, model_name, ply)
|
||||
|
||||
# board_rep = "quack-fat"
|
||||
# model_name = "quack-fat_test_1_ply"
|
||||
# ply = 1
|
||||
|
||||
# run_stuff(board_rep, model_name, ply)
|
||||
|
||||
### ///////////////////////////////////////////////////////////////
|
||||
# QUACK-NORM TESTING
|
||||
### ///////////////////////////////////////////////////////////////
|
||||
|
||||
|
||||
board_rep = "quack-norm"
|
||||
model_name = "quack-norm_test_0_ply"
|
||||
ply = 0
|
||||
|
||||
run_stuff(board_rep, model_name, ply)
|
||||
|
||||
# board_rep = "quack-norm"
|
||||
# model_name = "quack-norm_test_1_ply"
|
||||
# ply = 1
|
||||
|
||||
# run_stuff(board_rep, model_name, ply)
|
||||
|
||||
### ///////////////////////////////////////////////////////////////
|
||||
# TESAURO TESTING
|
||||
### ///////////////////////////////////////////////////////////////
|
||||
|
||||
|
||||
board_rep = "tesauro"
|
||||
model_name = "tesauro_test_0_ply"
|
||||
ply = 0
|
||||
|
||||
run_stuff(board_rep, model_name, ply)
|
||||
|
||||
# board_rep = "tesauro"
|
||||
# model_name = "tesauro_test_1_ply"
|
||||
# ply = 1
|
||||
|
||||
# run_stuff(board_rep, model_name, ply)
|
|
@ -1,30 +1,30 @@
|
|||
#!/usr/bin/env ruby
|
||||
MODELS_DIR = 'models'
|
||||
|
||||
def save(model_name)
|
||||
require 'date'
|
||||
|
||||
models_dir = 'models'
|
||||
model_path = File.join(models_dir, model_name)
|
||||
if not File.exists? model_path then
|
||||
return false
|
||||
end
|
||||
model_path = File.join(MODELS_DIR, model_name)
|
||||
|
||||
episode_count = (File.read File.join(model_path, 'episodes_trained')).to_i
|
||||
|
||||
puts "Found model #{model_name} with episodes #{episode_count} trained!"
|
||||
|
||||
file_name = "model-#{model_name}-#{episode_count}-#{Time.now.strftime('%Y%m%d-%H%M%S')}.tar.gz"
|
||||
save_path = File.join(models_dir, 'saves', file_name)
|
||||
save_path = File.join(MODELS_DIR, 'saves', file_name)
|
||||
puts "Saving to #{save_path}"
|
||||
|
||||
system("tar", "-cvzf", save_path, "-C", models_dir, model_name)
|
||||
|
||||
return true
|
||||
system("tar", "-cvzf", save_path, "-C", MODELS_DIR, model_name)
|
||||
end
|
||||
|
||||
def train(model, episodes)
|
||||
system("python3", "main.py", "--train", "--model", model, "--episodes", episodes.to_s)
|
||||
end
|
||||
|
||||
def force_train(model, episodes)
|
||||
system("python3", "main.py", "--train", "--force-creation", "--model", model, "--episodes", episodes.to_s)
|
||||
end
|
||||
|
||||
def evaluate(model, episodes, method)
|
||||
system("python3", "main.py", "--eval" , "--model", model, "--episodes", episodes.to_s, "--eval-methods", method)
|
||||
end
|
||||
|
@ -33,11 +33,9 @@ model = ARGV[0]
|
|||
|
||||
if model.nil? then raise "no model specified" end
|
||||
|
||||
while true do
|
||||
if not File.exists? File.join(MODELS_DIR, model) then
|
||||
force_train model, 10
|
||||
save model
|
||||
train model, 1000
|
||||
save model
|
||||
train model, 1000
|
||||
3.times do
|
||||
evaluate model, 250, "pubeval"
|
||||
end
|
||||
|
@ -45,3 +43,27 @@ while true do
|
|||
evaluate model, 250, "dumbeval"
|
||||
end
|
||||
end
|
||||
|
||||
# while true do
|
||||
# save model
|
||||
# train model, 1000
|
||||
# save model
|
||||
# train model, 1000
|
||||
# 3.times do
|
||||
# evaluate model, 250, "pubeval"
|
||||
# end
|
||||
# 3.times do
|
||||
# evaluate model, 250, "dumbeval"
|
||||
# end
|
||||
# end
|
||||
|
||||
while true do
|
||||
save model
|
||||
train model, 500
|
||||
5.times do
|
||||
evaluate model, 250, "pubeval"
|
||||
end
|
||||
5.times do
|
||||
evaluate model, 250, "dumbeval"
|
||||
end
|
||||
end
|
||||
|
|
84
bot.py
84
bot.py
|
@ -1,24 +1,8 @@
|
|||
from cup import Cup
|
||||
from network import Network
|
||||
from board import Board
|
||||
|
||||
import tensorflow as tf
|
||||
import numpy as np
|
||||
import random
|
||||
|
||||
class Bot:
|
||||
def __init__(self, sym, config = None, name = "unnamed"):
|
||||
self.config = config
|
||||
self.cup = Cup()
|
||||
def __init__(self, sym):
|
||||
self.sym = sym
|
||||
self.graph = tf.Graph()
|
||||
|
||||
self.network = Network(config, name)
|
||||
self.network.restore_model()
|
||||
|
||||
def restore_model(self):
|
||||
with self.graph.as_default():
|
||||
self.network.restore_model()
|
||||
|
||||
def get_session(self):
|
||||
return self.session
|
||||
|
@ -26,16 +10,60 @@ class Bot:
|
|||
def get_sym(self):
|
||||
return self.sym
|
||||
|
||||
def get_network(self):
|
||||
return self.network
|
||||
|
||||
# TODO: DEPRECATE
|
||||
def make_move(self, board, sym, roll):
|
||||
# print(Board.pretty(board))
|
||||
legal_moves = Board.calculate_legal_states(board, sym, roll)
|
||||
moves_and_scores = [ (move, self.network.eval_state(np.array(move).reshape(1,26))) for move in legal_moves ]
|
||||
scores = [ x[1] for x in moves_and_scores ]
|
||||
best_move_pair = moves_and_scores[np.array(scores).argmax()]
|
||||
#print("Found the best state, being:", np.array(move_scores).argmax())
|
||||
return best_move_pair
|
||||
def calc_move_sets(self, from_board, roll, player):
|
||||
board = from_board
|
||||
sets = []
|
||||
total = 0
|
||||
print("board!:",board)
|
||||
for r in roll:
|
||||
# print("Value of r:",r)
|
||||
sets.append([Board.calculate_legal_states(board, player, [r,0]), r])
|
||||
total += r
|
||||
sets.append([Board.calculate_legal_states(board, player, [total,0]), total])
|
||||
return sets
|
||||
|
||||
|
||||
def handle_move(self, from_board, to_board, roll, player):
|
||||
|
||||
# print("Cur board:",board)
|
||||
sets = self.calc_move_sets(from_board, roll, player)
|
||||
for idx, board_set in enumerate(sets):
|
||||
board_set[0] = list(board_set[0])
|
||||
# print("My board_set:",board_set)
|
||||
if to_board in [list(c) for c in board_set[0]]:
|
||||
self.total_moves -= board_set[1]
|
||||
if idx < 2:
|
||||
# print("Roll object:",self.roll)
|
||||
self.roll[idx] = 0
|
||||
else:
|
||||
self.roll = [0,0]
|
||||
break
|
||||
print("Total moves left:",self.total_moves)
|
||||
|
||||
|
||||
def tmp_name(self, from_board, to_board, roll, player, total_moves):
|
||||
sets = self.calc_move_sets(from_board, roll, player)
|
||||
return_board = from_board
|
||||
for idx, board_set in enumerate(sets):
|
||||
board_set = list(board_set[0])
|
||||
if to_board in [list(board) for board in board_set]:
|
||||
total_moves -= board_set[1]
|
||||
# if it's not the sum of the moves
|
||||
if idx < 2:
|
||||
roll[idx] = 0
|
||||
else:
|
||||
roll = [0,0]
|
||||
return_board = to_board
|
||||
break
|
||||
return total_moves, roll, return_board
|
||||
|
||||
def make_human_move(self, board, player, roll):
|
||||
total_moves = roll[0] + roll[1]
|
||||
previous_board = board
|
||||
while total_moves != 0:
|
||||
move = input("Pick a move!\n")
|
||||
to_board = Board.apply_moves_to_board(previous_board, player, move)
|
||||
total_moves, roll, board = self.tmp_name(board, to_board, roll, player, total_moves)
|
||||
|
||||
|
||||
|
|
91
main.py
91
main.py
|
@ -2,6 +2,7 @@ import argparse
|
|||
import sys
|
||||
import os
|
||||
import time
|
||||
import subprocess
|
||||
|
||||
# Parse command line arguments
|
||||
parser = argparse.ArgumentParser(description="Backgammon games")
|
||||
|
@ -31,19 +32,17 @@ parser.add_argument('--train-perpetually', action='store_true',
|
|||
help='start new training session as soon as the previous is finished')
|
||||
parser.add_argument('--list-models', action='store_true',
|
||||
help='list all known models')
|
||||
parser.add_argument('--force-creation', action='store_true',
|
||||
help='force model creation if model does not exist')
|
||||
parser.add_argument('--board-rep', action='store', dest='board_rep',
|
||||
default='tesauro',
|
||||
help='name of board representation to use as input to neural network')
|
||||
parser.add_argument('--use-baseline', action='store_true',
|
||||
help='use the baseline model, note, has size 28')
|
||||
parser.add_argument('--verbose', action='store_true',
|
||||
help='If set, a lot of stuff will be printed')
|
||||
parser.add_argument('--ply', action='store', dest='ply', default='0',
|
||||
help='defines the amount of ply used when deciding what move to make')
|
||||
parser.add_argument('--repeat-eval', action='store', dest='repeat_eval', default='1',
|
||||
help='the amount of times the evaluation method should be repeated')
|
||||
|
||||
args = parser.parse_args()
|
||||
|
||||
if args.model == "baseline_model":
|
||||
print("Model name 'baseline_model' not allowed")
|
||||
exit()
|
||||
|
||||
config = {
|
||||
'model': args.model,
|
||||
|
@ -59,10 +58,13 @@ config = {
|
|||
'model_storage_path': 'models',
|
||||
'bench_storage_path': 'bench',
|
||||
'board_representation': args.board_rep,
|
||||
'force_creation': args.force_creation,
|
||||
'use_baseline': args.use_baseline
|
||||
'global_step': 0,
|
||||
'verbose': args.verbose,
|
||||
'ply': args.ply,
|
||||
'repeat_eval': args.repeat_eval
|
||||
}
|
||||
|
||||
|
||||
# Create models folder
|
||||
if not os.path.exists(config['model_storage_path']):
|
||||
os.makedirs(config['model_storage_path'])
|
||||
|
@ -76,19 +78,20 @@ if not os.path.isdir(model_path()):
|
|||
if not os.path.isdir(log_path):
|
||||
os.mkdir(log_path)
|
||||
|
||||
|
||||
# Define helper functions
|
||||
def log_train_outcome(outcome, diff_in_values, trained_eps = 0, log_path = os.path.join(model_path(), 'logs', "train.log")):
|
||||
commit = subprocess.run(['git', 'describe', '--first-parent', '--always'], stdout=subprocess.PIPE).stdout.decode('utf-8').rstrip()
|
||||
format_vars = { 'trained_eps': trained_eps,
|
||||
'count': len(outcome),
|
||||
'sum': sum(outcome),
|
||||
'mean': sum(outcome) / len(outcome),
|
||||
'time': int(time.time()),
|
||||
'average_diff_in_vals': diff_in_values/len(outcome)
|
||||
'average_diff_in_vals': diff_in_values,
|
||||
'commit': commit
|
||||
}
|
||||
|
||||
with open(log_path, 'a+') as f:
|
||||
f.write("{time};{trained_eps};{count};{sum};{mean};{average_diff_in_vals}".format(**format_vars) + "\n")
|
||||
f.write("{time};{trained_eps};{count};{sum};{mean};{average_diff_in_vals};{commit}".format(**format_vars) + "\n")
|
||||
|
||||
|
||||
def log_eval_outcomes(outcomes, trained_eps = 0, log_path = os.path.join(model_path(), 'logs', "eval.log")):
|
||||
|
@ -99,9 +102,12 @@ def log_eval_outcomes(outcomes, trained_eps = 0, log_path = os.path.join(model_p
|
|||
:param log_path:
|
||||
:return:
|
||||
"""
|
||||
commit = subprocess.run(['git', 'describe', '--first-parent', '--always'], stdout=subprocess.PIPE).stdout.decode('utf-8').rstrip()
|
||||
|
||||
for outcome in outcomes:
|
||||
scores = outcome[1]
|
||||
format_vars = { 'trained_eps': trained_eps,
|
||||
format_vars = { 'commit': commit,
|
||||
'trained_eps': trained_eps,
|
||||
'method': outcome[0],
|
||||
'count': len(scores),
|
||||
'sum': sum(scores),
|
||||
|
@ -109,9 +115,10 @@ def log_eval_outcomes(outcomes, trained_eps = 0, log_path = os.path.join(model_p
|
|||
'time': int(time.time())
|
||||
}
|
||||
with open(log_path, 'a+') as f:
|
||||
f.write("{time};{method};{trained_eps};{count};{sum};{mean}".format(**format_vars) + "\n")
|
||||
f.write("{time};{method};{trained_eps};{count};{sum};{mean};{commit}".format(**format_vars) + "\n")
|
||||
|
||||
def log_bench_eval_outcomes(outcomes, log_path, index, time, trained_eps = 0):
|
||||
commit = subprocess.run(['git', 'describe', '--first-parent', '--always'], stdout=subprocess.PIPE).stdout.decode('utf-8').rstrip()
|
||||
for outcome in outcomes:
|
||||
scores = outcome[1]
|
||||
format_vars = { 'trained_eps': trained_eps,
|
||||
|
@ -121,9 +128,28 @@ def log_bench_eval_outcomes(outcomes, log_path, index, time, trained_eps = 0):
|
|||
'mean': sum(scores) / len(scores),
|
||||
'time': time,
|
||||
'index': index,
|
||||
'commit': commit
|
||||
}
|
||||
with open(log_path, 'a+') as f:
|
||||
f.write("{method};{count};{index};{time};{sum};{mean}".format(**format_vars) + "\n")
|
||||
f.write("{method};{count};{index};{time};{sum};{mean};{commit}".format(**format_vars) + "\n")
|
||||
|
||||
def find_board_rep():
|
||||
checkpoint_path = os.path.join(config['model_storage_path'], config['model'])
|
||||
board_rep_path = os.path.join(checkpoint_path, "board_representation")
|
||||
with open(board_rep_path, 'r') as f:
|
||||
return f.read()
|
||||
|
||||
|
||||
def board_rep_file_exists():
|
||||
checkpoint_path = os.path.join(config['model_storage_path'], config['model'])
|
||||
board_rep_path = os.path.join(checkpoint_path, "board_representation")
|
||||
return os.path.isfile(board_rep_path)
|
||||
|
||||
def create_board_rep():
|
||||
checkpoint_path = os.path.join(config['model_storage_path'], config['model'])
|
||||
board_rep_path = os.path.join(checkpoint_path, "board_representation")
|
||||
with open(board_rep_path, 'a+') as f:
|
||||
f.write(config['board_representation'])
|
||||
|
||||
# Do actions specified by command-line
|
||||
if args.list_models:
|
||||
|
@ -148,6 +174,22 @@ if __name__ == "__main__":
|
|||
# Set up variables
|
||||
episode_count = config['episode_count']
|
||||
|
||||
if config['board_representation'] is None:
|
||||
if board_rep_file_exists():
|
||||
config['board_representation'] = find_board_rep()
|
||||
else:
|
||||
sys.stderr.write("Was not given a board_rep and was unable to find a board_rep file\n")
|
||||
exit()
|
||||
else:
|
||||
if not board_rep_file_exists():
|
||||
create_board_rep()
|
||||
else:
|
||||
if config['board_representation'] != find_board_rep():
|
||||
sys.stderr.write("Board representation \"{given}\", does not match one in board_rep file, \"{board_rep}\"\n".
|
||||
format(given = config['board_representation'], board_rep = find_board_rep()))
|
||||
exit()
|
||||
|
||||
|
||||
if args.train:
|
||||
network = Network(config, config['model'])
|
||||
start_episode = network.episodes_trained
|
||||
|
@ -161,9 +203,15 @@ if __name__ == "__main__":
|
|||
if not config['train_perpetually']:
|
||||
break
|
||||
|
||||
elif args.play:
|
||||
network = Network(config, config['model'])
|
||||
network.play_against_network()
|
||||
|
||||
elif args.eval:
|
||||
network = Network(config, config['model'])
|
||||
network.restore_model()
|
||||
|
||||
for i in range(int(config['repeat_eval'])):
|
||||
start_episode = network.episodes_trained
|
||||
# Evaluation measures are described in `config`
|
||||
outcomes = network.eval(config['episode_count'])
|
||||
|
@ -191,7 +239,7 @@ if __name__ == "__main__":
|
|||
episode_counts = [25, 50, 100, 250, 500, 1000, 2500, 5000,
|
||||
10000, 20000]
|
||||
|
||||
def do_eval(sess):
|
||||
def do_eval():
|
||||
for eval_method in config['eval_methods']:
|
||||
result_path = os.path.join(config['bench_storage_path'],
|
||||
eval_method) + "-{}.log".format(int(time.time()))
|
||||
|
@ -199,8 +247,7 @@ if __name__ == "__main__":
|
|||
for i in range(sample_count):
|
||||
start_time = time.time()
|
||||
# Evaluation measure to be benchmarked are described in `config`
|
||||
outcomes = network.eval(episode_count = n,
|
||||
tf_session = sess)
|
||||
outcomes = network.eval(episode_count = n)
|
||||
time_diff = time.time() - start_time
|
||||
log_bench_eval_outcomes(outcomes,
|
||||
time = time_diff,
|
||||
|
@ -210,8 +257,8 @@ if __name__ == "__main__":
|
|||
|
||||
# CMM: oh no
|
||||
import tensorflow as tf
|
||||
with tf.Session() as session:
|
||||
network.restore_model(session)
|
||||
do_eval(session)
|
||||
|
||||
network.restore_model()
|
||||
do_eval()
|
||||
|
||||
|
||||
|
|
562
network.py
562
network.py
|
@ -8,6 +8,8 @@ import random
|
|||
from eval import Eval
|
||||
import glob
|
||||
from operator import itemgetter
|
||||
import tensorflow.contrib.eager as tfe
|
||||
from player import Player
|
||||
|
||||
class Network:
|
||||
# board_features_quack has size 28
|
||||
|
@ -18,18 +20,43 @@ class Network:
|
|||
'quack-fat' : (30, Board.board_features_quack_fat),
|
||||
'quack' : (28, Board.board_features_quack),
|
||||
'tesauro' : (198, Board.board_features_tesauro),
|
||||
'quack-norm': (30, Board.board_features_quack_norm)
|
||||
'quack-norm' : (30, Board.board_features_quack_norm),
|
||||
'tesauro-fat' : (726, Board.board_features_tesauro_fat),
|
||||
'tesauro-poop': (198, Board.board_features_tesauro_wrong)
|
||||
}
|
||||
|
||||
def custom_tanh(self, x, name=None):
|
||||
return tf.scalar_mul(tf.constant(2.00), tf.tanh(x, name))
|
||||
|
||||
def __init__(self, config, name):
|
||||
"""
|
||||
:param config:
|
||||
:param name:
|
||||
"""
|
||||
|
||||
move_options = {
|
||||
'1': self.make_move_1_ply,
|
||||
'0': self.make_move_0_ply
|
||||
}
|
||||
|
||||
self.max_or_min = {
|
||||
1: np.argmax,
|
||||
-1: np.argmin
|
||||
}
|
||||
|
||||
tf.enable_eager_execution()
|
||||
|
||||
xavier_init = tf.contrib.layers.xavier_initializer()
|
||||
|
||||
self.config = config
|
||||
self.checkpoint_path = os.path.join(config['model_storage_path'], config['model'])
|
||||
|
||||
self.name = name
|
||||
|
||||
self.make_move = move_options[
|
||||
self.config['ply']
|
||||
]
|
||||
|
||||
# Set board representation from config
|
||||
self.input_size, self.board_trans_func = Network.board_reps[
|
||||
self.config['board_representation']
|
||||
|
@ -39,16 +66,6 @@ class Network:
|
|||
self.max_learning_rate = 0.1
|
||||
self.min_learning_rate = 0.001
|
||||
|
||||
self.global_step = tf.Variable(0, trainable=False, name="global_step")
|
||||
self.learning_rate = tf.maximum(self.min_learning_rate,
|
||||
tf.train.exponential_decay(self.max_learning_rate,
|
||||
self.global_step, 50000,
|
||||
0.96,
|
||||
staircase=True),
|
||||
name="learning_rate")
|
||||
|
||||
|
||||
|
||||
# Restore trained episode count for model
|
||||
episode_count_path = os.path.join(self.checkpoint_path, "episodes_trained")
|
||||
if os.path.isfile(episode_count_path):
|
||||
|
@ -57,336 +74,261 @@ class Network:
|
|||
else:
|
||||
self.episodes_trained = 0
|
||||
|
||||
self.x = tf.placeholder('float', [1, self.input_size], name='input')
|
||||
self.value_next = tf.placeholder('float', [1, self.output_size], name="value_next")
|
||||
|
||||
xavier_init = tf.contrib.layers.xavier_initializer()
|
||||
|
||||
W_1 = tf.get_variable("w_1", (self.input_size, self.hidden_size),
|
||||
initializer=xavier_init)
|
||||
W_2 = tf.get_variable("w_2", (self.hidden_size, self.output_size),
|
||||
initializer=xavier_init)
|
||||
|
||||
b_1 = tf.get_variable("b_1", (self.hidden_size,),
|
||||
initializer=tf.zeros_initializer)
|
||||
b_2 = tf.get_variable("b_2", (self.output_size,),
|
||||
initializer=tf.zeros_initializer)
|
||||
global_step_path = os.path.join(self.checkpoint_path, "global_step")
|
||||
if os.path.isfile(global_step_path):
|
||||
with open(global_step_path, 'r') as f:
|
||||
self.global_step = int(f.read())
|
||||
else:
|
||||
self.global_step = 0
|
||||
|
||||
|
||||
value_after_input = tf.sigmoid(tf.matmul(self.x, W_1) + b_1, name='hidden_layer')
|
||||
|
||||
self.value = tf.sigmoid(tf.matmul(value_after_input, W_2) + b_2, name='output_layer')
|
||||
|
||||
# TODO: Alexander thinks that self.value will be computed twice (instead of once)
|
||||
difference_in_values = tf.reshape(tf.subtract(self.value_next, self.value, name='difference_in_values'), [])
|
||||
tf.summary.scalar("difference_in_values", tf.abs(difference_in_values))
|
||||
|
||||
trainable_vars = tf.trainable_variables()
|
||||
gradients = tf.gradients(self.value, trainable_vars)
|
||||
|
||||
apply_gradients = []
|
||||
|
||||
global_step_op = self.global_step.assign_add(1)
|
||||
self.model = tf.keras.Sequential([
|
||||
tf.keras.layers.Dense(40, activation="sigmoid", kernel_initializer=xavier_init,
|
||||
input_shape=(1,self.input_size)),
|
||||
tf.keras.layers.Dense(1, activation="sigmoid", kernel_initializer=xavier_init)
|
||||
])
|
||||
|
||||
|
||||
with tf.variable_scope('apply_gradients'):
|
||||
for gradient, trainable_var in zip(gradients, trainable_vars):
|
||||
backprop_calc = self.learning_rate * difference_in_values * gradient
|
||||
grad_apply = trainable_var.assign_add(backprop_calc)
|
||||
apply_gradients.append(grad_apply)
|
||||
def exp_decay(self, max_lr, global_step, decay_rate, decay_steps):
|
||||
"""
|
||||
Calculates the exponential decay on a learning rate
|
||||
:param max_lr: The learning rate that the network starts at
|
||||
:param global_step: The global step
|
||||
:param decay_rate: The rate at which the learning rate should decay
|
||||
:param decay_steps: The amount of steps between each decay
|
||||
:return: The result of the exponential decay performed on the learning rate
|
||||
"""
|
||||
res = max_lr * decay_rate ** (global_step // decay_steps)
|
||||
return res
|
||||
|
||||
def do_backprop(self, prev_state, value_next):
|
||||
"""
|
||||
Performs the Temporal-difference backpropagation step on the model
|
||||
:param prev_state: The previous state of the game, this has its value recalculated
|
||||
:param value_next: The value of the current move
|
||||
:return: Nothing, the calculation is performed on the model of the network
|
||||
"""
|
||||
self.learning_rate = tf.maximum(self.min_learning_rate,
|
||||
self.exp_decay(self.max_learning_rate, self.global_step, 0.96, 50000),
|
||||
name="learning_rate")
|
||||
|
||||
with tf.GradientTape() as tape:
|
||||
value = self.model(prev_state.reshape(1,-1))
|
||||
|
||||
grads = tape.gradient(value, self.model.variables)
|
||||
|
||||
difference_in_values = tf.reshape(tf.subtract(value_next, value, name='difference_in_values'), [])
|
||||
|
||||
for grad, train_var in zip(grads, self.model.variables):
|
||||
backprop_calc = self.learning_rate * difference_in_values * grad
|
||||
train_var.assign_add(backprop_calc)
|
||||
|
||||
|
||||
with tf.control_dependencies([global_step_op]):
|
||||
|
||||
self.training_op = tf.group(*apply_gradients, name='training_op')
|
||||
def print_variables(self):
|
||||
"""
|
||||
Prints all the variables of the model
|
||||
:return:
|
||||
"""
|
||||
variables = self.model.variables
|
||||
for k in variables:
|
||||
print(k)
|
||||
|
||||
self.saver = tf.train.Saver(max_to_keep=1)
|
||||
def eval_state(self, state):
|
||||
"""
|
||||
Evaluates a single state
|
||||
:param state:
|
||||
:return:
|
||||
"""
|
||||
return self.model(state.reshape(1,-1))
|
||||
|
||||
def eval_state(self, sess, state):
|
||||
return sess.run(self.value, feed_dict={self.x: state})
|
||||
def save_model(self, episode_count):
|
||||
"""
|
||||
Saves the model of the network, it references global_step as self.global_step
|
||||
:param episode_count:
|
||||
:return:
|
||||
"""
|
||||
|
||||
tfe.Saver(self.model.variables).save(os.path.join(self.checkpoint_path, 'model.ckpt'))
|
||||
|
||||
def save_model(self, sess, episode_count, global_step):
|
||||
self.saver.save(sess, os.path.join(self.checkpoint_path, 'model.ckpt'), global_step=global_step)
|
||||
with open(os.path.join(self.checkpoint_path, "episodes_trained"), 'w+') as f:
|
||||
print("[NETWK] ({name}) Saving model to:".format(name=self.name),
|
||||
os.path.join(self.checkpoint_path, 'model.ckpt'))
|
||||
f.write(str(episode_count) + "\n")
|
||||
|
||||
def restore_model(self, sess):
|
||||
with open(os.path.join(self.checkpoint_path, "global_step"), 'w+') as f:
|
||||
print("[NETWK] ({name}) Saving global step to:".format(name=self.name),
|
||||
os.path.join(self.checkpoint_path, 'model.ckpt'))
|
||||
f.write(str(self.global_step) + "\n")
|
||||
if self.config['verbose']:
|
||||
self.print_variables()
|
||||
|
||||
|
||||
def calc_vals(self, states):
|
||||
"""
|
||||
Calculate a score of each state in states
|
||||
:param states: A number of states. The states have to be transformed before being given to this function.
|
||||
:return:
|
||||
"""
|
||||
return self.model.predict_on_batch(states)
|
||||
|
||||
|
||||
def restore_model(self):
|
||||
"""
|
||||
Restore a model for a session, such that a trained model and either be further trained or
|
||||
used for evaluation
|
||||
|
||||
:param sess: Current session
|
||||
:return: Nothing. It's a side-effect that a model gets restored for the network.
|
||||
"""
|
||||
|
||||
|
||||
if glob.glob(os.path.join(self.checkpoint_path, 'model.ckpt*.index')):
|
||||
|
||||
latest_checkpoint = tf.train.latest_checkpoint(self.checkpoint_path)
|
||||
print("[NETWK] ({name}) Restoring model from:".format(name=self.name),
|
||||
str(latest_checkpoint))
|
||||
self.saver.restore(sess, latest_checkpoint)
|
||||
variables_names = [v.name for v in tf.trainable_variables()]
|
||||
values = sess.run(variables_names)
|
||||
for k, v in zip(variables_names, values):
|
||||
print("Variable: ", k)
|
||||
print("Shape: ", v.shape)
|
||||
print(v)
|
||||
tfe.Saver(self.model.variables).restore(latest_checkpoint)
|
||||
|
||||
# Restore trained episode count for model
|
||||
episode_count_path = os.path.join(self.checkpoint_path, "episodes_trained")
|
||||
if os.path.isfile(episode_count_path):
|
||||
with open(episode_count_path, 'r') as f:
|
||||
self.config['start_episode'] = int(f.read())
|
||||
elif self.config['use_baseline'] and glob.glob(os.path.join(os.path.join(self.config['model_storage_path'], "baseline_model"), 'model.ckpt*.index')):
|
||||
checkpoint_path = os.path.join(self.config['model_storage_path'], "baseline_model")
|
||||
latest_checkpoint = tf.train.latest_checkpoint(checkpoint_path)
|
||||
print("[NETWK] ({name}) Restoring model from:".format(name=self.name),
|
||||
str(latest_checkpoint))
|
||||
self.saver.restore(sess, latest_checkpoint)
|
||||
|
||||
variables_names = [v.name for v in tf.trainable_variables()]
|
||||
values = sess.run(variables_names)
|
||||
for k, v in zip(variables_names, values):
|
||||
print("Variable: ", k)
|
||||
print("Shape: ", v.shape)
|
||||
print(v)
|
||||
elif not self.config['force_creation']:
|
||||
print("You need to have baseline_model inside models")
|
||||
exit()
|
||||
global_step_path = os.path.join(self.checkpoint_path, "global_step")
|
||||
if os.path.isfile(global_step_path):
|
||||
with open(global_step_path, 'r') as f:
|
||||
self.config['global_step'] = int(f.read())
|
||||
|
||||
if self.config['verbose']:
|
||||
self.print_variables()
|
||||
|
||||
|
||||
def make_move(self, sess, board, roll, player):
|
||||
|
||||
def make_move_0_ply(self, board, roll, player):
|
||||
"""
|
||||
Find the best move given a board, roll and a player, by finding all possible states one can go to
|
||||
and then picking the best, by using the network to evaluate each state. The highest score is picked
|
||||
for the 1-player and the max(1-score) is picked for the -1-player.
|
||||
and then picking the best, by using the network to evaluate each state. This is 0-ply, ie. no look-ahead.
|
||||
The highest score is picked for the 1-player and the max(1-score) is picked for the -1-player.
|
||||
|
||||
:param sess:
|
||||
:param board: Current board
|
||||
:param roll: Current roll
|
||||
:param player: Current player
|
||||
:return: A pair of the best state to go to, together with the score of that state
|
||||
"""
|
||||
legal_moves = Board.calculate_legal_states(board, player, roll)
|
||||
moves_and_scores = [(move, self.eval_state(sess, self.board_trans_func(move, player))) for move in legal_moves]
|
||||
scores = [x[1] if np.sign(player) > 0 else 1-x[1] for x in moves_and_scores]
|
||||
best_score_index = np.array(scores).argmax()
|
||||
best_move_pair = moves_and_scores[best_score_index]
|
||||
return best_move_pair
|
||||
legal_moves = list(Board.calculate_legal_states(board, player, roll))
|
||||
legal_states = np.array([self.board_trans_func(move, player)[0] for move in legal_moves])
|
||||
|
||||
def make_move_n_ply(self, sess, board, roll, player, n = 1):
|
||||
best_pair = self.calc_n_ply(n, sess, board, player, roll)
|
||||
scores = self.model.predict_on_batch(legal_states)
|
||||
|
||||
best_score_idx = self.max_or_min[player](scores)
|
||||
|
||||
best_move, best_score = legal_moves[best_score_idx], scores[best_score_idx]
|
||||
|
||||
return (best_move, best_score)
|
||||
|
||||
def make_move_1_ply(self, board, roll, player):
|
||||
"""
|
||||
Return the best board and best score based on a 1-ply look-ahead.
|
||||
:param board:
|
||||
:param roll:
|
||||
:param player:
|
||||
:return:
|
||||
"""
|
||||
start = time.time()
|
||||
best_pair = self.calculate_1_ply(board, roll, player)
|
||||
#print(time.time() - start)
|
||||
return best_pair
|
||||
|
||||
|
||||
def calculate_1_ply(self, sess, board, roll, player):
|
||||
def calculate_1_ply(self, board, roll, player):
|
||||
"""
|
||||
Find the best move based on a 1-ply look-ahead. First the best move is found for a single ply and then an
|
||||
exhaustive search is performed on the best 15 moves from the single ply.
|
||||
Find the best move based on a 1-ply look-ahead. First the x best moves are picked from a 0-ply and then
|
||||
all moves and scores are found for them. The expected score is then calculated for each of the boards from the
|
||||
0-ply.
|
||||
|
||||
:param sess:
|
||||
:param board:
|
||||
:param roll: The original roll
|
||||
:param player: The current player
|
||||
:return: Best possible move based on 1-ply look-ahead
|
||||
|
||||
"""
|
||||
|
||||
# find all legal states from the given board and the given roll
|
||||
init_legal_states = Board.calculate_legal_states(board, player, roll)
|
||||
legal_states = np.array([self.board_trans_func(state, player)[0] for state in init_legal_states])
|
||||
|
||||
# find all values for the above boards
|
||||
zero_ply_moves_and_scores = [(move, self.eval_state(sess, self.board_trans_func(move, player))) for move in init_legal_states]
|
||||
|
||||
# pythons reverse is in place and I can't call [:15] on it, without applying it to an object like so. Fuck.
|
||||
best_fifteen = sorted(zero_ply_moves_and_scores, key=itemgetter(1), reverse=player==1)
|
||||
|
||||
best_fifteen_boards = [x[0] for x in best_fifteen[:10]]
|
||||
|
||||
all_rolls_scores = self.do_ply(sess, best_fifteen_boards, player)
|
||||
|
||||
|
||||
best_score_index = np.array(all_rolls_scores).argmax()
|
||||
best_board = best_fifteen_boards[best_score_index]
|
||||
|
||||
return [best_board, max(all_rolls_scores)]
|
||||
|
||||
def calc_n_ply(self, n_init, sess, board, player, roll):
|
||||
|
||||
# find all legal states from the given board and the given roll
|
||||
init_legal_states = Board.calculate_legal_states(board, player, roll)
|
||||
|
||||
# find all values for the above boards
|
||||
zero_ply_moves_and_scores = [(move, self.eval_state(sess, self.board_trans_func(move, player))) for move in init_legal_states]
|
||||
|
||||
# pythons reverse is in place and I can't call [:15] on it, without applying it to an object like so. Fuck.
|
||||
sorted_moves_and_scores = sorted(zero_ply_moves_and_scores, key=itemgetter(1), reverse=player==1)
|
||||
|
||||
scores = [ score.numpy()
|
||||
for score
|
||||
in self.calc_vals(legal_states) ]
|
||||
|
||||
moves_and_scores = list(zip(init_legal_states, scores))
|
||||
sorted_moves_and_scores = sorted(moves_and_scores, key=itemgetter(1), reverse=(player == 1))
|
||||
best_boards = [ x[0] for x in sorted_moves_and_scores[:10] ]
|
||||
|
||||
best_move_score_pair = self.n_ply(n_init, sess, best_boards, player)
|
||||
scores = self.do_ply(best_boards, player)
|
||||
|
||||
return best_move_score_pair
|
||||
best_score_idx = self.max_or_min[player](scores)
|
||||
# best_score_idx = np.array(trans_scores).argmax()
|
||||
|
||||
return (best_boards[best_score_idx], scores[best_score_idx])
|
||||
|
||||
def n_ply(self, n_init, sess, boards_init, player_init):
|
||||
def ply(n, boards, player):
|
||||
def calculate_possible_states(board):
|
||||
possible_rolls = [ (1, 1), (1, 2), (1, 3), (1, 4), (1, 5),
|
||||
(1, 6), (2, 2), (2, 3), (2, 4), (2, 5),
|
||||
(2, 6), (3, 3), (3, 4), (3, 5), (3, 6),
|
||||
(4, 4), (4, 5), (4, 6), (5, 5), (5, 6),
|
||||
(6, 6) ]
|
||||
|
||||
# for roll in possible_rolls:
|
||||
# print(len(Board.calculate_legal_states(board, player, roll)))
|
||||
|
||||
return [ Board.calculate_legal_states(board, player, roll)
|
||||
for roll
|
||||
in possible_rolls ]
|
||||
|
||||
def find_best_state_score(boards):
|
||||
score_pairs = [ (board, self.eval_state(sess, self.board_trans_func(board, player)))
|
||||
for board
|
||||
in boards ]
|
||||
scores = [ pair[1]
|
||||
for pair
|
||||
in score_pairs ]
|
||||
best_score_pair = score_pairs[np.array(scores).argmax()]
|
||||
|
||||
return best_score_pair
|
||||
|
||||
def average_score(boards):
|
||||
return sum(boards)/len(boards)
|
||||
|
||||
def average_ply_score(board):
|
||||
states_for_rolls = calculate_possible_states(board)
|
||||
|
||||
best_state_score_for_each_roll = [
|
||||
find_best_state_score(states)
|
||||
for states
|
||||
in states_for_rolls ]
|
||||
best_score_for_each_roll = [ x[1]
|
||||
for x
|
||||
in best_state_score_for_each_roll ]
|
||||
|
||||
average_score_var = average_score(best_score_for_each_roll)
|
||||
return average_score_var
|
||||
|
||||
|
||||
if n == 1:
|
||||
average_score_pairs = [ (board, average_ply_score(board))
|
||||
for board
|
||||
in boards ]
|
||||
return average_score_pairs
|
||||
elif n > 1: # n != 1
|
||||
def average_for_score_pairs(score_pairs):
|
||||
scores = [ pair[1]
|
||||
for pair
|
||||
in score_pairs ]
|
||||
return sum(scores)/len(scores)
|
||||
|
||||
def average_plain(scores):
|
||||
return sum(scores)/len(scores)
|
||||
|
||||
print("+"*20)
|
||||
print(n)
|
||||
print(type(boards))
|
||||
print(boards)
|
||||
possible_states_for_boards = [
|
||||
(board, calculate_possible_states(board))
|
||||
for board
|
||||
in boards ]
|
||||
|
||||
average_score_pairs = [
|
||||
(inner_boards[0], average_plain([ average_for_score_pairs(ply(n - 1, inner_board, player * -1 if n == 1 else player))
|
||||
for inner_board
|
||||
in inner_boards[1] ]))
|
||||
for inner_boards
|
||||
in possible_states_for_boards ]
|
||||
|
||||
return average_score_pairs
|
||||
|
||||
else:
|
||||
assert False
|
||||
|
||||
if n_init < 1: print("Unexpected argument n = {}".format(n_init)); exit()
|
||||
|
||||
boards_with_scores = ply(n_init, boards_init, -1 * player_init)
|
||||
#print("Boards with scores:",boards_with_scores)
|
||||
scores = [ ( pair[1] if player_init == 1 else (1 - pair[1]) )
|
||||
for pair
|
||||
in boards_with_scores ]
|
||||
#print("All the scores:",scores)
|
||||
best_score_pair = boards_with_scores[np.array(scores).argmax()]
|
||||
return best_score_pair
|
||||
|
||||
def do_ply(self, sess, boards, player):
|
||||
def do_ply(self, boards, player):
|
||||
"""
|
||||
Calculates a single extra ply, resulting in a larger search space for our best move.
|
||||
This is somewhat hardcoded to only do a single ply, seeing that it calls max on all scores, rather than
|
||||
allowing the function to search deeper, which could result in an even larger search space. If we wish
|
||||
to have more than 2-ply, this should be fixed, so we could extend this method to allow for 3-ply.
|
||||
|
||||
:param sess:
|
||||
:param boards: The boards to try all rolls on
|
||||
:param player: The player of the previous ply
|
||||
:return: An array of scores where each index describes one of the boards which was given as param
|
||||
to this function.
|
||||
"""
|
||||
|
||||
def gen_21_rolls():
|
||||
"""
|
||||
Calculate all possible rolls, [[1,1], [1,2] ..]
|
||||
:return: All possible rolls
|
||||
"""
|
||||
a = []
|
||||
for x in range(1, 7):
|
||||
for y in range(1, 7):
|
||||
if not [x, y] in a and not [y, x] in a:
|
||||
a.append([x, y])
|
||||
all_rolls = [ (1, 1), (1, 2), (1, 3), (1, 4), (1, 5),
|
||||
(1, 6), (2, 2), (2, 3), (2, 4), (2, 5),
|
||||
(2, 6), (3, 3), (3, 4), (3, 5), (3, 6),
|
||||
(4, 4), (4, 5), (4, 6), (5, 5), (5, 6),
|
||||
(6, 6) ]
|
||||
|
||||
return a
|
||||
|
||||
all_rolls = gen_21_rolls()
|
||||
# start = time.time()
|
||||
|
||||
all_rolls_scores = []
|
||||
count = 0
|
||||
# loop over boards
|
||||
for a_board in boards:
|
||||
a_board_scores = []
|
||||
|
||||
# loop over all rolls, for each board
|
||||
# print("/"*50)
|
||||
length_list = []
|
||||
test_list = []
|
||||
# Prepping of data
|
||||
# start = time.time()
|
||||
for board in boards:
|
||||
length = 0
|
||||
for roll in all_rolls:
|
||||
all_states = Board.calculate_legal_states(board, player*-1, roll)
|
||||
for state in all_states:
|
||||
state = np.array(self.board_trans_func(state, player*-1)[0])
|
||||
test_list.append(state)
|
||||
length += 1
|
||||
length_list.append(length)
|
||||
|
||||
# find all states we can get to, given the board and roll and the opposite player
|
||||
all_rolls_boards = Board.calculate_legal_states(a_board, player*-1, roll)
|
||||
count += len(all_rolls_boards)
|
||||
# find scores for each board found above
|
||||
spec_roll_scores = [self.eval_state(sess, self.board_trans_func(new_board, player*-1))
|
||||
for new_board in all_rolls_boards]
|
||||
# print(time.time() - start)
|
||||
|
||||
# if the original player is the -1 player, then we need to find (1-value)
|
||||
spec_roll_scores = [x if player == 1 else (1-x) for x in spec_roll_scores]
|
||||
start = time.time()
|
||||
|
||||
# find the best score
|
||||
best_score = max(spec_roll_scores)
|
||||
all_scores = self.model.predict_on_batch(np.array(test_list))
|
||||
|
||||
# append the best score to a_board_scores, where we keep track of the best score for each board
|
||||
a_board_scores.append(best_score)
|
||||
split_scores = []
|
||||
from_idx = 0
|
||||
for length in length_list:
|
||||
split_scores.append(all_scores[from_idx:from_idx+length])
|
||||
from_idx += length
|
||||
|
||||
# save the expected average of board scores
|
||||
all_rolls_scores.append(sum(a_board_scores)/len(a_board_scores))
|
||||
means_splits = [tf.reduce_mean(scores) for scores in split_scores]
|
||||
|
||||
# return all the average scores
|
||||
print(count)
|
||||
return all_rolls_scores
|
||||
# print(time.time() - start)
|
||||
# print("/"*50)
|
||||
return means_splits
|
||||
|
||||
|
||||
def eval(self, episode_count, trained_eps = 0, tf_session = None):
|
||||
def eval(self, episode_count, trained_eps = 0):
|
||||
"""
|
||||
Used to evaluate a model. Can either use pubeval, a model playing at an intermediate level, or dumbeval
|
||||
a model which has been given random weights, so it acts deterministically random.
|
||||
|
@ -397,11 +339,10 @@ class Network:
|
|||
:return: outcomes: The outcomes of the evaluation session
|
||||
"""
|
||||
|
||||
def do_eval(sess, method, episodes = 1000, trained_eps = 0):
|
||||
def do_eval(method, episodes = 1000, trained_eps = 0):
|
||||
"""
|
||||
Do the actual evaluation
|
||||
|
||||
:param sess:
|
||||
:param method: Either pubeval or dumbeval
|
||||
:param episodes: Amount of episodes to use in the evaluation
|
||||
:param trained_eps:
|
||||
|
@ -425,7 +366,6 @@ class Network:
|
|||
sys.stderr.write(
|
||||
"[EVAL ] Evaluating {eps} episode(s) with method '{method}'\n".format(eps=episodes, method=method))
|
||||
|
||||
|
||||
if method == 'pubeval':
|
||||
outcomes = []
|
||||
for i in range(1, episodes + 1):
|
||||
|
@ -433,11 +373,9 @@ class Network:
|
|||
board = Board.initial_state
|
||||
while Board.outcome(board) is None:
|
||||
roll = (random.randrange(1, 7), random.randrange(1, 7))
|
||||
|
||||
board = (self.make_move(sess, board, roll, 1))[0]
|
||||
board = (self.make_move(board, roll, 1))[0]
|
||||
|
||||
roll = (random.randrange(1, 7), random.randrange(1, 7))
|
||||
|
||||
board = Eval.make_pubeval_move(board, -1, roll)[0][0:26]
|
||||
|
||||
sys.stderr.write("\t outcome {}".format(Board.outcome(board)[1]))
|
||||
|
@ -456,11 +394,9 @@ class Network:
|
|||
board = Board.initial_state
|
||||
while Board.outcome(board) is None:
|
||||
roll = (random.randrange(1, 7), random.randrange(1, 7))
|
||||
|
||||
board = (self.make_move(sess, board, roll, 1))[0]
|
||||
board = (self.make_move(board, roll, 1))[0]
|
||||
|
||||
roll = (random.randrange(1, 7), random.randrange(1, 7))
|
||||
|
||||
board = Eval.make_dumbeval_move(board, -1, roll)[0][0:26]
|
||||
|
||||
sys.stderr.write("\t outcome {}".format(Board.outcome(board)[1]))
|
||||
|
@ -476,41 +412,52 @@ class Network:
|
|||
sys.stderr.write("[EVAL ] Evaluation method '{}' is not defined\n".format(method))
|
||||
return [0]
|
||||
|
||||
if tf_session == None:
|
||||
with tf.Session() as session:
|
||||
session.run(tf.global_variables_initializer())
|
||||
self.restore_model(session)
|
||||
outcomes = [ (method, do_eval(session,
|
||||
method,
|
||||
episode_count,
|
||||
trained_eps = trained_eps))
|
||||
for method
|
||||
in self.config['eval_methods'] ]
|
||||
return outcomes
|
||||
else:
|
||||
outcomes = [ (method, do_eval(tf_session,
|
||||
method,
|
||||
|
||||
outcomes = [ (method, do_eval(method,
|
||||
episode_count,
|
||||
trained_eps = trained_eps))
|
||||
for method
|
||||
in self.config['eval_methods'] ]
|
||||
return outcomes
|
||||
|
||||
|
||||
def play_against_network(self):
|
||||
"""
|
||||
Allows you to play against a supplied model.
|
||||
:return:
|
||||
"""
|
||||
self.restore_model()
|
||||
human_player = Player(-1)
|
||||
cur_player = 1
|
||||
player = 1
|
||||
board = Board.initial_state
|
||||
i = 0
|
||||
while Board.outcome(board) is None:
|
||||
print(Board.pretty(board))
|
||||
roll = (random.randrange(1, 7), random.randrange(1, 7))
|
||||
print("Bot rolled:", roll)
|
||||
|
||||
board, _ = self.make_move(board, roll, player)
|
||||
print(Board.pretty(board))
|
||||
roll = (random.randrange(1, 7), random.randrange(1, 7))
|
||||
print("You rolled:", roll)
|
||||
board = human_player.make_human_move(board, roll)
|
||||
print("DONE "*10)
|
||||
print(Board.pretty(board))
|
||||
|
||||
|
||||
|
||||
def train_model(self, episodes=1000, save_step_size=100, trained_eps=0):
|
||||
with tf.Session() as sess:
|
||||
difference_in_vals = 0
|
||||
writer = tf.summary.FileWriter("/tmp/log/tf", sess.graph)
|
||||
|
||||
sess.run(tf.global_variables_initializer())
|
||||
self.restore_model(sess)
|
||||
|
||||
variables_names = [v.name for v in tf.trainable_variables()]
|
||||
values = sess.run(variables_names)
|
||||
for k, v in zip(variables_names, values):
|
||||
print("Variable: ", k)
|
||||
print("Shape: ", v.shape)
|
||||
print(v)
|
||||
"""
|
||||
Train a model to by self-learning.
|
||||
:param episodes:
|
||||
:param save_step_size:
|
||||
:param trained_eps:
|
||||
:return:
|
||||
"""
|
||||
|
||||
self.restore_model()
|
||||
average_diffs = 0
|
||||
start_time = time.time()
|
||||
|
||||
def print_time_estimate(eps_completed):
|
||||
|
@ -530,27 +477,30 @@ class Network:
|
|||
for episode in range(1, episodes + 1):
|
||||
|
||||
sys.stderr.write("[TRAIN] Episode {}".format(episode + trained_eps))
|
||||
# TODO decide which player should be here
|
||||
|
||||
player = 1
|
||||
# player = 1
|
||||
player = random.choice([-1,1])
|
||||
prev_board = Board.initial_state
|
||||
i = 0
|
||||
difference_in_values = 0
|
||||
while Board.outcome(prev_board) is None:
|
||||
i += 1
|
||||
self.global_step += 1
|
||||
|
||||
cur_board, cur_board_value = self.make_move(sess,
|
||||
prev_board,
|
||||
cur_board, cur_board_value = self.make_move(prev_board,
|
||||
(random.randrange(1, 7), random.randrange(1, 7)),
|
||||
player)
|
||||
|
||||
difference_in_vals += abs((cur_board_value - self.eval_state(sess, self.board_trans_func(prev_board, player))))
|
||||
difference_in_values += abs((cur_board_value - self.eval_state(self.board_trans_func(prev_board, player))))
|
||||
|
||||
if self.config['verbose']:
|
||||
print("Difference in values:", difference_in_vals)
|
||||
print("Current board value :", cur_board_value)
|
||||
print("Current board is :\n",cur_board)
|
||||
|
||||
# adjust weights
|
||||
sess.run(self.training_op,
|
||||
feed_dict={self.x: self.board_trans_func(prev_board, player),
|
||||
self.value_next: cur_board_value})
|
||||
|
||||
if Board.outcome(cur_board) is None:
|
||||
self.do_backprop(self.board_trans_func(prev_board, player), cur_board_value)
|
||||
player *= -1
|
||||
|
||||
prev_board = cur_board
|
||||
|
@ -561,27 +511,25 @@ class Network:
|
|||
final_score = np.array([Board.outcome(final_board)[1]])
|
||||
scaled_final_score = ((final_score + 2) / 4)
|
||||
|
||||
with tf.name_scope("final"):
|
||||
merged = tf.summary.merge_all()
|
||||
global_step, summary, _ = sess.run([self.global_step, merged, self.training_op],
|
||||
feed_dict={self.x: self.board_trans_func(prev_board, player),
|
||||
self.value_next: scaled_final_score.reshape((1, 1))})
|
||||
writer.add_summary(summary, episode + trained_eps)
|
||||
difference_in_values += abs(scaled_final_score-cur_board_value)
|
||||
|
||||
average_diffs += (difference_in_values[0][0] / (i+1))
|
||||
|
||||
self.do_backprop(self.board_trans_func(prev_board, player), scaled_final_score.reshape(1,1))
|
||||
|
||||
sys.stderr.write("\n")
|
||||
|
||||
if episode % min(save_step_size, episodes) == 0:
|
||||
sys.stderr.write("[TRAIN] Saving model...\n")
|
||||
self.save_model(sess, episode + trained_eps, global_step)
|
||||
self.save_model(episode + trained_eps)
|
||||
|
||||
if episode % 50 == 0:
|
||||
print_time_estimate(episode)
|
||||
|
||||
sys.stderr.write("[TRAIN] Saving model for final episode...\n")
|
||||
self.save_model(sess, episode+trained_eps, global_step)
|
||||
|
||||
writer.close()
|
||||
self.save_model(episode+trained_eps)
|
||||
|
||||
return outcomes, difference_in_vals[0][0]
|
||||
return outcomes, average_diffs/len(outcomes)
|
||||
|
||||
|
||||
|
|
|
@ -9,14 +9,12 @@ from board import Board
|
|||
import main
|
||||
|
||||
config = main.config.copy()
|
||||
config['model'] = "tesauro_blah"
|
||||
config['force_creation'] = True
|
||||
config['model'] = "player_testings"
|
||||
config['ply'] = "1"
|
||||
config['board_representation'] = 'quack-fat'
|
||||
network = Network(config, config['model'])
|
||||
|
||||
session = tf.Session()
|
||||
|
||||
session.run(tf.global_variables_initializer())
|
||||
network.restore_model(session)
|
||||
network.restore_model()
|
||||
initial_state = Board.initial_state
|
||||
|
||||
initial_state_1 = ( 0,
|
||||
|
@ -38,65 +36,32 @@ boards = {initial_state,
|
|||
initial_state_2 }
|
||||
|
||||
|
||||
def gen_21_rolls():
|
||||
"""
|
||||
Calculate all possible rolls, [[1,1], [1,2] ..]
|
||||
:return: All possible rolls
|
||||
"""
|
||||
a = []
|
||||
for x in range(1, 7):
|
||||
for y in range(1, 7):
|
||||
if not [x, y] in a and not [y, x] in a:
|
||||
a.append([x, y])
|
||||
|
||||
return a
|
||||
|
||||
def calc_all_scores(board, player):
|
||||
scores = []
|
||||
trans_board = network.board_trans_func(board, player)
|
||||
rolls = gen_21_rolls()
|
||||
for roll in rolls:
|
||||
score = network.eval_state(session, trans_board)
|
||||
scores.append(score)
|
||||
return scores
|
||||
|
||||
|
||||
def calculate_possible_states(board):
|
||||
possible_rolls = [(1, 1), (1, 2), (1, 3), (1, 4), (1, 5),
|
||||
(1, 6), (2, 2), (2, 3), (2, 4), (2, 5),
|
||||
(2, 6), (3, 3), (3, 4), (3, 5), (3, 6),
|
||||
(4, 4), (4, 5), (4, 6), (5, 5), (5, 6),
|
||||
(6, 6)]
|
||||
|
||||
for roll in possible_rolls:
|
||||
meh = Board.calculate_legal_states(board, -1, roll)
|
||||
print(len(meh))
|
||||
return [Board.calculate_legal_states(board, -1, roll)
|
||||
for roll
|
||||
in possible_rolls]
|
||||
|
||||
|
||||
|
||||
#for board in boards:
|
||||
# calculate_possible_states(board)
|
||||
|
||||
#print("-"*30)
|
||||
#print(network.calculate_1_ply(session, Board.initial_state, [2,4], 1))
|
||||
# board = network.board_trans_func(Board.initial_state, 1)
|
||||
|
||||
#print(" "*10 + "network_test")
|
||||
print(" "*20 + "Depth 1")
|
||||
print(network.calc_n_ply(2, session, Board.initial_state, 1, [2, 4]))
|
||||
|
||||
#print(scores)
|
||||
# pair = network.make_move(Board.initial_state, [3,2], 1)
|
||||
|
||||
#print(" "*20 + "Depth 2")
|
||||
#print(network.n_ply(2, session, boards, 1))
|
||||
# print(pair[1])
|
||||
|
||||
# #print(x.shape)
|
||||
# with graph_lol.as_default():
|
||||
# session_2 = tf.Session(graph = graph_lol)
|
||||
# network_2 = Network(session_2)
|
||||
# network_2.restore_model()
|
||||
# print(network_2.eval_state(initial_state))
|
||||
# network.do_backprop(board, 0.9)
|
||||
|
||||
# print(network.eval_state(initial_state))
|
||||
|
||||
# network.print_variables()
|
||||
|
||||
|
||||
# network.save_model(2)
|
||||
|
||||
# print(network.calculate_1_ply(Board.initial_state, [3,2], 1))
|
||||
|
||||
|
||||
diff = [0, 0]
|
||||
val = network.eval_state(Board.board_features_quack_fat(initial_state, 1))
|
||||
print(val)
|
||||
diff[0] += abs(-1-val)
|
||||
diff[1] += 1
|
||||
|
||||
print(diff[1])
|
64
player.py
64
player.py
|
@ -11,19 +11,59 @@ class Player:
|
|||
def get_sym(self):
|
||||
return self.sym
|
||||
|
||||
def make_move(self, board, sym, roll):
|
||||
print(Board.pretty(board))
|
||||
legal_moves = Board.calculate_legal_states(board, sym, roll)
|
||||
if roll[0] == roll[1]:
|
||||
print("Example of move: 4/6,6/8,12/14,13/15")
|
||||
def calc_move_sets(self, from_board, roll, player):
|
||||
board = from_board
|
||||
sets = []
|
||||
total = 0
|
||||
for r in roll:
|
||||
# print("Value of r:",r)
|
||||
sets.append([Board.calculate_legal_states(board, player, [r,0]), r])
|
||||
total += r
|
||||
sets.append([Board.calculate_legal_states(board, player, [total,0]), total])
|
||||
print(sets)
|
||||
return sets
|
||||
|
||||
|
||||
def tmp_name(self, from_board, to_board, roll, player, total_moves, is_quad = False):
|
||||
sets = self.calc_move_sets(from_board, roll, player)
|
||||
return_board = from_board
|
||||
for idx, board_set in enumerate(sets):
|
||||
|
||||
board_set[0] = list(board_set[0])
|
||||
# print(to_board)
|
||||
# print(board_set)
|
||||
if to_board in board_set[0]:
|
||||
total_moves -= board_set[1]
|
||||
# if it's not the sum of the moves
|
||||
if idx < (4 if is_quad else 2):
|
||||
roll[idx] = 0
|
||||
else:
|
||||
print("Example of move: 4/6,13/17")
|
||||
roll = [0,0]
|
||||
return_board = to_board
|
||||
break
|
||||
return total_moves, roll, return_board
|
||||
|
||||
user_moves = input("Enter your move: ").strip().split(",")
|
||||
board = Board.apply_moves_to_board(board, sym, user_moves)
|
||||
while board not in legal_moves:
|
||||
print("Move is invalid, please enter a new move")
|
||||
user_moves = input("Enter your move: ").strip().split(",")
|
||||
board = Board.apply_moves_to_board(board, sym, user_moves)
|
||||
def make_human_move(self, board, roll):
|
||||
is_quad = roll[0] == roll[1]
|
||||
total_moves = roll[0] + roll[1] if not is_quad else int(roll[0])*4
|
||||
if is_quad:
|
||||
roll = [roll[0]]*4
|
||||
|
||||
while total_moves != 0:
|
||||
while True:
|
||||
print("You have {roll} left!".format(roll=total_moves))
|
||||
move = input("Pick a move!\n")
|
||||
pot_move = move.split("/")
|
||||
if len(pot_move) == 2:
|
||||
try:
|
||||
pot_move[0] = int(pot_move[0])
|
||||
pot_move[1] = int(pot_move[1])
|
||||
move = pot_move
|
||||
break;
|
||||
except TypeError:
|
||||
print("The correct syntax is: 2/5 for a move from index 2 to 5.")
|
||||
|
||||
to_board = Board.apply_moves_to_board(board, self.get_sym(), move)
|
||||
total_moves, roll, board = self.tmp_name(board, to_board, list(roll), self.get_sym(), total_moves, is_quad)
|
||||
print(Board.pretty(board))
|
||||
return board
|
484
quack/quack.c
Normal file
484
quack/quack.c
Normal file
|
@ -0,0 +1,484 @@
|
|||
#include <Python.h>
|
||||
|
||||
static PyObject* QuackError;
|
||||
|
||||
typedef struct board_list board_list;
|
||||
struct board_list {
|
||||
int size;
|
||||
PyObject* list[16];
|
||||
};
|
||||
|
||||
/* Utility functions */
|
||||
int sign(int x) {
|
||||
return (x > 0) - (x < 0);
|
||||
}
|
||||
|
||||
int abs(int x) {
|
||||
if (x >= 0) return x;
|
||||
else return -x;
|
||||
}
|
||||
/* end utility functions */
|
||||
|
||||
/* Helper functions */
|
||||
|
||||
int *idxs_with_checkers_of_player(int board[], int player) {
|
||||
int idxs_tmp[26];
|
||||
int ctr = 0;
|
||||
|
||||
for (int i = 0; i < 26; i++) {
|
||||
if (board[i] * player >= 1) {
|
||||
idxs_tmp[ctr] = i;
|
||||
ctr++;
|
||||
}
|
||||
}
|
||||
|
||||
int *idxs = malloc((1 + ctr) * sizeof(int));
|
||||
if (idxs == NULL) {
|
||||
PyErr_NoMemory();
|
||||
abort();
|
||||
}
|
||||
|
||||
idxs[0] = ctr;
|
||||
for (int i = 0; i < ctr; i++) {
|
||||
idxs[i+1] = idxs_tmp[i];
|
||||
}
|
||||
|
||||
return idxs;
|
||||
}
|
||||
|
||||
int is_forward_move(int direction, int player) {
|
||||
return direction == player;
|
||||
}
|
||||
|
||||
int face_value_match_move_length(int delta, int face_value) {
|
||||
return abs(delta) == face_value;
|
||||
}
|
||||
|
||||
int bear_in_if_checker_on_bar(int board[], int player, int from_idx) {
|
||||
int bar;
|
||||
|
||||
if (player == 1) bar = 0;
|
||||
else bar = 25;
|
||||
|
||||
if (board[bar] != 0) return from_idx == bar;
|
||||
else return 1;
|
||||
}
|
||||
|
||||
int checkers_at_from_idx(int from_state, int player) {
|
||||
return sign(from_state) == player;
|
||||
}
|
||||
|
||||
int no_block_at_to_idx(int to_state, int player) {
|
||||
if (-sign(to_state) == player) return abs(to_state) == 1;
|
||||
else return 1;
|
||||
}
|
||||
|
||||
|
||||
int can_bear_off(int board[], int player, int from_idx, int to_idx) {
|
||||
int* checker_idxs = idxs_with_checkers_of_player(board, player);
|
||||
|
||||
int moving_backmost_checker = 1;
|
||||
int bearing_directly_off = 0;
|
||||
int all_checkers_in_last_quadrant = 1;
|
||||
|
||||
/* Check if bearing directly off */
|
||||
if (player == 1 && to_idx == 25) bearing_directly_off = 1;
|
||||
else if (player == -1 && to_idx == 0) bearing_directly_off = 1;
|
||||
|
||||
for (int i = 1; i <= checker_idxs[0]; i++) {
|
||||
if (player == 1 ) {
|
||||
/* Check if all checkers are in last quardrant */
|
||||
if (checker_idxs[i] < 19) {
|
||||
all_checkers_in_last_quadrant = 0;
|
||||
break;
|
||||
}
|
||||
|
||||
/* Check if moving backmost checker */
|
||||
if (checker_idxs[i] < from_idx) {
|
||||
moving_backmost_checker = 0;
|
||||
if (!bearing_directly_off) break;
|
||||
}
|
||||
} else {
|
||||
if (checker_idxs[i] > 6) {
|
||||
all_checkers_in_last_quadrant = 0;
|
||||
break;
|
||||
}
|
||||
|
||||
if (checker_idxs[i] > from_idx) {
|
||||
moving_backmost_checker = 0;
|
||||
if (!bearing_directly_off) break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
free(checker_idxs);
|
||||
|
||||
if (all_checkers_in_last_quadrant &&
|
||||
(bearing_directly_off || moving_backmost_checker)) return 1;
|
||||
else return 0;
|
||||
}
|
||||
|
||||
|
||||
|
||||
/* end helper functions */
|
||||
|
||||
int is_move_valid(int board[], int player, int face_value, int move[]) {
|
||||
int from_idx = move[0];
|
||||
int to_idx = move[1];
|
||||
int to_state;
|
||||
int from_state = board[from_idx];
|
||||
int delta = to_idx - from_idx;
|
||||
int direction = sign(delta);
|
||||
int bearing_off;
|
||||
|
||||
if (to_idx >= 1 && to_idx <= 24) {
|
||||
to_state = board[to_idx];
|
||||
bearing_off = 0;
|
||||
} else {
|
||||
to_state = 0;
|
||||
bearing_off = 1;
|
||||
}
|
||||
|
||||
return is_forward_move(direction, player)
|
||||
&& face_value_match_move_length(delta, face_value)
|
||||
&& bear_in_if_checker_on_bar(board, player, from_idx)
|
||||
&& checkers_at_from_idx(from_state, player)
|
||||
&& no_block_at_to_idx(to_state, player)
|
||||
&& (!bearing_off || can_bear_off(board, player, from_idx, to_idx))
|
||||
;
|
||||
}
|
||||
|
||||
void do_move(int board[], int player, int move[]) {
|
||||
int from_idx = move[0];
|
||||
int to_idx = move[1];
|
||||
|
||||
/* "lift" checker */
|
||||
board[from_idx] -= player;
|
||||
|
||||
/* Return early if bearing off */
|
||||
if (to_idx < 1 || to_idx > 24) return;
|
||||
|
||||
/* Hit opponent checker */
|
||||
if (board[to_idx] * player == -1) {
|
||||
/* Move checker to bar */
|
||||
if (player == 1) board[25] -= player;
|
||||
else board[0] -= player;
|
||||
|
||||
board[to_idx] = 0;
|
||||
}
|
||||
|
||||
/* Put down checker */
|
||||
board[to_idx] += player;
|
||||
|
||||
return;
|
||||
}
|
||||
|
||||
int* do_move_clone(int board[], int player, int move[]) {
|
||||
int* new_board = malloc(sizeof(int) * 26);
|
||||
if (new_board == NULL) {
|
||||
PyErr_NoMemory();
|
||||
abort();
|
||||
}
|
||||
|
||||
for (int i = 0; i < 26; i++) {
|
||||
new_board[i] = board[i];
|
||||
}
|
||||
|
||||
do_move(new_board, player, move);
|
||||
return new_board;
|
||||
}
|
||||
|
||||
PyObject* store_board_to_pytuple(int board[], int size) {
|
||||
PyObject* board_tuple = PyTuple_New(size);
|
||||
for (int i = 0; i < size; i++) {
|
||||
PyTuple_SetItem(board_tuple, i, Py_BuildValue("i", board[i]));
|
||||
}
|
||||
return board_tuple;
|
||||
}
|
||||
|
||||
board_list calc_moves(int board[], int player, int face_value) {
|
||||
int* checker_idxs = idxs_with_checkers_of_player(board, player);
|
||||
board_list boards = { .size = 0 };
|
||||
|
||||
if (checker_idxs[0] == 0) {
|
||||
boards.size = 1;
|
||||
PyObject* board_tuple = store_board_to_pytuple(board, 26);
|
||||
boards.list[0] = board_tuple;
|
||||
free(checker_idxs);
|
||||
return boards;
|
||||
}
|
||||
|
||||
int ctr = 0;
|
||||
for (int i = 1; i <= checker_idxs[0]; i++) {
|
||||
int move[2];
|
||||
move[0] = checker_idxs[i];
|
||||
move[1] = checker_idxs[i] + (face_value * player);
|
||||
|
||||
if (is_move_valid(board, player, face_value, move)) {
|
||||
int* new_board = do_move_clone(board, player, move);
|
||||
PyObject* board_tuple = store_board_to_pytuple(new_board, 26);
|
||||
|
||||
// segfault maybe :'(
|
||||
free(new_board);
|
||||
|
||||
boards.list[ctr] = board_tuple;
|
||||
ctr++;
|
||||
}
|
||||
}
|
||||
|
||||
free(checker_idxs);
|
||||
|
||||
boards.size = ctr;
|
||||
return boards;
|
||||
}
|
||||
|
||||
int* board_features_quack_fat(int board[], int player) {
|
||||
int* new_board = malloc(sizeof(int) * 30);
|
||||
if (new_board == NULL) {
|
||||
PyErr_NoMemory();
|
||||
abort();
|
||||
}
|
||||
|
||||
int pos_sum = 0;
|
||||
int neg_sum = 0;
|
||||
for (int i = 0; i < 26; i++) {
|
||||
new_board[i] = board[i];
|
||||
if (sign(new_board[i] > 0)) pos_sum += new_board[i];
|
||||
else neg_sum += new_board[i];
|
||||
}
|
||||
|
||||
new_board[26] = 15 - pos_sum;
|
||||
new_board[27] = -15 - neg_sum;
|
||||
if (player == 1) {
|
||||
new_board[28] = 1;
|
||||
new_board[29] = 0;
|
||||
} else {
|
||||
new_board[28] = 0;
|
||||
new_board[29] = 1;
|
||||
}
|
||||
|
||||
return new_board;
|
||||
}
|
||||
|
||||
/* Meta definitions */
|
||||
int extract_board(int *board, PyObject* board_tuple_obj) {
|
||||
long numValuesBoard;
|
||||
numValuesBoard = PyTuple_Size(board_tuple_obj);
|
||||
if (numValuesBoard != 26) {
|
||||
PyErr_SetString(QuackError, "Board tuple must have 26 entries");
|
||||
return 1;
|
||||
}
|
||||
|
||||
PyObject* board_val_obj;
|
||||
// Iterate over tuple to retreive positions
|
||||
for (int i=0; i<numValuesBoard; i++) {
|
||||
board_val_obj = PyTuple_GetItem(board_tuple_obj, i);
|
||||
board[i] = PyLong_AsLong(board_val_obj);
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
int extract_move(int *move, PyObject* move_tuple_obj) {
|
||||
long numValuesMove;
|
||||
numValuesMove = PyTuple_Size(move_tuple_obj);
|
||||
if (numValuesMove != 2) {
|
||||
PyErr_SetString(QuackError, "Move tuple must have exactly 2 entries");
|
||||
return 1;
|
||||
}
|
||||
PyObject* move_val_obj;
|
||||
for (int i=0; i<numValuesMove; i++) {
|
||||
move_val_obj = PyTuple_GetItem(move_tuple_obj, i);
|
||||
move[i] = PyLong_AsLong(move_val_obj);
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
static PyObject*
|
||||
quack_is_move_valid(PyObject *self, PyObject *args) {
|
||||
int board[26];
|
||||
int player;
|
||||
int face_value;
|
||||
int move[2];
|
||||
|
||||
PyObject* board_tuple_obj;
|
||||
PyObject* move_tuple_obj;
|
||||
|
||||
if (! PyArg_ParseTuple(args, "O!iiO!",
|
||||
&PyTuple_Type, &board_tuple_obj,
|
||||
&player,
|
||||
&face_value,
|
||||
&PyTuple_Type, &move_tuple_obj))
|
||||
return NULL;
|
||||
|
||||
if (extract_board(board, board_tuple_obj)) return NULL;
|
||||
if (extract_move(move, move_tuple_obj)) return NULL;
|
||||
|
||||
if (is_move_valid(board, player, face_value, move)) Py_RETURN_TRUE;
|
||||
else Py_RETURN_FALSE;
|
||||
}
|
||||
|
||||
static PyObject*
|
||||
quack_idxs_with_checkers_of_player(PyObject *self, PyObject *args) {
|
||||
|
||||
int board[26];
|
||||
int player;
|
||||
|
||||
int* idxs;
|
||||
|
||||
PyObject* board_tuple_obj;
|
||||
|
||||
if (! PyArg_ParseTuple(args, "O!i",
|
||||
&PyTuple_Type, &board_tuple_obj,
|
||||
&player))
|
||||
return NULL;
|
||||
|
||||
if (extract_board(board, board_tuple_obj)) return NULL;
|
||||
|
||||
idxs = idxs_with_checkers_of_player(board, player);
|
||||
PyObject* idxs_list = PyList_New(idxs[0]);
|
||||
|
||||
for (int i = 0; i < idxs[0]; i++) {
|
||||
PyList_SetItem(idxs_list, i, Py_BuildValue("i", idxs[i+1]));
|
||||
}
|
||||
free(idxs);
|
||||
|
||||
PyObject *result = Py_BuildValue("O", idxs_list);
|
||||
Py_DECREF(idxs_list);
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
static PyObject*
|
||||
quack_do_move(PyObject *self, PyObject *args) {
|
||||
int board[26];
|
||||
int player;
|
||||
int move[2];
|
||||
|
||||
PyObject* board_tuple_obj;
|
||||
PyObject* move_tuple_obj;
|
||||
|
||||
if (! PyArg_ParseTuple(args, "O!iO!",
|
||||
&PyTuple_Type, &board_tuple_obj,
|
||||
&player,
|
||||
&PyTuple_Type, &move_tuple_obj))
|
||||
return NULL;
|
||||
|
||||
if (extract_board(board, board_tuple_obj)) return NULL;
|
||||
if (extract_move(move, move_tuple_obj)) return NULL;
|
||||
|
||||
do_move(board, player, move);
|
||||
PyObject* board_tuple = store_board_to_pytuple(board, 26);
|
||||
|
||||
// This is shaky
|
||||
Py_DECREF(board);
|
||||
|
||||
PyObject *result = Py_BuildValue("O", board_tuple);
|
||||
Py_DECREF(board_tuple);
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
static PyObject*
|
||||
quack_calc_moves(PyObject *self, PyObject *args) {
|
||||
int board[26];
|
||||
int player;
|
||||
int face_value;
|
||||
|
||||
PyObject* board_tuple_obj;
|
||||
|
||||
if (! PyArg_ParseTuple(args, "O!ii",
|
||||
&PyTuple_Type, &board_tuple_obj,
|
||||
&player,
|
||||
&face_value))
|
||||
return NULL;
|
||||
|
||||
if (extract_board(board, board_tuple_obj)) return NULL;
|
||||
|
||||
board_list boards = calc_moves(board, player, face_value);
|
||||
PyObject* boards_list = PyList_New(boards.size);
|
||||
|
||||
for (int i = 0; i < boards.size; i++) {
|
||||
if (PyList_SetItem(boards_list, i, boards.list[i])) {
|
||||
printf("list insertion failed at index %i\n",i);
|
||||
abort();
|
||||
}
|
||||
}
|
||||
|
||||
PyObject *result = Py_BuildValue("O", boards_list);
|
||||
Py_DECREF(boards_list);
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
static PyObject*
|
||||
quack_board_features_quack_fat(PyObject *self, PyObject *args) {
|
||||
int board[26];
|
||||
int player;
|
||||
|
||||
PyObject* board_tuple_obj;
|
||||
|
||||
if (! PyArg_ParseTuple(args, "O!i",
|
||||
&PyTuple_Type, &board_tuple_obj,
|
||||
&player))
|
||||
return NULL;
|
||||
|
||||
if (extract_board(board, board_tuple_obj)) return NULL;
|
||||
|
||||
int* new_board = board_features_quack_fat(board, player);
|
||||
PyObject* board_tuple = store_board_to_pytuple(new_board, 30);
|
||||
free(new_board);
|
||||
|
||||
PyObject *result = Py_BuildValue("O", board_tuple);
|
||||
Py_DECREF(board_tuple);
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
|
||||
static PyMethodDef quack_methods[] = {
|
||||
{
|
||||
"is_move_valid", quack_is_move_valid, METH_VARARGS,
|
||||
"Evaluates the validity of the proposed move."
|
||||
},
|
||||
{
|
||||
"idxs_with_checkers_of_player", quack_idxs_with_checkers_of_player, METH_VARARGS,
|
||||
"Returns a list of indexes with checkers of the specified player"
|
||||
},
|
||||
{
|
||||
"do_move", quack_do_move, METH_VARARGS,
|
||||
"Returns the board after doing the specified move"
|
||||
},
|
||||
{
|
||||
"calc_moves", quack_calc_moves, METH_VARARGS,
|
||||
"Calculates all legal moves from board with specified face value"
|
||||
},
|
||||
{
|
||||
"board_features_quack_fat", quack_board_features_quack_fat, METH_VARARGS,
|
||||
"Transforms a board to the quack-fat board representation"
|
||||
},
|
||||
{NULL, NULL, 0, NULL}
|
||||
};
|
||||
|
||||
static struct PyModuleDef quack_definition = {
|
||||
PyModuleDef_HEAD_INIT,
|
||||
"quack",
|
||||
"A Python module that provides various useful Backgammon-related functions.",
|
||||
-1,
|
||||
quack_methods
|
||||
};
|
||||
|
||||
PyMODINIT_FUNC PyInit_quack(void) {
|
||||
PyObject* module;
|
||||
|
||||
module = PyModule_Create(&quack_definition);
|
||||
if (module == NULL)
|
||||
return NULL;
|
||||
|
||||
QuackError = PyErr_NewException("quack.error", NULL, NULL);
|
||||
Py_INCREF(QuackError);
|
||||
PyModule_AddObject(module, "error", QuackError);
|
||||
|
||||
return module;
|
||||
}
|
9
quack/setup.py
Normal file
9
quack/setup.py
Normal file
|
@ -0,0 +1,9 @@
|
|||
from distutils.core import setup, Extension
|
||||
|
||||
quack = Extension('quack',
|
||||
sources = ['quack.c'])
|
||||
|
||||
setup (name = 'quack',
|
||||
version = '0.1',
|
||||
description = 'Quack Backgammon Tools',
|
||||
ext_modules = [quack])
|
28
report_docs.txt
Normal file
28
report_docs.txt
Normal file
|
@ -0,0 +1,28 @@
|
|||
<christoffer> Alexander og jeg skrev noget af vores bachelorprojekt om til C her i fredags.
|
||||
<christoffer> Man skal virkelig passe på sine hukommelsesallokeringer.
|
||||
<Jmaa> Ja, helt klart.
|
||||
<christoffer> Jeg fandt et memory leak, der lækkede 100 MiB hukommelse i sekundet.
|
||||
<Jmaa> Hvilken del blev C-ificeret?
|
||||
<Jmaa> Damned
|
||||
<christoffer> Årsagen var at vi gav et objekt med tilbage til Python uden at dekrementere dets ref-count, så fortolkeren stadig troede at nogen havde brug for det.
|
||||
<christoffer> Den del af spillogikken, der tjekker om træk er gyldige.
|
||||
<christoffer> Det bliver kaldt ret mange tusinde gange pr. spil, så vi tænkte at der måske kunne være lidt optimering at hente i at omskrive det til C.
|
||||
<Jmaa> Ok, så I har ikke selv brugt alloc og free. Det er alligevel noget.
|
||||
<christoffer> Metoden selv blev 7 gange hurtigere!
|
||||
<Jmaa> Wow!
|
||||
<christoffer> Jo. Det endte vi også med at gøre.
|
||||
<christoffer> Vi havde brug for lister af variabel størrelse. Det endte med en struct med et "size" felt og et "list" felt.
|
||||
<Jmaa> Inkluderer det speedup, frem og tilbagen mellem C og python?
|
||||
<christoffer> Det burde det gøre, ja!
|
||||
<Jmaa> Gjorde det nogen stor effekt for hvor hurtigt I kan evaluere?
|
||||
<christoffer> Jeg tror ikke at der er særligt meget "frem og tilbage"-stads. Det ser ud til at det kode man skriver bliver kastet ret direkte ind i fortolkeren.
|
||||
<christoffer> Det gjorde en stor forskel for når vi laver 1-ply.
|
||||
<christoffer> "ply" er hvor mange træk man kigger fremad.
|
||||
<christoffer> Så kun at kigge på det umiddelbart næste træk er 0-ply, hvilket er det vi har gjort indtil nu
|
||||
<christoffer> 1-ply var for langsomt. Det tog ca. 6-7 sekunder at evaluere ét træk.
|
||||
<christoffer> Alexander lavede lidt omskrivninger, så TensorFlow udregnede det hurtigere og fik det ned på ca. 3-4 sekunder *pr. spil*.
|
||||
<christoffer> Så skrev vi noget af det om til C, og nu er vi så på ca. 2 sekunder pr. spil med 1-ply, hvilket er ret vildt.
|
||||
<christoffer> Det er så godt at Python-fortolkeren kan udvides med C!
|
||||
<christoffer> caspervk, kan I optimere jeres bachelorprojekt med et par C-moduler?
|
||||
<Jmaa> Det er en hel lille sektion til rapporten det der.
|
||||
<christoffer> Yeah. Kopierer bare det her verbatim ind.
|
|
@ -16,8 +16,8 @@ pyparsing==2.2.0
|
|||
python-dateutil==2.7.2
|
||||
pytz==2018.3
|
||||
six==1.11.0
|
||||
tensorboard==1.6.0
|
||||
tensorflow==1.6.0
|
||||
tensorboard==1.8.0
|
||||
tensorflow==1.8.0
|
||||
termcolor==1.1.0
|
||||
Werkzeug==0.14.1
|
||||
pygame==1.9.3
|
||||
|
|
94
tensorflow_impl_tests/eager_main.py
Normal file
94
tensorflow_impl_tests/eager_main.py
Normal file
|
@ -0,0 +1,94 @@
|
|||
import time
|
||||
import numpy as np
|
||||
import tensorflow as tf
|
||||
from board import Board
|
||||
import tensorflow.contrib.eager as tfe
|
||||
|
||||
|
||||
tf.enable_eager_execution()
|
||||
xavier_init = tf.contrib.layers.xavier_initializer()
|
||||
|
||||
|
||||
|
||||
opt = tf.train.MomentumOptimizer(learning_rate=0.1, momentum=1)
|
||||
|
||||
output_size = 1
|
||||
hidden_size = 40
|
||||
input_size = 30
|
||||
|
||||
|
||||
model = tf.keras.Sequential([
|
||||
tf.keras.layers.Dense(40, activation="sigmoid", kernel_initializer=tf.constant_initializer(-2), input_shape=(1,input_size)),
|
||||
tf.keras.layers.Dense(1, activation="sigmoid", kernel_initializer=tf.constant_initializer(0.2))
|
||||
])
|
||||
|
||||
|
||||
# tfe.Saver(model.variables).restore(tf.train.latest_checkpoint("./"))
|
||||
|
||||
input = [0, 2, 0, 0, 0, 0, -5, 0, -3, 0, 0, 0, 5, -5, 0, 0, 0, 3, 0, 5, 0, 0, 0, 0, -2, 0]
|
||||
|
||||
|
||||
|
||||
all_input = np.array([Board.board_features_quack_fat(input, 1) for _ in range(20)])
|
||||
|
||||
|
||||
single_in = Board.board_features_quack_fat(input, 1)
|
||||
|
||||
|
||||
start = time.time()
|
||||
|
||||
all_predictions = model.predict_on_batch(all_input)
|
||||
|
||||
|
||||
learning_rate = 0.1
|
||||
|
||||
with tf.GradientTape() as tape:
|
||||
value = model(single_in)
|
||||
|
||||
|
||||
print("Before:", value)
|
||||
|
||||
grads = tape.gradient(value, model.variables)
|
||||
print("/"*40,"model_variables","/"*40)
|
||||
print(model.variables)
|
||||
print("/"*40,"grads","/"*40)
|
||||
print(grads)
|
||||
|
||||
difference_in_values = tf.reshape(tf.subtract(0.9, value, name='difference_in_values'), [])
|
||||
|
||||
for grad, train_var in zip(grads, model.variables):
|
||||
backprop_calc = 0.1 * difference_in_values * grad
|
||||
train_var.assign_add(backprop_calc)
|
||||
|
||||
value = model(single_in)
|
||||
print("/"*40,"model_variables","/"*40)
|
||||
print(model.variables)
|
||||
print("After:", value)
|
||||
|
||||
|
||||
# # grads = [0.1*val-np.random.uniform(-1,1)+grad for grad, trainable_var in zip(grads, model.variables)]
|
||||
#
|
||||
# # print(model.variables[0][0])
|
||||
# weights_before = model.weights[0]
|
||||
#
|
||||
# start = time.time()
|
||||
# #[trainable_var.assign_add(0.1*val-0.3+grad) for grad, trainable_var in zip(grads, model.variables)]
|
||||
#
|
||||
# start = time.time()
|
||||
# for gradient, trainable_var in zip(grads, model.variables):
|
||||
# backprop_calc = 0.1 * (0.9 - val) * gradient
|
||||
# trainable_var.assign_add(backprop_calc)
|
||||
#
|
||||
# # opt.apply_gradients(zip(grads, model.variables))
|
||||
#
|
||||
# print(time.time() - start)
|
||||
#
|
||||
# print(model(single_in))
|
||||
#
|
||||
# vals = model.predict_on_batch(all_input)
|
||||
# vals = list(vals)
|
||||
# vals[3] = 4
|
||||
# print(vals)
|
||||
# print(np.argmax(np.array(vals)))
|
||||
|
||||
# tfe.Saver(model.variables).save("./tmp_ckpt")
|
67
tensorflow_impl_tests/normal_main.py
Normal file
67
tensorflow_impl_tests/normal_main.py
Normal file
|
@ -0,0 +1,67 @@
|
|||
import tensorflow as tf
|
||||
import numpy as np
|
||||
import time
|
||||
|
||||
class Everything:
|
||||
|
||||
def __init__(self):
|
||||
|
||||
self.output_size = 1
|
||||
self.hidden_size = 40
|
||||
self.input_size = 30
|
||||
|
||||
self.input = tf.placeholder('float', [1, self.input_size])
|
||||
|
||||
xavier_init = tf.contrib.layers.xavier_initializer()
|
||||
|
||||
|
||||
W_1 = tf.get_variable("w_1", (self.input_size, self.hidden_size),
|
||||
initializer=tf.constant_initializer(-2))
|
||||
W_2 = tf.get_variable("w_2", (self.hidden_size, self.output_size),
|
||||
initializer=tf.constant_initializer(0.2))
|
||||
|
||||
b_1 = tf.get_variable("b_1", (self.hidden_size,),
|
||||
initializer=tf.zeros_initializer)
|
||||
b_2 = tf.get_variable("b_2", (self.output_size,),
|
||||
initializer=tf.zeros_initializer)
|
||||
|
||||
value_after_input = tf.sigmoid(tf.matmul(self.input, W_1) + b_1, name='hidden_layer')
|
||||
|
||||
self.value = tf.sigmoid(tf.matmul(value_after_input, W_2) + b_2, name='output_layer')
|
||||
|
||||
apply_gradients = []
|
||||
|
||||
|
||||
trainable_vars = tf.trainable_variables()
|
||||
gradients = tf.gradients(self.value, trainable_vars)
|
||||
|
||||
difference_in_values = tf.reshape(tf.subtract(0.9, self.value, name='difference_in_values'), [])
|
||||
|
||||
with tf.variable_scope('apply_gradients'):
|
||||
for gradient, trainable_var in zip(gradients, trainable_vars):
|
||||
backprop_calc = 0.1 * difference_in_values * gradient
|
||||
grad_apply = trainable_var.assign_add(backprop_calc)
|
||||
apply_gradients.append(grad_apply)
|
||||
|
||||
|
||||
self.training_op = tf.group(*apply_gradients, name='training_op')
|
||||
|
||||
|
||||
|
||||
def eval(self):
|
||||
input = np.array([0, 2, 0, 0, 0, 0, -5, 0, -3, 0, 0, 0, 5, -5, 0, 0, 0, 3, 0, 5, 0, 0, 0, 0, -2, 0, 0, 0, 1, 0])
|
||||
start = time.time()
|
||||
sess = tf.Session()
|
||||
sess.run(tf.global_variables_initializer())
|
||||
for i in range(20):
|
||||
val = sess.run(self.value, feed_dict={self.input: input.reshape(1,-1)})
|
||||
print(time.time() - start)
|
||||
print(val)
|
||||
sess.run(self.training_op, feed_dict={self.input: input.reshape(1,-1)})
|
||||
val = sess.run(self.value, feed_dict={self.input: input.reshape(1, -1)})
|
||||
print(val)
|
||||
|
||||
everything = Everything()
|
||||
everything.eval()
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user