Compare commits
59 Commits
no-c-no-ea
...
master
Author | SHA1 | Date | |
---|---|---|---|
ea4efc5a2b | |||
26c0b469eb | |||
f170bad9b1 | |||
6e061171da | |||
40c228ef01 | |||
c2c6c89e9f | |||
b7708b3675 | |||
bad870c27a | |||
653d6e30a8 | |||
7e51b44e33 | |||
1fd6c35baa | |||
d426c1c3b5 | |||
5ab144cffc | |||
cef8e54709 | |||
2efbc446f2 | |||
c54f7aca24 | |||
c31bc39780 | |||
6133cb439f | |||
5acd79b6da | |||
|
b11e783b30 | ||
f834b10e02 | |||
72f01a2a2d | |||
d14e6c5994 | |||
a266293ecd | |||
e9a46c79df | |||
816cdfae00 | |||
ff9664eb38 | |||
3e379b40c4 | |||
90fad334b9 | |||
a77c13a0a4 | |||
260c32d909 | |||
00974b0f11 | |||
2c02689577 | |||
926a331df0 | |||
d932663519 | |||
2312c9cb2a | |||
9f1bd56c0a | |||
ba4ef86bb5 | |||
c3f5e909d6 | |||
1aa9cf705f | |||
383dd7aa4b | |||
93188fe06b | |||
ffbc98e1a2 | |||
03e61a59cf | |||
93224864a4 | |||
504308a9af | |||
3b57c10b5a | |||
4fa10861bb | |||
6131d5b5f4 | |||
1aedc23de1 | |||
2d84cd5a0b | |||
396d5b036d | |||
4efb229d34 | |||
f2a67ca92e | |||
9cfdd7e2b2 | |||
6429e0732c | |||
cb7e7b519c | |||
9a2d87516e | |||
7b308be4e2 |
59
app.py
59
app.py
|
@ -2,27 +2,11 @@ from flask import Flask, request, jsonify
|
|||
from flask_json import FlaskJSON, as_json_p
|
||||
from flask_cors import CORS
|
||||
from board import Board
|
||||
import tensorflow as tf
|
||||
from eval import Eval
|
||||
import argparse
|
||||
import main
|
||||
import random
|
||||
from network import Network
|
||||
|
||||
parser = argparse.ArgumentParser(description="Backgammon games")
|
||||
|
||||
parser.add_argument('--model', action='store', dest='model',
|
||||
default='player_testings',
|
||||
help='name of Tensorflow model to use')
|
||||
|
||||
parser.add_argument('--board-rep', action='store', dest='board_rep',
|
||||
default='tesauro',
|
||||
help='name of board representation to use as input to neural network')
|
||||
|
||||
|
||||
args = parser.parse_args()
|
||||
|
||||
|
||||
app = Flask(__name__)
|
||||
|
||||
|
||||
|
@ -33,14 +17,13 @@ json = FlaskJSON(app)
|
|||
CORS(app)
|
||||
|
||||
config = main.config.copy()
|
||||
config['model'] = args.model
|
||||
config['board_representation'] = args.board_rep
|
||||
|
||||
config['model'] = "player_testings"
|
||||
config['ply'] = "0"
|
||||
config['board_representation'] = 'tesauro'
|
||||
network = Network(config, config['model'])
|
||||
|
||||
sess = tf.Session()
|
||||
sess.run(tf.global_variables_initializer())
|
||||
network.restore_model(sess)
|
||||
network.restore_model()
|
||||
|
||||
|
||||
def calc_move_sets(from_board, roll, player):
|
||||
board = from_board
|
||||
|
@ -57,8 +40,8 @@ def calc_move_sets(from_board, roll, player):
|
|||
def tmp_name(from_board, to_board, roll, player, total_moves, is_quad=False):
|
||||
sets = calc_move_sets(from_board, roll, player)
|
||||
return_board = from_board
|
||||
# print("To board:\n",to_board)
|
||||
# print("All sets:\n",sets)
|
||||
print("To board:\n",to_board)
|
||||
print("All sets:\n",sets)
|
||||
for idx, board_set in enumerate(sets):
|
||||
board_set[0] = list(board_set[0])
|
||||
# print(to_board)
|
||||
|
@ -102,32 +85,6 @@ def check_move(prev, curr):
|
|||
return any(truth_list)
|
||||
|
||||
|
||||
@app.route('/pubeval_move', methods=['POST'])
|
||||
def pubeval_move():
|
||||
|
||||
data = request.get_json(force=True)
|
||||
board = [int(x) for x in data['board'].split(',')]
|
||||
player = int(data['player'])
|
||||
roll = [int(x) for x in data['roll'].split(',')]
|
||||
|
||||
board, value = Eval.make_pubeval_move(tuple(board), player, roll)
|
||||
print("Doing pubeval move")
|
||||
return ",".join([str(x) for x in list(board)])
|
||||
|
||||
|
||||
@app.route('/network_move', methods=['POST'])
|
||||
def network_move():
|
||||
|
||||
data = request.get_json(force=True)
|
||||
board = [int(x) for x in data['board'].split(',')]
|
||||
player = int(data['player'])
|
||||
roll = [int(x) for x in data['roll'].split(',')]
|
||||
|
||||
board, value = network.make_move(sess, tuple(board), roll, player)
|
||||
|
||||
print("Doing network move")
|
||||
return ",".join([str(x) for x in list(board)])
|
||||
|
||||
|
||||
@app.route('/bot_move', methods=['POST'])
|
||||
def bot_move():
|
||||
|
@ -141,7 +98,7 @@ def bot_move():
|
|||
if use_pubeval:
|
||||
board, value = Eval.make_pubeval_move(tuple(board), 1, roll)
|
||||
else:
|
||||
board, _ = network.make_move(sess, tuple(board), roll, 1)
|
||||
board, _ = network.make_move(tuple(board), roll, 1)
|
||||
|
||||
# print("Board!:",board)
|
||||
|
||||
|
|
78
bin/0-ply-tests.rb
Normal file
78
bin/0-ply-tests.rb
Normal file
|
@ -0,0 +1,78 @@
|
|||
def run_stuff(board_rep, model_name, ply)
|
||||
epi_count = 0
|
||||
system("python3 main.py --train --model #{model_name} --board-rep #{board_rep} --episodes 1 --ply #{ply}")
|
||||
while epi_count < 200000 do
|
||||
system("python3 main.py --eval --model #{model_name} --eval-methods dumbeval --episodes 250 --ply #{ply} --repeat-eval 3")
|
||||
system("python3 main.py --eval --model #{model_name} --eval-methods pubeval --episodes 250 --ply #{ply} --repeat-eval 3")
|
||||
system("python3 main.py --train --model #{model_name} --episodes 2000 --ply #{ply}")
|
||||
epi_count += 2000
|
||||
end
|
||||
end
|
||||
|
||||
|
||||
### ///////////////////////////////////////////////////////////////
|
||||
# QUACK TESTINGS
|
||||
### ///////////////////////////////////////////////////////////////
|
||||
|
||||
board_rep = "quack"
|
||||
model_name = "quack_test_0_ply"
|
||||
ply = 0
|
||||
|
||||
run_stuff(board_rep, model_name, ply)
|
||||
|
||||
|
||||
# board_rep = "quack"
|
||||
# model_name = "quack_test_1_ply"
|
||||
# ply = 1
|
||||
|
||||
# run_stuff(board_rep, model_name, ply)
|
||||
|
||||
### ///////////////////////////////////////////////////////////////
|
||||
# QUACK-FAT TESTING
|
||||
### ///////////////////////////////////////////////////////////////
|
||||
|
||||
board_rep = "quack-fat"
|
||||
model_name = "quack-fat_test_0_ply"
|
||||
ply = 0
|
||||
|
||||
run_stuff(board_rep, model_name, ply)
|
||||
|
||||
# board_rep = "quack-fat"
|
||||
# model_name = "quack-fat_test_1_ply"
|
||||
# ply = 1
|
||||
|
||||
# run_stuff(board_rep, model_name, ply)
|
||||
|
||||
### ///////////////////////////////////////////////////////////////
|
||||
# QUACK-NORM TESTING
|
||||
### ///////////////////////////////////////////////////////////////
|
||||
|
||||
|
||||
board_rep = "quack-norm"
|
||||
model_name = "quack-norm_test_0_ply"
|
||||
ply = 0
|
||||
|
||||
run_stuff(board_rep, model_name, ply)
|
||||
|
||||
# board_rep = "quack-norm"
|
||||
# model_name = "quack-norm_test_1_ply"
|
||||
# ply = 1
|
||||
|
||||
# run_stuff(board_rep, model_name, ply)
|
||||
|
||||
### ///////////////////////////////////////////////////////////////
|
||||
# TESAURO TESTING
|
||||
### ///////////////////////////////////////////////////////////////
|
||||
|
||||
|
||||
board_rep = "tesauro"
|
||||
model_name = "tesauro_test_0_ply"
|
||||
ply = 0
|
||||
|
||||
run_stuff(board_rep, model_name, ply)
|
||||
|
||||
# board_rep = "tesauro"
|
||||
# model_name = "tesauro_test_1_ply"
|
||||
# ply = 1
|
||||
|
||||
# run_stuff(board_rep, model_name, ply)
|
|
@ -1,90 +0,0 @@
|
|||
def run_stuff(board_rep, model_name)
|
||||
epi_count = 0
|
||||
system("python3 main.py --train --model #{model_name} --board-rep #{board_rep} --episodes 1 --force-creation")
|
||||
while epi_count < 200000 do
|
||||
for _ in (1..3) do
|
||||
system("python3 main.py --eval --model #{model_name} --board-rep #{board_rep} --eval-methods dumbeval --episodes 250")
|
||||
end
|
||||
|
||||
for _ in (1..3) do
|
||||
system("python3 main.py --eval --model #{model_name} --board-rep #{board_rep} --eval-methods pubeval --episodes 250")
|
||||
end
|
||||
|
||||
system("python3 main.py --train --model #{model_name} --board-rep #{board_rep} --episodes 2000")
|
||||
|
||||
epi_count += 2000
|
||||
end
|
||||
end
|
||||
|
||||
|
||||
### ///////////////////////////////////////////////////////////////
|
||||
# QUACK TESTINGS
|
||||
### ///////////////////////////////////////////////////////////////
|
||||
|
||||
board_rep = "quack"
|
||||
model_name = "quack_test_0_ply"
|
||||
|
||||
|
||||
#run_stuff(board_rep, model_name)
|
||||
|
||||
|
||||
#board_rep = "quack"
|
||||
#model_name = "quack_test_1_ply"
|
||||
#
|
||||
|
||||
#run_stuff(board_rep, model_name)
|
||||
|
||||
### ///////////////////////////////////////////////////////////////
|
||||
# QUACK-FAT TESTING
|
||||
### ///////////////////////////////////////////////////////////////
|
||||
|
||||
board_rep = "quack-fat"
|
||||
model_name = "quack-fat_test_0_ply"
|
||||
|
||||
|
||||
#run_stuff(board_rep, model_name)
|
||||
|
||||
#board_rep = "quack-fat"
|
||||
#model_name = "quack-fat_test_1_ply"
|
||||
#
|
||||
|
||||
#run_stuff(board_rep, model_name)
|
||||
|
||||
### ///////////////////////////////////////////////////////////////
|
||||
# QUACK-NORM TESTING
|
||||
### ///////////////////////////////////////////////////////////////
|
||||
|
||||
|
||||
board_rep = "quack-norm"
|
||||
model_name = "quack-norm_test_0_ply"
|
||||
|
||||
|
||||
#run_stuff(board_rep, model_name)
|
||||
|
||||
#board_rep = "quack-norm"
|
||||
#model_name = "quack-norm_test_1_ply"
|
||||
#
|
||||
|
||||
#run_stuff(board_rep, model_name)
|
||||
|
||||
### ///////////////////////////////////////////////////////////////
|
||||
# TESAURO TESTING
|
||||
### ///////////////////////////////////////////////////////////////
|
||||
|
||||
|
||||
board_rep = "tesauro"
|
||||
model_name = "tesauro_test3_0_ply"
|
||||
|
||||
|
||||
run_stuff(board_rep, model_name)
|
||||
|
||||
#board_rep = "tesauro"
|
||||
#model_name = "tesauro_test_1_ply"
|
||||
#
|
||||
|
||||
#run_stuff(board_rep, model_name)
|
||||
|
||||
|
||||
|
||||
|
||||
|
|
@ -1,30 +1,30 @@
|
|||
#!/usr/bin/env ruby
|
||||
MODELS_DIR = 'models'
|
||||
|
||||
def save(model_name)
|
||||
require 'date'
|
||||
|
||||
models_dir = 'models'
|
||||
model_path = File.join(models_dir, model_name)
|
||||
if not File.exists? model_path then
|
||||
return false
|
||||
end
|
||||
model_path = File.join(MODELS_DIR, model_name)
|
||||
|
||||
episode_count = (File.read File.join(model_path, 'episodes_trained')).to_i
|
||||
|
||||
puts "Found model #{model_name} with episodes #{episode_count} trained!"
|
||||
|
||||
file_name = "model-#{model_name}-#{episode_count}-#{Time.now.strftime('%Y%m%d-%H%M%S')}.tar.gz"
|
||||
save_path = File.join(models_dir, 'saves', file_name)
|
||||
save_path = File.join(MODELS_DIR, 'saves', file_name)
|
||||
puts "Saving to #{save_path}"
|
||||
|
||||
system("tar", "-cvzf", save_path, "-C", models_dir, model_name)
|
||||
|
||||
return true
|
||||
system("tar", "-cvzf", save_path, "-C", MODELS_DIR, model_name)
|
||||
end
|
||||
|
||||
def train(model, episodes)
|
||||
system("python3", "main.py", "--train", "--model", model, "--episodes", episodes.to_s)
|
||||
end
|
||||
|
||||
def force_train(model, episodes)
|
||||
system("python3", "main.py", "--train", "--force-creation", "--model", model, "--episodes", episodes.to_s)
|
||||
end
|
||||
|
||||
def evaluate(model, episodes, method)
|
||||
system("python3", "main.py", "--eval" , "--model", model, "--episodes", episodes.to_s, "--eval-methods", method)
|
||||
end
|
||||
|
@ -33,11 +33,9 @@ model = ARGV[0]
|
|||
|
||||
if model.nil? then raise "no model specified" end
|
||||
|
||||
while true do
|
||||
if not File.exists? File.join(MODELS_DIR, model) then
|
||||
force_train model, 10
|
||||
save model
|
||||
train model, 1000
|
||||
save model
|
||||
train model, 1000
|
||||
3.times do
|
||||
evaluate model, 250, "pubeval"
|
||||
end
|
||||
|
@ -45,3 +43,27 @@ while true do
|
|||
evaluate model, 250, "dumbeval"
|
||||
end
|
||||
end
|
||||
|
||||
# while true do
|
||||
# save model
|
||||
# train model, 1000
|
||||
# save model
|
||||
# train model, 1000
|
||||
# 3.times do
|
||||
# evaluate model, 250, "pubeval"
|
||||
# end
|
||||
# 3.times do
|
||||
# evaluate model, 250, "dumbeval"
|
||||
# end
|
||||
# end
|
||||
|
||||
while true do
|
||||
save model
|
||||
train model, 500
|
||||
5.times do
|
||||
evaluate model, 250, "pubeval"
|
||||
end
|
||||
5.times do
|
||||
evaluate model, 250, "dumbeval"
|
||||
end
|
||||
end
|
||||
|
|
266
board.py
266
board.py
|
@ -1,3 +1,4 @@
|
|||
import quack
|
||||
import numpy as np
|
||||
import itertools
|
||||
|
||||
|
@ -12,15 +13,9 @@ class Board:
|
|||
|
||||
@staticmethod
|
||||
def idxs_with_checkers_of_player(board, player):
|
||||
idxs = []
|
||||
for idx, checker_count in enumerate(board):
|
||||
if checker_count * player >= 1:
|
||||
idxs.append(idx)
|
||||
return idxs
|
||||
return quack.idxs_with_checkers_of_player(board, player)
|
||||
|
||||
|
||||
# TODO: Write a test for this
|
||||
# TODO: Make sure that the bars fit, 0 represents the -1 player and 25 represents the 1 player
|
||||
# index 26 is player 1 home, index 27 is player -1 home
|
||||
@staticmethod
|
||||
def board_features_to_pubeval(board, player):
|
||||
|
@ -40,19 +35,19 @@ class Board:
|
|||
def board_features_quack(board, player):
|
||||
board = list(board)
|
||||
board += ([1, 0] if np.sign(player) > 0 else [0, 1])
|
||||
return np.array(board).reshape(1, -1)
|
||||
return np.array(board).reshape(1,28)
|
||||
|
||||
# quack-fat
|
||||
@staticmethod
|
||||
def board_features_quack_fat(board, player):
|
||||
board = list(board)
|
||||
positives = [x if x > 0 else 0 for x in board]
|
||||
negatives = [x if x < 0 else 0 for x in board]
|
||||
board.append( 15 - sum(positives))
|
||||
board.append(-15 - sum(negatives))
|
||||
board += ([1, 0] if np.sign(player) > 0 else [0, 1])
|
||||
return np.array(board).reshape(1,-1)
|
||||
|
||||
return np.array(quack.board_features_quack_fat(board,player)).reshape(1,30)
|
||||
# board = list(board)
|
||||
# positives = [x if x > 0 else 0 for x in board]
|
||||
# negatives = [x if x < 0 else 0 for x in board]
|
||||
# board.append( 15 - sum(positives))
|
||||
# board.append(-15 - sum(negatives))
|
||||
# board += ([1, 0] if np.sign(player) > 0 else [0, 1])
|
||||
# return np.array(board).reshape(1,30)
|
||||
|
||||
# quack-fatter
|
||||
@staticmethod
|
||||
|
@ -68,7 +63,7 @@ class Board:
|
|||
board.append(15 - sum(positives))
|
||||
board.append(-15 - sum(negatives))
|
||||
board += ([1, 0] if np.sign(player) > 0 else [0, 1])
|
||||
return np.array(board).reshape(1, -1)
|
||||
return np.array(board).reshape(1, 30)
|
||||
|
||||
# tesauro
|
||||
@staticmethod
|
||||
|
@ -97,35 +92,47 @@ class Board:
|
|||
board_rep += bar_trans(board, player)
|
||||
board_rep += (15 - Board.num_of_checkers_for_player(board, player),)
|
||||
|
||||
board_rep += ([1,0] if cur_player == 1 else [1,0])
|
||||
board_rep += ([1, 0] if cur_player == 1 else [0, 1])
|
||||
|
||||
return np.array(board_rep).reshape(1, 198)
|
||||
|
||||
return np.array(board_rep).reshape(1,198)
|
||||
|
||||
@staticmethod
|
||||
def board_features_tesauro_fat(board, cur_player):
|
||||
def ordinary_trans(val, player):
|
||||
abs_val = val*player
|
||||
if abs_val <= 0:
|
||||
return (0, 0, 0, 0, 0, 0, 0, 0, 0)
|
||||
return (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
|
||||
elif abs_val == 1:
|
||||
return (1, 0, 0, 0, 0, 0, 0, 0, 0)
|
||||
return (1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
|
||||
elif abs_val == 2:
|
||||
return (1, 1, 0, 0, 0, 0, 0, 0, 0)
|
||||
return (1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
|
||||
elif abs_val == 3:
|
||||
return (1, 1, 1, 0, 0, 0, 0, 0, 0)
|
||||
return (1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
|
||||
elif abs_val == 4:
|
||||
return (1, 1, 1, 1, 0, 0, 0, 0, 0)
|
||||
return (1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
|
||||
elif abs_val == 5:
|
||||
return (1, 1, 1, 1, 1, 0, 0, 0, 0)
|
||||
return (1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
|
||||
elif abs_val == 6:
|
||||
return (1, 1, 1, 1, 1, 1, 0, 0, 0)
|
||||
return (1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0)
|
||||
elif abs_val == 7:
|
||||
return (1, 1, 1, 1, 1, 1, 1, 0, 0)
|
||||
return (1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0)
|
||||
elif abs_val == 8:
|
||||
return (1, 1, 1, 1, 1, 1, 1, 1, 0)
|
||||
else:
|
||||
return (1, 1, 1, 1, 1, 1, 1, 1, (abs_val - 9) / 2)
|
||||
|
||||
return (1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0)
|
||||
elif abs_val == 9:
|
||||
return (1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0)
|
||||
elif abs_val == 10:
|
||||
return (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0)
|
||||
elif abs_val == 11:
|
||||
return (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0)
|
||||
elif abs_val == 12:
|
||||
return (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0)
|
||||
elif abs_val == 13:
|
||||
return (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0)
|
||||
elif abs_val == 14:
|
||||
return (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0)
|
||||
elif abs_val == 15:
|
||||
return (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1)
|
||||
|
||||
def bar_trans(board, player):
|
||||
if player == 1: return (abs(board[0]/2),)
|
||||
|
@ -138,7 +145,7 @@ class Board:
|
|||
board_rep += bar_trans(board, player)
|
||||
board_rep += (15 - Board.num_of_checkers_for_player(board, player),)
|
||||
|
||||
board_rep += ([1, 0] if cur_player == 1 else [1,0])
|
||||
board_rep += ([1, 0] if cur_player == 1 else [0, 1])
|
||||
|
||||
return np.array(board_rep).reshape(1, len(board_rep))
|
||||
|
||||
|
@ -165,105 +172,15 @@ class Board:
|
|||
# Calculate how many pieces there must be in the home state and divide it by 15
|
||||
features.append((15 - sum) / 15)
|
||||
features += ([1,0] if np.sign(cur_player) > 0 else [0,1])
|
||||
test = np.array(features).reshape(1,-1)
|
||||
test = np.array(features)
|
||||
#print("TEST:",test)
|
||||
return test
|
||||
return test.reshape(1,198)
|
||||
|
||||
|
||||
|
||||
@staticmethod
|
||||
def is_move_valid(board, player, face_value, move):
|
||||
if face_value == 0:
|
||||
return True
|
||||
else:
|
||||
def sign(a):
|
||||
return (a > 0) - (a < 0)
|
||||
|
||||
from_idx = move[0]
|
||||
to_idx = move[1]
|
||||
to_state = None
|
||||
from_state = board[from_idx]
|
||||
delta = to_idx - from_idx
|
||||
direction = sign(delta)
|
||||
bearing_off = None
|
||||
|
||||
# FIXME: Use get instead of array-like indexing
|
||||
if to_idx >= 1 and to_idx <= 24:
|
||||
to_state = board[to_idx]
|
||||
bearing_off = False
|
||||
else: # Bearing off
|
||||
to_state = 0
|
||||
bearing_off = True
|
||||
|
||||
# print("_"*20)
|
||||
# print("board:", board)
|
||||
# print("to_idx:", to_idx, "board[to_idx]:", board[to_idx], "to_state:", to_state)
|
||||
# print("+"*20)
|
||||
|
||||
def is_forward_move():
|
||||
return direction == player
|
||||
|
||||
def face_value_match_move_length():
|
||||
return abs(delta) == face_value
|
||||
|
||||
def bear_in_if_checker_on_bar():
|
||||
if player == 1:
|
||||
bar = 0
|
||||
else:
|
||||
bar = 25
|
||||
|
||||
bar_state = board[bar]
|
||||
|
||||
if bar_state != 0:
|
||||
return from_idx == bar
|
||||
else:
|
||||
return True
|
||||
|
||||
def checkers_at_from_idx():
|
||||
return sign(from_state) == player
|
||||
|
||||
def no_block_at_to_idx():
|
||||
if -sign(to_state) == player:
|
||||
return abs(to_state) == 1
|
||||
else:
|
||||
return True
|
||||
|
||||
def can_bear_off():
|
||||
checker_idxs = Board.idxs_with_checkers_of_player(board, player)
|
||||
|
||||
def moving_directly_off():
|
||||
if player == 1:
|
||||
return to_idx == 25;
|
||||
if player == -1:
|
||||
return to_idx == 0;
|
||||
|
||||
def is_moving_backmost_checker():
|
||||
if player == 1:
|
||||
return all([(idx >= from_idx) for idx in checker_idxs])
|
||||
else:
|
||||
return all([(idx <= from_idx) for idx in checker_idxs])
|
||||
|
||||
def all_checkers_in_last_quadrant():
|
||||
if player == 1:
|
||||
return all([(idx >= 19) for idx in checker_idxs])
|
||||
else:
|
||||
return all([(idx <= 6) for idx in checker_idxs])
|
||||
|
||||
return all([ moving_directly_off() or is_moving_backmost_checker(),
|
||||
all_checkers_in_last_quadrant() ])
|
||||
|
||||
# TODO: add switch here instead of wonky ternary in all
|
||||
# print("is_forward:",is_forward_move())
|
||||
# print("face_value:",face_value_match_move_length())
|
||||
# print("Checkes_at_from:",checkers_at_from_idx())
|
||||
# print("no_block:",no_block_at_to_idx())
|
||||
|
||||
return all([ is_forward_move(),
|
||||
face_value_match_move_length(),
|
||||
bear_in_if_checker_on_bar(),
|
||||
checkers_at_from_idx(),
|
||||
no_block_at_to_idx(),
|
||||
can_bear_off() if bearing_off else True ])
|
||||
return quack.is_move_valid(board, player, face_value, move)
|
||||
|
||||
@staticmethod
|
||||
def any_move_valid(board, player, roll):
|
||||
|
@ -303,40 +220,37 @@ class Board:
|
|||
|
||||
|
||||
@staticmethod
|
||||
def apply_moves_to_board(board, player, moves):
|
||||
for move in moves:
|
||||
from_idx, to_idx = move.split("/")
|
||||
board[int(from_idx)] -= int(player)
|
||||
board[int(to_idx)] += int(player)
|
||||
return board
|
||||
def apply_moves_to_board(board, player, move):
|
||||
from_idx = move[0]
|
||||
to_idx = move[1]
|
||||
board = list(board)
|
||||
board[from_idx] -= player
|
||||
|
||||
if (to_idx < 1 or to_idx > 24):
|
||||
return
|
||||
|
||||
if (board[to_idx] * player == -1):
|
||||
|
||||
if (player == 1):
|
||||
board[25] -= player
|
||||
else:
|
||||
board[0] -= player
|
||||
|
||||
board[to_idx] = 0
|
||||
|
||||
board[to_idx] += player
|
||||
|
||||
return tuple(board)
|
||||
|
||||
@staticmethod
|
||||
def calculate_legal_states(board, player, roll):
|
||||
# Find all points with checkers on them belonging to the player
|
||||
# Iterate through each index and check if it's a possible move given the roll
|
||||
|
||||
# TODO: make sure that it is not possible to do nothing on first part of
|
||||
# turn and then do something with the second die
|
||||
|
||||
def calc_moves(board, face_value):
|
||||
idxs_with_checkers = Board.idxs_with_checkers_of_player(board, player)
|
||||
if len(idxs_with_checkers) == 0:
|
||||
if face_value == 0:
|
||||
return [board]
|
||||
boards = [(Board.do_move(board,
|
||||
player,
|
||||
(idx, idx + (face_value * player)))
|
||||
if Board.is_move_valid(board,
|
||||
player,
|
||||
face_value,
|
||||
(idx, idx + (face_value * player)))
|
||||
else None)
|
||||
for idx in idxs_with_checkers]
|
||||
# print("pls:",boards)
|
||||
board_list = list(filter(None, boards)) # Remove None-values
|
||||
# if len(board_list) == 0:
|
||||
# return [board]
|
||||
# print("board list:", board_list)
|
||||
return board_list
|
||||
return quack.calc_moves(board, player, face_value)
|
||||
|
||||
# Problem with cal_moves: Method can return empty list (should always contain at least same board).
|
||||
# *Update*: Seems to be fixed.
|
||||
|
@ -350,23 +264,17 @@ class Board:
|
|||
if not Board.any_move_valid(board, player, roll):
|
||||
return { board }
|
||||
dice_permutations = list(itertools.permutations(roll)) if roll[0] != roll[1] else [[roll[0]]*4]
|
||||
#print("Permuts:",dice_permutations)
|
||||
# print("Dice permuts:",dice_permutations)
|
||||
for roll in dice_permutations:
|
||||
# Calculate boards resulting from first move
|
||||
#print("initial board: ", board)
|
||||
#print("roll:", roll)
|
||||
boards = calc_moves(board, roll[0])
|
||||
#print("boards after first die: ", boards)
|
||||
|
||||
for die in roll[1:]:
|
||||
# Calculate boards resulting from second move
|
||||
nested_boards = [calc_moves(board, die) for board in boards]
|
||||
#print("nested boards: ", nested_boards)
|
||||
boards = [board for boards in nested_boards for board in boards]
|
||||
# What the fuck
|
||||
#for board in boards:
|
||||
# print(board)
|
||||
# print("type__:",type(board))
|
||||
|
||||
# Add resulting unique boards to set of legal boards resulting from roll
|
||||
|
||||
#print("printing boards from calculate_legal_states: ", boards)
|
||||
|
@ -395,9 +303,9 @@ class Board:
|
|||
return """
|
||||
13 14 15 16 17 18 19 20 21 22 23 24
|
||||
+--------------------------------------------------------------------------+
|
||||
| {13}| {14}| {15}| {16}| {17}| {18}| bar -1: {25} | {19}| {20}| {21}| {22}| {23}| {24}| end -1: TODO|
|
||||
| {13}| {14}| {15}| {16}| {17}| {18}| bar -1: {25} | {19}| {20}| {21}| {22}| {23}| {24}| end 1: TODO|
|
||||
|---|---|---|---|---|---|------------|---|---|---|---|---|---| |
|
||||
| {12}| {11}| {10}| {9}| {8}| {7}| bar 1: {0} | {6}| {5}| {4}| {3}| {2}| {1}| end 1: TODO|
|
||||
| {12}| {11}| {10}| {9}| {8}| {7}| bar 1: {0} | {6}| {5}| {4}| {3}| {2}| {1}| end -1: TODO|
|
||||
+--------------------------------------------------------------------------+
|
||||
12 11 10 9 8 7 6 5 4 3 2 1
|
||||
""".format(*temp)
|
||||
|
@ -405,42 +313,8 @@ class Board:
|
|||
@staticmethod
|
||||
def do_move(board, player, move):
|
||||
# Implies that move is valid; make sure to check move validity before calling do_move(...)
|
||||
return quack.do_move(board, player, move)
|
||||
|
||||
def move_to_bar(board, to_idx):
|
||||
board = list(board)
|
||||
if player == 1:
|
||||
board[25] -= player
|
||||
else:
|
||||
board[0] -= player
|
||||
|
||||
board[to_idx] = 0
|
||||
return board
|
||||
|
||||
# TODO: Moving in from bar is handled by the representation
|
||||
# TODONE: Handle bearing off
|
||||
|
||||
from_idx = move[0]
|
||||
#print("from_idx: ", from_idx)
|
||||
to_idx = move[1]
|
||||
#print("to_idx: ", to_idx)
|
||||
# pdb.set_trace()
|
||||
board = list(board) # Make mutable copy of board
|
||||
|
||||
# 'Lift' checker
|
||||
board[from_idx] -= player
|
||||
|
||||
# Handle bearing off
|
||||
if to_idx < 1 or to_idx > 24:
|
||||
return tuple(board)
|
||||
|
||||
# Handle hitting checkers
|
||||
if board[to_idx] * player == -1:
|
||||
board = move_to_bar(board, to_idx)
|
||||
|
||||
# Put down checker
|
||||
board[to_idx] += player
|
||||
|
||||
return tuple(board)
|
||||
|
||||
@staticmethod
|
||||
def flip(board):
|
||||
|
|
84
bot.py
84
bot.py
|
@ -1,24 +1,8 @@
|
|||
from cup import Cup
|
||||
from network import Network
|
||||
from board import Board
|
||||
|
||||
import tensorflow as tf
|
||||
import numpy as np
|
||||
import random
|
||||
|
||||
class Bot:
|
||||
def __init__(self, sym, config = None, name = "unnamed"):
|
||||
self.config = config
|
||||
self.cup = Cup()
|
||||
def __init__(self, sym):
|
||||
self.sym = sym
|
||||
self.graph = tf.Graph()
|
||||
|
||||
self.network = Network(config, name)
|
||||
self.network.restore_model()
|
||||
|
||||
def restore_model(self):
|
||||
with self.graph.as_default():
|
||||
self.network.restore_model()
|
||||
|
||||
def get_session(self):
|
||||
return self.session
|
||||
|
@ -26,16 +10,60 @@ class Bot:
|
|||
def get_sym(self):
|
||||
return self.sym
|
||||
|
||||
def get_network(self):
|
||||
return self.network
|
||||
|
||||
# TODO: DEPRECATE
|
||||
def make_move(self, board, sym, roll):
|
||||
# print(Board.pretty(board))
|
||||
legal_moves = Board.calculate_legal_states(board, sym, roll)
|
||||
moves_and_scores = [ (move, self.network.eval_state(np.array(move).reshape(1,26))) for move in legal_moves ]
|
||||
scores = [ x[1] for x in moves_and_scores ]
|
||||
best_move_pair = moves_and_scores[np.array(scores).argmax()]
|
||||
#print("Found the best state, being:", np.array(move_scores).argmax())
|
||||
return best_move_pair
|
||||
def calc_move_sets(self, from_board, roll, player):
|
||||
board = from_board
|
||||
sets = []
|
||||
total = 0
|
||||
print("board!:",board)
|
||||
for r in roll:
|
||||
# print("Value of r:",r)
|
||||
sets.append([Board.calculate_legal_states(board, player, [r,0]), r])
|
||||
total += r
|
||||
sets.append([Board.calculate_legal_states(board, player, [total,0]), total])
|
||||
return sets
|
||||
|
||||
|
||||
def handle_move(self, from_board, to_board, roll, player):
|
||||
|
||||
# print("Cur board:",board)
|
||||
sets = self.calc_move_sets(from_board, roll, player)
|
||||
for idx, board_set in enumerate(sets):
|
||||
board_set[0] = list(board_set[0])
|
||||
# print("My board_set:",board_set)
|
||||
if to_board in [list(c) for c in board_set[0]]:
|
||||
self.total_moves -= board_set[1]
|
||||
if idx < 2:
|
||||
# print("Roll object:",self.roll)
|
||||
self.roll[idx] = 0
|
||||
else:
|
||||
self.roll = [0,0]
|
||||
break
|
||||
print("Total moves left:",self.total_moves)
|
||||
|
||||
|
||||
def tmp_name(self, from_board, to_board, roll, player, total_moves):
|
||||
sets = self.calc_move_sets(from_board, roll, player)
|
||||
return_board = from_board
|
||||
for idx, board_set in enumerate(sets):
|
||||
board_set = list(board_set[0])
|
||||
if to_board in [list(board) for board in board_set]:
|
||||
total_moves -= board_set[1]
|
||||
# if it's not the sum of the moves
|
||||
if idx < 2:
|
||||
roll[idx] = 0
|
||||
else:
|
||||
roll = [0,0]
|
||||
return_board = to_board
|
||||
break
|
||||
return total_moves, roll, return_board
|
||||
|
||||
def make_human_move(self, board, player, roll):
|
||||
total_moves = roll[0] + roll[1]
|
||||
previous_board = board
|
||||
while total_moves != 0:
|
||||
move = input("Pick a move!\n")
|
||||
to_board = Board.apply_moves_to_board(previous_board, player, move)
|
||||
total_moves, roll, board = self.tmp_name(board, to_board, roll, player, total_moves)
|
||||
|
||||
|
||||
|
|
99
main.py
99
main.py
|
@ -2,6 +2,7 @@ import argparse
|
|||
import sys
|
||||
import os
|
||||
import time
|
||||
import subprocess
|
||||
|
||||
# Parse command line arguments
|
||||
parser = argparse.ArgumentParser(description="Backgammon games")
|
||||
|
@ -31,17 +32,17 @@ parser.add_argument('--train-perpetually', action='store_true',
|
|||
help='start new training session as soon as the previous is finished')
|
||||
parser.add_argument('--list-models', action='store_true',
|
||||
help='list all known models')
|
||||
parser.add_argument('--force-creation', action='store_true',
|
||||
help='force model creation if model does not exist')
|
||||
parser.add_argument('--board-rep', action='store', dest='board_rep',
|
||||
default='tesauro',
|
||||
help='name of board representation to use as input to neural network')
|
||||
parser.add_argument('--verbose', action='store_true',
|
||||
help='If set, a lot of stuff will be printed')
|
||||
parser.add_argument('--ply', action='store', dest='ply', default='0',
|
||||
help='defines the amount of ply used when deciding what move to make')
|
||||
parser.add_argument('--repeat-eval', action='store', dest='repeat_eval', default='1',
|
||||
help='the amount of times the evaluation method should be repeated')
|
||||
|
||||
args = parser.parse_args()
|
||||
|
||||
if args.model == "baseline_model":
|
||||
print("Model name 'baseline_model' not allowed")
|
||||
exit()
|
||||
|
||||
config = {
|
||||
'model': args.model,
|
||||
|
@ -57,8 +58,13 @@ config = {
|
|||
'model_storage_path': 'models',
|
||||
'bench_storage_path': 'bench',
|
||||
'board_representation': args.board_rep,
|
||||
'global_step': 0,
|
||||
'verbose': args.verbose,
|
||||
'ply': args.ply,
|
||||
'repeat_eval': args.repeat_eval
|
||||
}
|
||||
|
||||
|
||||
# Create models folder
|
||||
if not os.path.exists(config['model_storage_path']):
|
||||
os.makedirs(config['model_storage_path'])
|
||||
|
@ -72,19 +78,20 @@ if not os.path.isdir(model_path()):
|
|||
if not os.path.isdir(log_path):
|
||||
os.mkdir(log_path)
|
||||
|
||||
|
||||
# Define helper functions
|
||||
def log_train_outcome(outcome, diff_in_values, trained_eps = 0, log_path = os.path.join(model_path(), 'logs', "train.log")):
|
||||
commit = subprocess.run(['git', 'describe', '--first-parent', '--always'], stdout=subprocess.PIPE).stdout.decode('utf-8').rstrip()
|
||||
format_vars = { 'trained_eps': trained_eps,
|
||||
'count': len(outcome),
|
||||
'sum': sum(outcome),
|
||||
'mean': sum(outcome) / len(outcome),
|
||||
'time': int(time.time()),
|
||||
'average_diff_in_vals': diff_in_values/len(outcome)
|
||||
'average_diff_in_vals': diff_in_values,
|
||||
'commit': commit
|
||||
}
|
||||
|
||||
with open(log_path, 'a+') as f:
|
||||
f.write("{time};{trained_eps};{count};{sum};{mean};{average_diff_in_vals}".format(**format_vars) + "\n")
|
||||
f.write("{time};{trained_eps};{count};{sum};{mean};{average_diff_in_vals};{commit}".format(**format_vars) + "\n")
|
||||
|
||||
|
||||
def log_eval_outcomes(outcomes, trained_eps = 0, log_path = os.path.join(model_path(), 'logs', "eval.log")):
|
||||
|
@ -95,9 +102,12 @@ def log_eval_outcomes(outcomes, trained_eps = 0, log_path = os.path.join(model_p
|
|||
:param log_path:
|
||||
:return:
|
||||
"""
|
||||
commit = subprocess.run(['git', 'describe', '--first-parent', '--always'], stdout=subprocess.PIPE).stdout.decode('utf-8').rstrip()
|
||||
|
||||
for outcome in outcomes:
|
||||
scores = outcome[1]
|
||||
format_vars = { 'trained_eps': trained_eps,
|
||||
format_vars = { 'commit': commit,
|
||||
'trained_eps': trained_eps,
|
||||
'method': outcome[0],
|
||||
'count': len(scores),
|
||||
'sum': sum(scores),
|
||||
|
@ -105,9 +115,10 @@ def log_eval_outcomes(outcomes, trained_eps = 0, log_path = os.path.join(model_p
|
|||
'time': int(time.time())
|
||||
}
|
||||
with open(log_path, 'a+') as f:
|
||||
f.write("{time};{method};{trained_eps};{count};{sum};{mean}".format(**format_vars) + "\n")
|
||||
f.write("{time};{method};{trained_eps};{count};{sum};{mean};{commit}".format(**format_vars) + "\n")
|
||||
|
||||
def log_bench_eval_outcomes(outcomes, log_path, index, time, trained_eps = 0):
|
||||
commit = subprocess.run(['git', 'describe', '--first-parent', '--always'], stdout=subprocess.PIPE).stdout.decode('utf-8').rstrip()
|
||||
for outcome in outcomes:
|
||||
scores = outcome[1]
|
||||
format_vars = { 'trained_eps': trained_eps,
|
||||
|
@ -117,9 +128,28 @@ def log_bench_eval_outcomes(outcomes, log_path, index, time, trained_eps = 0):
|
|||
'mean': sum(scores) / len(scores),
|
||||
'time': time,
|
||||
'index': index,
|
||||
'commit': commit
|
||||
}
|
||||
with open(log_path, 'a+') as f:
|
||||
f.write("{method};{count};{index};{time};{sum};{mean}".format(**format_vars) + "\n")
|
||||
f.write("{method};{count};{index};{time};{sum};{mean};{commit}".format(**format_vars) + "\n")
|
||||
|
||||
def find_board_rep():
|
||||
checkpoint_path = os.path.join(config['model_storage_path'], config['model'])
|
||||
board_rep_path = os.path.join(checkpoint_path, "board_representation")
|
||||
with open(board_rep_path, 'r') as f:
|
||||
return f.read()
|
||||
|
||||
|
||||
def board_rep_file_exists():
|
||||
checkpoint_path = os.path.join(config['model_storage_path'], config['model'])
|
||||
board_rep_path = os.path.join(checkpoint_path, "board_representation")
|
||||
return os.path.isfile(board_rep_path)
|
||||
|
||||
def create_board_rep():
|
||||
checkpoint_path = os.path.join(config['model_storage_path'], config['model'])
|
||||
board_rep_path = os.path.join(checkpoint_path, "board_representation")
|
||||
with open(board_rep_path, 'a+') as f:
|
||||
f.write(config['board_representation'])
|
||||
|
||||
# Do actions specified by command-line
|
||||
if args.list_models:
|
||||
|
@ -144,6 +174,22 @@ if __name__ == "__main__":
|
|||
# Set up variables
|
||||
episode_count = config['episode_count']
|
||||
|
||||
if config['board_representation'] is None:
|
||||
if board_rep_file_exists():
|
||||
config['board_representation'] = find_board_rep()
|
||||
else:
|
||||
sys.stderr.write("Was not given a board_rep and was unable to find a board_rep file\n")
|
||||
exit()
|
||||
else:
|
||||
if not board_rep_file_exists():
|
||||
create_board_rep()
|
||||
else:
|
||||
if config['board_representation'] != find_board_rep():
|
||||
sys.stderr.write("Board representation \"{given}\", does not match one in board_rep file, \"{board_rep}\"\n".
|
||||
format(given = config['board_representation'], board_rep = find_board_rep()))
|
||||
exit()
|
||||
|
||||
|
||||
if args.train:
|
||||
network = Network(config, config['model'])
|
||||
start_episode = network.episodes_trained
|
||||
|
@ -157,15 +203,21 @@ if __name__ == "__main__":
|
|||
if not config['train_perpetually']:
|
||||
break
|
||||
|
||||
elif args.play:
|
||||
network = Network(config, config['model'])
|
||||
network.play_against_network()
|
||||
|
||||
elif args.eval:
|
||||
network = Network(config, config['model'])
|
||||
start_episode = network.episodes_trained
|
||||
# Evaluation measures are described in `config`
|
||||
outcomes = network.eval(config['episode_count'])
|
||||
log_eval_outcomes(outcomes, trained_eps = start_episode)
|
||||
# elif args.play:
|
||||
# g.play(episodes = episode_count)
|
||||
network.restore_model()
|
||||
|
||||
for i in range(int(config['repeat_eval'])):
|
||||
start_episode = network.episodes_trained
|
||||
# Evaluation measures are described in `config`
|
||||
outcomes = network.eval(config['episode_count'])
|
||||
log_eval_outcomes(outcomes, trained_eps = start_episode)
|
||||
# elif args.play:
|
||||
# g.play(episodes = episode_count)
|
||||
|
||||
|
||||
elif args.bench_eval_scores:
|
||||
|
@ -187,7 +239,7 @@ if __name__ == "__main__":
|
|||
episode_counts = [25, 50, 100, 250, 500, 1000, 2500, 5000,
|
||||
10000, 20000]
|
||||
|
||||
def do_eval(sess):
|
||||
def do_eval():
|
||||
for eval_method in config['eval_methods']:
|
||||
result_path = os.path.join(config['bench_storage_path'],
|
||||
eval_method) + "-{}.log".format(int(time.time()))
|
||||
|
@ -195,8 +247,7 @@ if __name__ == "__main__":
|
|||
for i in range(sample_count):
|
||||
start_time = time.time()
|
||||
# Evaluation measure to be benchmarked are described in `config`
|
||||
outcomes = network.eval(episode_count = n,
|
||||
tf_session = sess)
|
||||
outcomes = network.eval(episode_count = n)
|
||||
time_diff = time.time() - start_time
|
||||
log_bench_eval_outcomes(outcomes,
|
||||
time = time_diff,
|
||||
|
@ -206,8 +257,8 @@ if __name__ == "__main__":
|
|||
|
||||
# CMM: oh no
|
||||
import tensorflow as tf
|
||||
with tf.Session() as session:
|
||||
network.restore_model(session)
|
||||
do_eval(session)
|
||||
|
||||
network.restore_model()
|
||||
do_eval()
|
||||
|
||||
|
||||
|
|
|
@ -1,2 +0,0 @@
|
|||
model_checkpoint_path: "model.ckpt-11397483"
|
||||
all_model_checkpoint_paths: "model.ckpt-11397483"
|
|
@ -1 +0,0 @@
|
|||
202615
|
|
@ -1,615 +0,0 @@
|
|||
1528532690;dumbeval;1;250;-332;-1.328
|
||||
1528532754;dumbeval;1;250;-316;-1.264
|
||||
1528532816;dumbeval;1;250;-324;-1.296
|
||||
1528532851;pubeval;1;250;-405;-1.62
|
||||
1528532886;pubeval;1;250;-384;-1.536
|
||||
1528532921;pubeval;1;250;-393;-1.572
|
||||
1528533481;dumbeval;2001;250;94;0.376
|
||||
1528533510;dumbeval;2001;250;83;0.332
|
||||
1528533537;dumbeval;2001;250;116;0.464
|
||||
1528533562;pubeval;2001;250;-91;-0.364
|
||||
1528533586;pubeval;2001;250;-122;-0.488
|
||||
1528533611;pubeval;2001;250;-61;-0.244
|
||||
1528534124;dumbeval;4001;250;241;0.964
|
||||
1528534150;dumbeval;4001;250;243;0.972
|
||||
1528534175;dumbeval;4001;250;246;0.984
|
||||
1528534199;pubeval;4001;250;4;0.016
|
||||
1528534223;pubeval;4001;250;28;0.112
|
||||
1528534247;pubeval;4001;250;8;0.032
|
||||
1528534758;dumbeval;6001;250;270;1.08
|
||||
1528534783;dumbeval;6001;250;244;0.976
|
||||
1528534808;dumbeval;6001;250;238;0.952
|
||||
1528534832;pubeval;6001;250;56;0.224
|
||||
1528534856;pubeval;6001;250;35;0.14
|
||||
1528534880;pubeval;6001;250;56;0.224
|
||||
1528535389;dumbeval;8001;250;250;1.0
|
||||
1528535415;dumbeval;8001;250;238;0.952
|
||||
1528535440;dumbeval;8001;250;234;0.936
|
||||
1528535463;pubeval;8001;250;32;0.128
|
||||
1528535487;pubeval;8001;250;34;0.136
|
||||
1528535511;pubeval;8001;250;40;0.16
|
||||
1528536029;dumbeval;10001;250;290;1.16
|
||||
1528536056;dumbeval;10001;250;314;1.256
|
||||
1528536084;dumbeval;10001;250;292;1.168
|
||||
1528536110;pubeval;10001;250;100;0.4
|
||||
1528536136;pubeval;10001;250;88;0.352
|
||||
1528536162;pubeval;10001;250;63;0.252
|
||||
1528536683;dumbeval;12001;250;323;1.292
|
||||
1528536713;dumbeval;12001;250;291;1.164
|
||||
1528536742;dumbeval;12001;250;338;1.352
|
||||
1528536770;pubeval;12001;250;99;0.396
|
||||
1528536797;pubeval;12001;250;89;0.356
|
||||
1528536825;pubeval;12001;250;57;0.228
|
||||
1528537350;dumbeval;14001;250;316;1.264
|
||||
1528537378;dumbeval;14001;250;284;1.136
|
||||
1528537406;dumbeval;14001;250;301;1.204
|
||||
1528537431;pubeval;14001;250;103;0.412
|
||||
1528537457;pubeval;14001;250;112;0.448
|
||||
1528537483;pubeval;14001;250;80;0.32
|
||||
1528538031;dumbeval;16001;250;322;1.288
|
||||
1528538060;dumbeval;16001;250;314;1.256
|
||||
1528538090;dumbeval;16001;250;331;1.324
|
||||
1528538116;pubeval;16001;250;134;0.536
|
||||
1528538144;pubeval;16001;250;119;0.476
|
||||
1528538172;pubeval;16001;250;114;0.456
|
||||
1528538718;dumbeval;18001;250;329;1.316
|
||||
1528538750;dumbeval;18001;250;358;1.432
|
||||
1528538780;dumbeval;18001;250;349;1.396
|
||||
1528538807;pubeval;18001;250;120;0.48
|
||||
1528538836;pubeval;18001;250;173;0.692
|
||||
1528538865;pubeval;18001;250;148;0.592
|
||||
1528539432;dumbeval;20001;250;370;1.48
|
||||
1528539465;dumbeval;20001;250;361;1.444
|
||||
1528539497;dumbeval;20001;250;338;1.352
|
||||
1528539527;pubeval;20001;250;146;0.584
|
||||
1528539556;pubeval;20001;250;155;0.62
|
||||
1528539586;pubeval;20001;250;137;0.548
|
||||
1528540163;dumbeval;22001;250;371;1.484
|
||||
1528540195;dumbeval;22001;250;359;1.436
|
||||
1528540227;dumbeval;22001;250;371;1.484
|
||||
1528540256;pubeval;22001;250;152;0.608
|
||||
1528540285;pubeval;22001;250;157;0.628
|
||||
1528540316;pubeval;22001;250;125;0.5
|
||||
1528540938;dumbeval;24001;250;404;1.616
|
||||
1528540973;dumbeval;24001;250;416;1.664
|
||||
1528541010;dumbeval;24001;250;414;1.656
|
||||
1528541044;pubeval;24001;250;204;0.816
|
||||
1528541077;pubeval;24001;250;176;0.704
|
||||
1528541111;pubeval;24001;250;175;0.7
|
||||
1528541771;dumbeval;26001;250;399;1.596
|
||||
1528541806;dumbeval;26001;250;385;1.54
|
||||
1528541843;dumbeval;26001;250;414;1.656
|
||||
1528541877;pubeval;26001;250;144;0.576
|
||||
1528541910;pubeval;26001;250;138;0.552
|
||||
1528541944;pubeval;26001;250;174;0.696
|
||||
1528542626;dumbeval;28001;250;408;1.632
|
||||
1528542663;dumbeval;28001;250;398;1.592
|
||||
1528542700;dumbeval;28001;250;394;1.576
|
||||
1528542733;pubeval;28001;250;167;0.668
|
||||
1528542766;pubeval;28001;250;176;0.704
|
||||
1528542799;pubeval;28001;250;171;0.684
|
||||
1528543480;dumbeval;30001;250;399;1.596
|
||||
1528543516;dumbeval;30001;250;408;1.632
|
||||
1528543551;dumbeval;30001;250;379;1.516
|
||||
1528543583;pubeval;30001;250;199;0.796
|
||||
1528543615;pubeval;30001;250;169;0.676
|
||||
1528543648;pubeval;30001;250;161;0.644
|
||||
1528544301;dumbeval;32001;250;374;1.496
|
||||
1528544337;dumbeval;32001;250;385;1.54
|
||||
1528544374;dumbeval;32001;250;376;1.504
|
||||
1528544407;pubeval;32001;250;202;0.808
|
||||
1528544439;pubeval;32001;250;173;0.692
|
||||
1528544472;pubeval;32001;250;147;0.588
|
||||
1528545140;dumbeval;34001;250;418;1.672
|
||||
1528545180;dumbeval;34001;250;432;1.728
|
||||
1528545218;dumbeval;34001;250;423;1.692
|
||||
1528545252;pubeval;34001;250;185;0.74
|
||||
1528545285;pubeval;34001;250;181;0.724
|
||||
1528545318;pubeval;34001;250;189;0.756
|
||||
1528545977;dumbeval;36001;250;427;1.708
|
||||
1528546016;dumbeval;36001;250;415;1.66
|
||||
1528546056;dumbeval;36001;250;449;1.796
|
||||
1528546090;pubeval;36001;250;168;0.672
|
||||
1528546123;pubeval;36001;250;174;0.696
|
||||
1528546159;pubeval;36001;250;195;0.78
|
||||
1528546826;dumbeval;38001;250;434;1.736
|
||||
1528546867;dumbeval;38001;250;431;1.724
|
||||
1528546909;dumbeval;38001;250;420;1.68
|
||||
1528546946;pubeval;38001;250;163;0.652
|
||||
1528546982;pubeval;38001;250;144;0.576
|
||||
1528547019;pubeval;38001;250;152;0.608
|
||||
1528547711;dumbeval;40001;250;412;1.648
|
||||
1528547752;dumbeval;40001;250;436;1.744
|
||||
1528547794;dumbeval;40001;250;419;1.676
|
||||
1528547829;pubeval;40001;250;174;0.696
|
||||
1528547866;pubeval;40001;250;193;0.772
|
||||
1528547901;pubeval;40001;250;123;0.492
|
||||
1528548587;dumbeval;42001;250;427;1.708
|
||||
1528548629;dumbeval;42001;250;440;1.76
|
||||
1528548671;dumbeval;42001;250;445;1.78
|
||||
1528548707;pubeval;42001;250;208;0.832
|
||||
1528548743;pubeval;42001;250;182;0.728
|
||||
1528548778;pubeval;42001;250;189;0.756
|
||||
1528549493;dumbeval;44001;250;430;1.72
|
||||
1528549536;dumbeval;44001;250;423;1.692
|
||||
1528549580;dumbeval;44001;250;432;1.728
|
||||
1528549616;pubeval;44001;250;138;0.552
|
||||
1528549651;pubeval;44001;250;172;0.688
|
||||
1528549687;pubeval;44001;250;152;0.608
|
||||
1528550418;dumbeval;46001;250;457;1.828
|
||||
1528550458;dumbeval;46001;250;449;1.796
|
||||
1528550504;dumbeval;46001;250;445;1.78
|
||||
1528550539;pubeval;46001;250;232;0.928
|
||||
1528550574;pubeval;46001;250;205;0.82
|
||||
1528550609;pubeval;46001;250;189;0.756
|
||||
1528551309;dumbeval;48001;250;434;1.736
|
||||
1528551348;dumbeval;48001;250;422;1.688
|
||||
1528551390;dumbeval;48001;250;431;1.724
|
||||
1528551424;pubeval;48001;250;173;0.692
|
||||
1528551459;pubeval;48001;250;174;0.696
|
||||
1528551493;pubeval;48001;250;174;0.696
|
||||
1528552202;dumbeval;50001;250;446;1.784
|
||||
1528552245;dumbeval;50001;250;434;1.736
|
||||
1528552288;dumbeval;50001;250;452;1.808
|
||||
1528552324;pubeval;50001;250;193;0.772
|
||||
1528552360;pubeval;50001;250;194;0.776
|
||||
1528552397;pubeval;50001;250;139;0.556
|
||||
1528553100;dumbeval;52001;250;444;1.776
|
||||
1528553148;dumbeval;52001;250;440;1.76
|
||||
1528553194;dumbeval;52001;250;444;1.776
|
||||
1528553231;pubeval;52001;250;170;0.68
|
||||
1528553269;pubeval;52001;250;196;0.784
|
||||
1528553305;pubeval;52001;250;172;0.688
|
||||
1528554021;dumbeval;54001;250;434;1.736
|
||||
1528554065;dumbeval;54001;250;435;1.74
|
||||
1528554109;dumbeval;54001;250;437;1.748
|
||||
1528554144;pubeval;54001;250;175;0.7
|
||||
1528554178;pubeval;54001;250;146;0.584
|
||||
1528554214;pubeval;54001;250;175;0.7
|
||||
1528554922;dumbeval;56001;250;452;1.808
|
||||
1528554967;dumbeval;56001;250;450;1.8
|
||||
1528555011;dumbeval;56001;250;456;1.824
|
||||
1528555046;pubeval;56001;250;169;0.676
|
||||
1528555083;pubeval;56001;250;156;0.624
|
||||
1528555120;pubeval;56001;250;185;0.74
|
||||
1528555817;dumbeval;58001;250;437;1.748
|
||||
1528555860;dumbeval;58001;250;445;1.78
|
||||
1528555904;dumbeval;58001;250;451;1.804
|
||||
1528555940;pubeval;58001;250;193;0.772
|
||||
1528555975;pubeval;58001;250;186;0.744
|
||||
1528556011;pubeval;58001;250;156;0.624
|
||||
1528556714;dumbeval;60001;250;446;1.784
|
||||
1528556756;dumbeval;60001;250;454;1.816
|
||||
1528556798;dumbeval;60001;250;436;1.744
|
||||
1528556832;pubeval;60001;250;197;0.788
|
||||
1528556867;pubeval;60001;250;175;0.7
|
||||
1528556901;pubeval;60001;250;186;0.744
|
||||
1528557607;dumbeval;62001;250;452;1.808
|
||||
1528557648;dumbeval;62001;250;449;1.796
|
||||
1528557692;dumbeval;62001;250;448;1.792
|
||||
1528557726;pubeval;62001;250;201;0.804
|
||||
1528557761;pubeval;62001;250;164;0.656
|
||||
1528557797;pubeval;62001;250;226;0.904
|
||||
1528558492;dumbeval;64001;250;441;1.764
|
||||
1528558535;dumbeval;64001;250;445;1.78
|
||||
1528558579;dumbeval;64001;250;461;1.844
|
||||
1528558614;pubeval;64001;250;224;0.896
|
||||
1528558649;pubeval;64001;250;193;0.772
|
||||
1528558681;pubeval;64001;250;174;0.696
|
||||
1528559382;dumbeval;66001;250;441;1.764
|
||||
1528559425;dumbeval;66001;250;448;1.792
|
||||
1528559470;dumbeval;66001;250;450;1.8
|
||||
1528559503;pubeval;66001;250;195;0.78
|
||||
1528559538;pubeval;66001;250;168;0.672
|
||||
1528559572;pubeval;66001;250;206;0.824
|
||||
1528560256;dumbeval;68001;250;437;1.748
|
||||
1528560301;dumbeval;68001;250;456;1.824
|
||||
1528560344;dumbeval;68001;250;458;1.832
|
||||
1528560379;pubeval;68001;250;186;0.744
|
||||
1528560412;pubeval;68001;250;179;0.716
|
||||
1528560448;pubeval;68001;250;214;0.856
|
||||
1528561158;dumbeval;70001;250;450;1.8
|
||||
1528561201;dumbeval;70001;250;433;1.732
|
||||
1528561245;dumbeval;70001;250;441;1.764
|
||||
1528561283;pubeval;70001;250;172;0.688
|
||||
1528561319;pubeval;70001;250;221;0.884
|
||||
1528561356;pubeval;70001;250;171;0.684
|
||||
1528562042;dumbeval;72001;250;446;1.784
|
||||
1528562084;dumbeval;72001;250;434;1.736
|
||||
1528562126;dumbeval;72001;250;455;1.82
|
||||
1528562160;pubeval;72001;250;177;0.708
|
||||
1528562194;pubeval;72001;250;182;0.728
|
||||
1528562228;pubeval;72001;250;213;0.852
|
||||
1528562926;dumbeval;74001;250;443;1.772
|
||||
1528562970;dumbeval;74001;250;456;1.824
|
||||
1528563019;dumbeval;74001;250;441;1.764
|
||||
1528563059;pubeval;74001;250;162;0.648
|
||||
1528563096;pubeval;74001;250;185;0.74
|
||||
1528563133;pubeval;74001;250;199;0.796
|
||||
1528563853;dumbeval;76001;250;449;1.796
|
||||
1528563900;dumbeval;76001;250;449;1.796
|
||||
1528563945;dumbeval;76001;250;438;1.752
|
||||
1528563981;pubeval;76001;250;197;0.788
|
||||
1528564017;pubeval;76001;250;187;0.748
|
||||
1528564053;pubeval;76001;250;181;0.724
|
||||
1528564751;dumbeval;78001;250;447;1.788
|
||||
1528564794;dumbeval;78001;250;433;1.732
|
||||
1528564839;dumbeval;78001;250;451;1.804
|
||||
1528564871;pubeval;78001;250;242;0.968
|
||||
1528564906;pubeval;78001;250;215;0.86
|
||||
1528564940;pubeval;78001;250;211;0.844
|
||||
1528565634;dumbeval;80001;250;451;1.804
|
||||
1528565678;dumbeval;80001;250;445;1.78
|
||||
1528565731;dumbeval;80001;250;443;1.772
|
||||
1528565767;pubeval;80001;250;183;0.732
|
||||
1528565804;pubeval;80001;250;221;0.884
|
||||
1528565843;pubeval;80001;250;196;0.784
|
||||
1528566622;dumbeval;82001;250;449;1.796
|
||||
1528566668;dumbeval;82001;250;449;1.796
|
||||
1528566716;dumbeval;82001;250;440;1.76
|
||||
1528566753;pubeval;82001;250;179;0.716
|
||||
1528566790;pubeval;82001;250;186;0.744
|
||||
1528566827;pubeval;82001;250;178;0.712
|
||||
1528567607;dumbeval;84001;250;451;1.804
|
||||
1528567657;dumbeval;84001;250;452;1.808
|
||||
1528567706;dumbeval;84001;250;437;1.748
|
||||
1528567744;pubeval;84001;250;184;0.736
|
||||
1528567784;pubeval;84001;250;208;0.832
|
||||
1528567825;pubeval;84001;250;178;0.712
|
||||
1528568626;dumbeval;86001;250;427;1.708
|
||||
1528568675;dumbeval;86001;250;424;1.696
|
||||
1528568723;dumbeval;86001;250;423;1.692
|
||||
1528568761;pubeval;86001;250;170;0.68
|
||||
1528568802;pubeval;86001;250;165;0.66
|
||||
1528568840;pubeval;86001;250;187;0.748
|
||||
1528569620;dumbeval;88001;250;451;1.804
|
||||
1528569667;dumbeval;88001;250;452;1.808
|
||||
1528569716;dumbeval;88001;250;433;1.732
|
||||
1528569756;pubeval;88001;250;220;0.88
|
||||
1528569796;pubeval;88001;250;213;0.852
|
||||
1528569834;pubeval;88001;250;184;0.736
|
||||
1528570567;dumbeval;90001;250;449;1.796
|
||||
1528570617;dumbeval;90001;250;430;1.72
|
||||
1528570665;dumbeval;90001;250;443;1.772
|
||||
1528570702;pubeval;90001;250;219;0.876
|
||||
1528570738;pubeval;90001;250;199;0.796
|
||||
1528570776;pubeval;90001;250;230;0.92
|
||||
1528571521;dumbeval;92001;250;456;1.824
|
||||
1528571571;dumbeval;92001;250;459;1.836
|
||||
1528571619;dumbeval;92001;250;438;1.752
|
||||
1528571658;pubeval;92001;250;205;0.82
|
||||
1528571697;pubeval;92001;250;167;0.668
|
||||
1528571735;pubeval;92001;250;186;0.744
|
||||
1528572464;dumbeval;94001;250;438;1.752
|
||||
1528572506;dumbeval;94001;250;435;1.74
|
||||
1528572553;dumbeval;94001;250;444;1.776
|
||||
1528572588;pubeval;94001;250;208;0.832
|
||||
1528572624;pubeval;94001;250;206;0.824
|
||||
1528572659;pubeval;94001;250;161;0.644
|
||||
1528573338;dumbeval;96001;250;459;1.836
|
||||
1528573379;dumbeval;96001;250;436;1.744
|
||||
1528573423;dumbeval;96001;250;449;1.796
|
||||
1528573459;pubeval;96001;250;236;0.944
|
||||
1528573493;pubeval;96001;250;250;1.0
|
||||
1528573527;pubeval;96001;250;207;0.828
|
||||
1528574257;dumbeval;98001;250;450;1.8
|
||||
1528574308;dumbeval;98001;250;448;1.792
|
||||
1528574360;dumbeval;98001;250;448;1.792
|
||||
1528574402;pubeval;98001;250;206;0.824
|
||||
1528574443;pubeval;98001;250;210;0.84
|
||||
1528574486;pubeval;98001;250;191;0.764
|
||||
1528575288;dumbeval;100001;250;430;1.72
|
||||
1528575331;dumbeval;100001;250;435;1.74
|
||||
1528575375;dumbeval;100001;250;449;1.796
|
||||
1528575414;pubeval;100001;250;212;0.848
|
||||
1528575453;pubeval;100001;250;183;0.732
|
||||
1528575489;pubeval;100001;250;181;0.724
|
||||
1528576174;dumbeval;102001;250;427;1.708
|
||||
1528576220;dumbeval;102001;250;422;1.688
|
||||
1528576267;dumbeval;102001;250;431;1.724
|
||||
1528576309;pubeval;102001;250;198;0.792
|
||||
1528576345;pubeval;102001;250;181;0.724
|
||||
1528576383;pubeval;102001;250;170;0.68
|
||||
1528577157;dumbeval;104001;250;429;1.716
|
||||
1528577200;dumbeval;104001;250;430;1.72
|
||||
1528577241;dumbeval;104001;250;432;1.728
|
||||
1528577277;pubeval;104001;250;189;0.756
|
||||
1528577311;pubeval;104001;250;174;0.696
|
||||
1528577347;pubeval;104001;250;203;0.812
|
||||
1528578044;dumbeval;106001;250;451;1.804
|
||||
1528578088;dumbeval;106001;250;442;1.768
|
||||
1528578133;dumbeval;106001;250;426;1.704
|
||||
1528578170;pubeval;106001;250;211;0.844
|
||||
1528578207;pubeval;106001;250;168;0.672
|
||||
1528578243;pubeval;106001;250;169;0.676
|
||||
1528578940;dumbeval;108001;250;456;1.824
|
||||
1528578985;dumbeval;108001;250;439;1.756
|
||||
1528579030;dumbeval;108001;250;442;1.768
|
||||
1528579068;pubeval;108001;250;180;0.72
|
||||
1528579104;pubeval;108001;250;173;0.692
|
||||
1528579141;pubeval;108001;250;216;0.864
|
||||
1528579824;dumbeval;110001;250;433;1.732
|
||||
1528579867;dumbeval;110001;250;434;1.736
|
||||
1528579910;dumbeval;110001;250;445;1.78
|
||||
1528579945;pubeval;110001;250;208;0.832
|
||||
1528579981;pubeval;110001;250;190;0.76
|
||||
1528580018;pubeval;110001;250;169;0.676
|
||||
1528580691;dumbeval;112001;250;434;1.736
|
||||
1528580735;dumbeval;112001;250;440;1.76
|
||||
1528580779;dumbeval;112001;250;435;1.74
|
||||
1528580815;pubeval;112001;250;179;0.716
|
||||
1528580851;pubeval;112001;250;200;0.8
|
||||
1528580886;pubeval;112001;250;197;0.788
|
||||
1528581575;dumbeval;114001;250;444;1.776
|
||||
1528581619;dumbeval;114001;250;430;1.72
|
||||
1528581660;dumbeval;114001;250;422;1.688
|
||||
1528581697;pubeval;114001;250;188;0.752
|
||||
1528581731;pubeval;114001;250;194;0.776
|
||||
1528581767;pubeval;114001;250;211;0.844
|
||||
1528582462;dumbeval;116001;250;432;1.728
|
||||
1528582508;dumbeval;116001;250;439;1.756
|
||||
1528582556;dumbeval;116001;250;436;1.744
|
||||
1528582594;pubeval;116001;250;195;0.78
|
||||
1528582631;pubeval;116001;250;194;0.776
|
||||
1528582667;pubeval;116001;250;184;0.736
|
||||
1528583376;dumbeval;118001;250;426;1.704
|
||||
1528583419;dumbeval;118001;250;442;1.768
|
||||
1528583466;dumbeval;118001;250;424;1.696
|
||||
1528583502;pubeval;118001;250;192;0.768
|
||||
1528583538;pubeval;118001;250;195;0.78
|
||||
1528583573;pubeval;118001;250;189;0.756
|
||||
1528584264;dumbeval;120001;250;435;1.74
|
||||
1528584308;dumbeval;120001;250;440;1.76
|
||||
1528584351;dumbeval;120001;250;433;1.732
|
||||
1528584387;pubeval;120001;250;183;0.732
|
||||
1528584422;pubeval;120001;250;182;0.728
|
||||
1528584459;pubeval;120001;250;234;0.936
|
||||
1528585138;dumbeval;122001;250;456;1.824
|
||||
1528585183;dumbeval;122001;250;440;1.76
|
||||
1528585226;dumbeval;122001;250;455;1.82
|
||||
1528585263;pubeval;122001;250;186;0.744
|
||||
1528585301;pubeval;122001;250;187;0.748
|
||||
1528585339;pubeval;122001;250;215;0.86
|
||||
1528586022;dumbeval;124001;250;436;1.744
|
||||
1528586068;dumbeval;124001;250;432;1.728
|
||||
1528586114;dumbeval;124001;250;447;1.788
|
||||
1528589963;dumbeval;124002;250;440;1.76
|
||||
1528590014;dumbeval;124002;250;441;1.764
|
||||
1528590068;dumbeval;124002;250;461;1.844
|
||||
1528590109;pubeval;124002;250;188;0.752
|
||||
1528590147;pubeval;124002;250;185;0.74
|
||||
1528590188;pubeval;124002;250;191;0.764
|
||||
1528590916;dumbeval;126002;250;456;1.824
|
||||
1528590961;dumbeval;126002;250;422;1.688
|
||||
1528591007;dumbeval;126002;250;419;1.676
|
||||
1528591044;pubeval;126002;250;182;0.728
|
||||
1528591082;pubeval;126002;250;209;0.836
|
||||
1528591120;pubeval;126002;250;173;0.692
|
||||
1528591832;dumbeval;128002;250;441;1.764
|
||||
1528591877;dumbeval;128002;250;431;1.724
|
||||
1528591921;dumbeval;128002;250;433;1.732
|
||||
1528591958;pubeval;128002;250;194;0.776
|
||||
1528591997;pubeval;128002;250;229;0.916
|
||||
1528592036;pubeval;128002;250;198;0.792
|
||||
1528592764;dumbeval;130002;250;435;1.74
|
||||
1528592808;dumbeval;130002;250;441;1.764
|
||||
1528592852;dumbeval;130002;250;432;1.728
|
||||
1528592889;pubeval;130002;250;200;0.8
|
||||
1528592925;pubeval;130002;250;199;0.796
|
||||
1528592962;pubeval;130002;250;234;0.936
|
||||
1528593686;dumbeval;132002;250;443;1.772
|
||||
1528593730;dumbeval;132002;250;430;1.72
|
||||
1528593773;dumbeval;132002;250;423;1.692
|
||||
1528593811;pubeval;132002;250;189;0.756
|
||||
1528593850;pubeval;132002;250;231;0.924
|
||||
1528593889;pubeval;132002;250;225;0.9
|
||||
1528594607;dumbeval;134002;250;432;1.728
|
||||
1528594653;dumbeval;134002;250;427;1.708
|
||||
1528594698;dumbeval;134002;250;451;1.804
|
||||
1528594733;pubeval;134002;250;151;0.604
|
||||
1528594769;pubeval;134002;250;196;0.784
|
||||
1528594806;pubeval;134002;250;207;0.828
|
||||
1528595525;dumbeval;136002;250;454;1.816
|
||||
1528595570;dumbeval;136002;250;447;1.788
|
||||
1528595615;dumbeval;136002;250;437;1.748
|
||||
1528595652;pubeval;136002;250;230;0.92
|
||||
1528595689;pubeval;136002;250;239;0.956
|
||||
1528595726;pubeval;136002;250;211;0.844
|
||||
1528596455;dumbeval;138002;250;448;1.792
|
||||
1528596502;dumbeval;138002;250;448;1.792
|
||||
1528596549;dumbeval;138002;250;444;1.776
|
||||
1528596587;pubeval;138002;250;221;0.884
|
||||
1528596627;pubeval;138002;250;211;0.844
|
||||
1528596667;pubeval;138002;250;182;0.728
|
||||
1528597400;dumbeval;140002;250;419;1.676
|
||||
1528597445;dumbeval;140002;250;440;1.76
|
||||
1528597490;dumbeval;140002;250;445;1.78
|
||||
1528597527;pubeval;140002;250;182;0.728
|
||||
1528597565;pubeval;140002;250;206;0.824
|
||||
1528597602;pubeval;140002;250;181;0.724
|
||||
1528598343;dumbeval;142002;250;446;1.784
|
||||
1528598389;dumbeval;142002;250;433;1.732
|
||||
1528598434;dumbeval;142002;250;442;1.768
|
||||
1528598470;pubeval;142002;250;185;0.74
|
||||
1528598507;pubeval;142002;250;190;0.76
|
||||
1528598545;pubeval;142002;250;191;0.764
|
||||
1528599253;dumbeval;144002;250;443;1.772
|
||||
1528599298;dumbeval;144002;250;448;1.792
|
||||
1528599344;dumbeval;144002;250;441;1.764
|
||||
1528599381;pubeval;144002;250;186;0.744
|
||||
1528599420;pubeval;144002;250;214;0.856
|
||||
1528599459;pubeval;144002;250;199;0.796
|
||||
1528600193;dumbeval;146002;250;428;1.712
|
||||
1528600236;dumbeval;146002;250;424;1.696
|
||||
1528600280;dumbeval;146002;250;446;1.784
|
||||
1528600315;pubeval;146002;250;208;0.832
|
||||
1528600353;pubeval;146002;250;184;0.736
|
||||
1528600389;pubeval;146002;250;233;0.932
|
||||
1528601105;dumbeval;148002;250;432;1.728
|
||||
1528601151;dumbeval;148002;250;451;1.804
|
||||
1528601195;dumbeval;148002;250;449;1.796
|
||||
1528601233;pubeval;148002;250;229;0.916
|
||||
1528601271;pubeval;148002;250;189;0.756
|
||||
1528601308;pubeval;148002;250;214;0.856
|
||||
1528602011;dumbeval;150002;250;440;1.76
|
||||
1528602052;dumbeval;150002;250;441;1.764
|
||||
1528602097;dumbeval;150002;250;434;1.736
|
||||
1528602133;pubeval;150002;250;153;0.612
|
||||
1528602171;pubeval;150002;250;188;0.752
|
||||
1528602208;pubeval;150002;250;179;0.716
|
||||
1528602922;dumbeval;152002;250;448;1.792
|
||||
1528602966;dumbeval;152002;250;425;1.7
|
||||
1528603008;dumbeval;152002;250;425;1.7
|
||||
1528603043;pubeval;152002;250;206;0.824
|
||||
1528603081;pubeval;152002;250;177;0.708
|
||||
1528603117;pubeval;152002;250;206;0.824
|
||||
1528603829;dumbeval;154002;250;441;1.764
|
||||
1528603874;dumbeval;154002;250;436;1.744
|
||||
1528603918;dumbeval;154002;250;441;1.764
|
||||
1528603956;pubeval;154002;250;166;0.664
|
||||
1528603994;pubeval;154002;250;198;0.792
|
||||
1528604032;pubeval;154002;250;193;0.772
|
||||
1528604756;dumbeval;156002;250;433;1.732
|
||||
1528604799;dumbeval;156002;250;429;1.716
|
||||
1528604844;dumbeval;156002;250;428;1.712
|
||||
1528604880;pubeval;156002;250;180;0.72
|
||||
1528604918;pubeval;156002;250;216;0.864
|
||||
1528604956;pubeval;156002;250;198;0.792
|
||||
1528605662;dumbeval;158002;250;423;1.692
|
||||
1528605708;dumbeval;158002;250;406;1.624
|
||||
1528605753;dumbeval;158002;250;436;1.744
|
||||
1528605792;pubeval;158002;250;214;0.856
|
||||
1528605829;pubeval;158002;250;190;0.76
|
||||
1528605866;pubeval;158002;250;174;0.696
|
||||
1528606583;dumbeval;160002;250;446;1.784
|
||||
1528606628;dumbeval;160002;250;445;1.78
|
||||
1528606672;dumbeval;160002;250;449;1.796
|
||||
1528606710;pubeval;160002;250;200;0.8
|
||||
1528606748;pubeval;160002;250;177;0.708
|
||||
1528606786;pubeval;160002;250;202;0.808
|
||||
1528607505;dumbeval;162002;250;426;1.704
|
||||
1528607550;dumbeval;162002;250;431;1.724
|
||||
1528607598;dumbeval;162002;250;438;1.752
|
||||
1528607637;pubeval;162002;250;197;0.788
|
||||
1528607673;pubeval;162002;250;192;0.768
|
||||
1528607712;pubeval;162002;250;186;0.744
|
||||
1528608435;dumbeval;164002;250;436;1.744
|
||||
1528608479;dumbeval;164002;250;428;1.712
|
||||
1528608524;dumbeval;164002;250;419;1.676
|
||||
1528608562;pubeval;164002;250;156;0.624
|
||||
1528608600;pubeval;164002;250;171;0.684
|
||||
1528608638;pubeval;164002;250;181;0.724
|
||||
1528609360;dumbeval;166002;250;417;1.668
|
||||
1528609406;dumbeval;166002;250;435;1.74
|
||||
1528609452;dumbeval;166002;250;439;1.756
|
||||
1528609487;pubeval;166002;250;225;0.9
|
||||
1528609524;pubeval;166002;250;204;0.816
|
||||
1528609561;pubeval;166002;250;200;0.8
|
||||
1528610271;dumbeval;168002;250;419;1.676
|
||||
1528610315;dumbeval;168002;250;448;1.792
|
||||
1528610358;dumbeval;168002;250;436;1.744
|
||||
1528610394;pubeval;168002;250;222;0.888
|
||||
1528610429;pubeval;168002;250;211;0.844
|
||||
1528610466;pubeval;168002;250;198;0.792
|
||||
1528611167;dumbeval;170002;250;435;1.74
|
||||
1528611211;dumbeval;170002;250;436;1.744
|
||||
1528611256;dumbeval;170002;250;435;1.74
|
||||
1528611293;pubeval;170002;250;187;0.748
|
||||
1528611330;pubeval;170002;250;206;0.824
|
||||
1528611367;pubeval;170002;250;171;0.684
|
||||
1528612079;dumbeval;172002;250;436;1.744
|
||||
1528612122;dumbeval;172002;250;431;1.724
|
||||
1528612165;dumbeval;172002;250;428;1.712
|
||||
1528612203;pubeval;172002;250;188;0.752
|
||||
1528612241;pubeval;172002;250;216;0.864
|
||||
1528612278;pubeval;172002;250;207;0.828
|
||||
1528612989;dumbeval;174002;250;441;1.764
|
||||
1528613031;dumbeval;174002;250;432;1.728
|
||||
1528613076;dumbeval;174002;250;430;1.72
|
||||
1528613113;pubeval;174002;250;217;0.868
|
||||
1528613150;pubeval;174002;250;172;0.688
|
||||
1528613188;pubeval;174002;250;167;0.668
|
||||
1528613882;dumbeval;176002;250;428;1.712
|
||||
1528613925;dumbeval;176002;250;439;1.756
|
||||
1528613970;dumbeval;176002;250;454;1.816
|
||||
1528614010;pubeval;176002;250;198;0.792
|
||||
1528614047;pubeval;176002;250;189;0.756
|
||||
1528614085;pubeval;176002;250;178;0.712
|
||||
1528614814;dumbeval;178002;250;448;1.792
|
||||
1528614859;dumbeval;178002;250;420;1.68
|
||||
1528614904;dumbeval;178002;250;435;1.74
|
||||
1528614940;pubeval;178002;250;231;0.924
|
||||
1528614978;pubeval;178002;250;176;0.704
|
||||
1528615015;pubeval;178002;250;237;0.948
|
||||
1528615734;dumbeval;180002;250;434;1.736
|
||||
1528615777;dumbeval;180002;250;436;1.744
|
||||
1528615822;dumbeval;180002;250;446;1.784
|
||||
1528615859;pubeval;180002;250;194;0.776
|
||||
1528615898;pubeval;180002;250;169;0.676
|
||||
1528615936;pubeval;180002;250;174;0.696
|
||||
1528616646;dumbeval;182002;250;428;1.712
|
||||
1528616690;dumbeval;182002;250;428;1.712
|
||||
1528616735;dumbeval;182002;250;432;1.728
|
||||
1528616773;pubeval;182002;250;172;0.688
|
||||
1528616812;pubeval;182002;250;231;0.924
|
||||
1528616849;pubeval;182002;250;201;0.804
|
||||
1528617565;dumbeval;184002;250;444;1.776
|
||||
1528617608;dumbeval;184002;250;423;1.692
|
||||
1528617652;dumbeval;184002;250;434;1.736
|
||||
1528617689;pubeval;184002;250;175;0.7
|
||||
1528617727;pubeval;184002;250;185;0.74
|
||||
1528617765;pubeval;184002;250;210;0.84
|
||||
1528618483;dumbeval;186002;250;427;1.708
|
||||
1528618525;dumbeval;186002;250;442;1.768
|
||||
1528618570;dumbeval;186002;250;428;1.712
|
||||
1528618607;pubeval;186002;250;180;0.72
|
||||
1528618643;pubeval;186002;250;224;0.896
|
||||
1528618678;pubeval;186002;250;174;0.696
|
||||
1528619394;dumbeval;188002;250;437;1.748
|
||||
1528619438;dumbeval;188002;250;438;1.752
|
||||
1528619480;dumbeval;188002;250;436;1.744
|
||||
1528619519;pubeval;188002;250;176;0.704
|
||||
1528619557;pubeval;188002;250;177;0.708
|
||||
1528619595;pubeval;188002;250;219;0.876
|
||||
1528620338;dumbeval;190002;250;437;1.748
|
||||
1528620385;dumbeval;190002;250;446;1.784
|
||||
1528620436;dumbeval;190002;250;425;1.7
|
||||
1528620478;pubeval;190002;250;206;0.824
|
||||
1528620517;pubeval;190002;250;222;0.888
|
||||
1528620556;pubeval;190002;250;196;0.784
|
||||
1528621307;dumbeval;192003;250;434;1.736
|
||||
1528621351;dumbeval;192003;250;447;1.788
|
||||
1528621392;dumbeval;192003;250;441;1.764
|
||||
1528621429;pubeval;192003;250;187;0.748
|
||||
1528621467;pubeval;192003;250;221;0.884
|
||||
1528621505;pubeval;192003;250;205;0.82
|
||||
1528622213;dumbeval;194003;250;421;1.684
|
||||
1528622258;dumbeval;194003;250;430;1.72
|
||||
1528622303;dumbeval;194003;250;435;1.74
|
||||
1528622341;pubeval;194003;250;199;0.796
|
||||
1528622378;pubeval;194003;250;170;0.68
|
||||
1528622416;pubeval;194003;250;170;0.68
|
||||
1528623126;dumbeval;196003;250;440;1.76
|
||||
1528623172;dumbeval;196003;250;426;1.704
|
||||
1528623219;dumbeval;196003;250;444;1.776
|
||||
1528623258;pubeval;196003;250;199;0.796
|
||||
1528623295;pubeval;196003;250;203;0.812
|
||||
1528623334;pubeval;196003;250;178;0.712
|
||||
1528624038;dumbeval;198003;250;448;1.792
|
||||
1528624082;dumbeval;198003;250;439;1.756
|
||||
1528624126;dumbeval;198003;250;446;1.784
|
||||
1528624166;pubeval;198003;250;164;0.656
|
||||
1528624203;pubeval;198003;250;192;0.768
|
||||
1528624240;pubeval;198003;250;191;0.764
|
||||
1528624964;dumbeval;200003;250;433;1.732
|
||||
1528625008;dumbeval;200003;250;444;1.776
|
||||
1528625053;dumbeval;200003;250;422;1.688
|
||||
1528625090;pubeval;200003;250;196;0.784
|
||||
1528625129;pubeval;200003;250;209;0.836
|
||||
1528625167;pubeval;200003;250;182;0.728
|
||||
1529014470;pubeval;202003;250;200;0.8
|
||||
1529014688;pubeval;202003;250;198;0.792
|
||||
1529014798;pubeval;202003;250;-196;-0.784
|
||||
1529014923;pubeval;202003;250;-237;-0.948
|
||||
1529015034;pubeval;202003;250;193;0.772
|
||||
1529015648;pubeval;202003;250;199;0.796
|
|
@ -1,107 +0,0 @@
|
|||
1528532624;1;1;-2;-2.0;0.45343881845474243
|
||||
1528533453;2001;2000;-1814;-0.907;0.685711669921875
|
||||
1528534098;4001;2000;-608;-0.304;0.9842407836914062
|
||||
1528534732;6001;2000;-503;-0.2515;1.063406005859375
|
||||
1528535364;8001;2000;-453;-0.2265;1.0802667236328125
|
||||
1528536002;10001;2000;-44;-0.022;1.09254541015625
|
||||
1528536653;12001;2000;159;0.0795;1.0855897216796875
|
||||
1528537323;14001;2000;230;0.115;1.0957244873046874
|
||||
1528538003;16001;2000;189;0.0945;1.15757861328125
|
||||
1528538688;18001;2000;376;0.188;1.1618570556640626
|
||||
1528539399;20001;2000;518;0.259;1.1903975830078124
|
||||
1528540130;22001;2000;547;0.2735;1.1916396484375
|
||||
1528540902;24001;2000;237;0.1185;1.3655455322265626
|
||||
1528541735;26001;2000;95;0.0475;1.4186490478515625
|
||||
1528542589;28001;2000;212;0.106;1.4446763916015626
|
||||
1528543444;30001;2000;389;0.1945;1.4773995361328125
|
||||
1528544265;32001;2000;371;0.1855;1.436327880859375
|
||||
1528545100;34001;2000;244;0.122;1.4622772216796875
|
||||
1528545938;36001;2000;182;0.091;1.526433349609375
|
||||
1528546785;38001;2000;159;0.0795;1.5337244873046876
|
||||
1528547667;40001;2000;252;0.126;1.5359388427734375
|
||||
1528548544;42001;2000;188;0.094;1.54842041015625
|
||||
1528549450;44001;2000;246;0.123;1.614618896484375
|
||||
1528550374;46001;2000;128;0.064;1.5962698974609375
|
||||
1528551266;48001;2000;10;0.005;1.6010469970703125
|
||||
1528552159;50001;2000;-83;-0.0415;1.582731201171875
|
||||
1528553055;52001;2000;-66;-0.033;1.579044677734375
|
||||
1528553979;54001;2000;-54;-0.027;1.630927978515625
|
||||
1528554875;56001;2000;98;0.049;1.557802001953125
|
||||
1528555773;58001;2000;-101;-0.0505;1.585782470703125
|
||||
1528556671;60001;2000;-49;-0.0245;1.5916173095703126
|
||||
1528557562;62001;2000;17;0.0085;1.6063782958984374
|
||||
1528558447;64001;2000;38;0.019;1.5958663330078124
|
||||
1528559339;66001;2000;9;0.0045;1.5874405517578125
|
||||
1528560213;68001;2000;38;0.019;1.582672119140625
|
||||
1528561114;70001;2000;114;0.057;1.6329345703125
|
||||
1528562000;72001;2000;224;0.112;1.5919478759765624
|
||||
1528562881;74001;2000;143;0.0715;1.6054395751953126
|
||||
1528563806;76001;2000;273;0.1365;1.6047711181640625
|
||||
1528564707;78001;2000;9;0.0045;1.5738580322265625
|
||||
1528565591;80001;2000;-70;-0.035;1.6135865478515625
|
||||
1528566574;82001;2000;59;0.0295;1.5992630615234376
|
||||
1528567559;84001;2000;-12;-0.006;1.5602725830078126
|
||||
1528568577;86001;2000;97;0.0485;1.5966063232421874
|
||||
1528569574;88001;2000;87;0.0435;1.6054110107421875
|
||||
1528570519;90001;2000;300;0.15;1.582406494140625
|
||||
1528571469;92001;2000;140;0.07;1.59626611328125
|
||||
1528572420;94001;2000;171;0.0855;1.610840576171875
|
||||
1528573295;96001;2000;37;0.0185;1.5797979736328125
|
||||
1528574204;98001;2000;-105;-0.0525;1.574399169921875
|
||||
1528575242;100001;2000;-136;-0.068;1.5745897216796876
|
||||
1528576133;102001;2000;63;0.0315;1.5833463134765624
|
||||
1528577114;104001;2000;101;0.0505;1.6021649169921874
|
||||
1528577998;106001;2000;-82;-0.041;1.581091552734375
|
||||
1528578895;108001;2000;21;0.0105;1.583177734375
|
||||
1528579781;110001;2000;130;0.065;1.5937142333984375
|
||||
1528580648;112001;2000;101;0.0505;1.5705904541015625
|
||||
1528581533;114001;2000;-26;-0.013;1.6102183837890625
|
||||
1528582417;116001;2000;71;0.0355;1.6006197509765625
|
||||
1528583331;118001;2000;79;0.0395;1.61836279296875
|
||||
1528584217;120001;2000;12;0.006;1.5898594970703126
|
||||
1528585094;122001;2000;115;0.0575;1.5761893310546875
|
||||
1528585977;124001;2000;3;0.0015;1.567900390625
|
||||
1528589910;124002;1;1;1.0;2.1990389823913574
|
||||
1528590871;126002;2000;39;0.0195;1.55269384765625
|
||||
1528591789;128002;2000;98;0.049;1.5829056396484376
|
||||
1528592719;130002;2000;75;0.0375;1.584886474609375
|
||||
1528593642;132002;2000;242;0.121;1.5954697265625
|
||||
1528594563;134002;2000;81;0.0405;1.577446044921875
|
||||
1528595479;136002;2000;129;0.0645;1.582875732421875
|
||||
1528596406;138002;2000;115;0.0575;1.6050557861328125
|
||||
1528597356;140002;2000;184;0.092;1.589245361328125
|
||||
1528598297;142002;2000;191;0.0955;1.6228802490234375
|
||||
1528599207;144002;2000;10;0.005;1.6130411376953124
|
||||
1528600149;146002;2000;50;0.025;1.6085372314453126
|
||||
1528601062;148002;2000;11;0.0055;1.59520458984375
|
||||
1528601967;150002;2000;152;0.076;1.5749661865234375
|
||||
1528602880;152002;2000;108;0.054;1.6114630126953124
|
||||
1528603784;154002;2000;305;0.1525;1.5742574462890624
|
||||
1528604711;156002;2000;42;0.021;1.5828121337890626
|
||||
1528605617;158002;2000;98;0.049;1.589599609375
|
||||
1528606539;160002;2000;197;0.0985;1.5930859375
|
||||
1528607459;162002;2000;280;0.14;1.5736075439453125
|
||||
1528608390;164002;2000;105;0.0525;1.5925037841796874
|
||||
1528609316;166002;2000;160;0.08;1.5934769287109376
|
||||
1528610227;168002;2000;213;0.1065;1.5652880859375
|
||||
1528611123;170002;2000;6;0.003;1.564364013671875
|
||||
1528612035;172002;2000;26;0.013;1.5828829345703126
|
||||
1528612943;174002;2000;50;0.025;1.581922119140625
|
||||
1528613838;176002;2000;140;0.07;1.589693115234375
|
||||
1528614766;178002;2000;107;0.0535;1.5945419921875
|
||||
1528615689;180002;2000;80;0.04;1.5782044677734375
|
||||
1528616601;182002;2000;19;0.0095;1.574864013671875
|
||||
1528617520;184002;2000;-73;-0.0365;1.565394287109375
|
||||
1528618437;186002;2000;25;0.0125;1.6035906982421875
|
||||
1528619351;188002;2000;132;0.066;1.61888134765625
|
||||
1528620292;190002;2000;109;0.0545;1.6021832275390624
|
||||
1528621254;192002;2000;41;0.0205;1.5614134521484375
|
||||
1528621264;192003;1;1;1.0;1.1434392929077148
|
||||
1528622166;194003;2000;-20;-0.01;1.5994180908203126
|
||||
1528623082;196003;2000;73;0.0365;1.577033935546875
|
||||
1528623993;198003;2000;57;0.0285;1.5527196044921876
|
||||
1528624919;200003;2000;29;0.0145;1.5869425048828125
|
||||
1528625838;202003;2000;114;0.057;1.61248779296875
|
||||
1529017158;202604;1;-2;-2.0;1.1881717443466187
|
||||
1529017166;202605;1;2;2.0;0.9586520195007324
|
||||
1529017177;202615;10;1;0.1;2.0276899337768555
|
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Some files were not shown because too many files have changed in this diff Show More
Loading…
Reference in New Issue
Block a user