Compare commits
115 Commits
Tesaurofie
...
master
Author | SHA1 | Date | |
---|---|---|---|
ea4efc5a2b | |||
26c0b469eb | |||
f170bad9b1 | |||
6e061171da | |||
40c228ef01 | |||
c2c6c89e9f | |||
b7708b3675 | |||
bad870c27a | |||
653d6e30a8 | |||
7e51b44e33 | |||
1fd6c35baa | |||
d426c1c3b5 | |||
5ab144cffc | |||
cef8e54709 | |||
2efbc446f2 | |||
c54f7aca24 | |||
c31bc39780 | |||
6133cb439f | |||
5acd79b6da | |||
|
b11e783b30 | ||
f834b10e02 | |||
72f01a2a2d | |||
d14e6c5994 | |||
a266293ecd | |||
e9a46c79df | |||
816cdfae00 | |||
ff9664eb38 | |||
3e379b40c4 | |||
90fad334b9 | |||
a77c13a0a4 | |||
260c32d909 | |||
00974b0f11 | |||
2c02689577 | |||
926a331df0 | |||
d932663519 | |||
2312c9cb2a | |||
9f1bd56c0a | |||
ba4ef86bb5 | |||
c3f5e909d6 | |||
1aa9cf705f | |||
383dd7aa4b | |||
93188fe06b | |||
ffbc98e1a2 | |||
03e61a59cf | |||
93224864a4 | |||
504308a9af | |||
3b57c10b5a | |||
4fa10861bb | |||
6131d5b5f4 | |||
1aedc23de1 | |||
2d84cd5a0b | |||
396d5b036d | |||
4efb229d34 | |||
f2a67ca92e | |||
9cfdd7e2b2 | |||
6429e0732c | |||
cb7e7b519c | |||
9a2d87516e | |||
7b308be4e2 | |||
ac6660e05b | |||
1f8485f54e | |||
1db469709a | |||
695a3d43db | |||
c530aa688d | |||
3f6849048e | |||
afa6504b05 | |||
9428a00c11 | |||
48a5f6cbb6 | |||
8899c5c2d9 | |||
ea3f05846d | |||
0509a51fd3 | |||
33a4b0db3c | |||
349ad718f1 | |||
e5cc54d3e0 | |||
160f5bd737 | |||
77d82f6883 | |||
1062b72bda | |||
66589dfde3 | |||
cba0f67ae2 | |||
b6c52ba476 | |||
8998dca1f2 | |||
611f6cdba0 | |||
57fb1cb141 | |||
cc1e010840 | |||
f68d7a9ded | |||
f59fe27e5f | |||
7d29fc02f2 | |||
1d9c94896d | |||
716413e2b6 | |||
7993da0db7 | |||
7764a70799 | |||
c08e7fe540 | |||
dec12d989e | |||
4cdd1960a0 | |||
3bcb7c5df9 | |||
8764fadd6a | |||
17f5b62e9b | |||
fda2c6e08d | |||
abce56dd40 | |||
95b12a6c35 | |||
785ae6a5be | |||
2654006222 | |||
28b82e8228 | |||
8822af81e6 | |||
5e5b3981fc | |||
d4e699bc49 | |||
c248ca0452 | |||
0eac5434d6 | |||
f43108c239 | |||
ab5d2aabb2 | |||
006f791727 | |||
9b2bbfb4d1 | |||
4c43bf19a3 | |||
1f1e806306 | |||
98c9af72e7 |
3
.gitignore
vendored
3
.gitignore
vendored
|
@ -169,3 +169,6 @@ venv.bak/
|
|||
README.*
|
||||
!README.org
|
||||
models/
|
||||
.DS_Store
|
||||
bench/
|
||||
|
||||
|
|
427
actual_board.py
Normal file
427
actual_board.py
Normal file
|
@ -0,0 +1,427 @@
|
|||
# TODO: The bar is just for show at the moment. Home doesn't work either.
|
||||
# TODO: An issue with the bouncing back things. It appears to do the move and then
|
||||
# it doesn't properly restore the buckets to where they should be.
|
||||
|
||||
import random
|
||||
import pygame
|
||||
import threading
|
||||
from board import Board
|
||||
import numpy as np
|
||||
import time
|
||||
|
||||
# --- constants --- (UPPER_CASE names)
|
||||
|
||||
|
||||
|
||||
class Board_painter:
|
||||
|
||||
def __init__(self):
|
||||
self.SCREEN_WIDTH = 1050
|
||||
self.SCREEN_HEIGHT = 400
|
||||
|
||||
self.SPACING = 83.333
|
||||
|
||||
|
||||
#BLACK = ( 0, 0, 0)
|
||||
#242 209 107
|
||||
self.SAND = (242, 209, 107)
|
||||
self.GREEN_FILT = (0,102,0)
|
||||
self.WHITE = (255, 255, 255)
|
||||
self.RED = (255, 0, 0)
|
||||
self.SALMON = (250,128,114)
|
||||
self.BLACK = (0,0,0)
|
||||
self.BROWN = (160,82,45)
|
||||
self.LIGHT_GREY = (220,220,220)
|
||||
self.num_pieces = 15
|
||||
self.FPS = 999
|
||||
cen = self.SPACING/2 - 11
|
||||
t = 5*self.SPACING - cen-22
|
||||
m = 7*self.SPACING+50 - cen-22
|
||||
self.STARTING_IDX_P1 = [[cen,0], [cen, 30], [cen, 60], [cen, 90], [cen,120], [self.SCREEN_WIDTH-cen-22, 0], [self.SCREEN_WIDTH-cen-22, 30], [t, 378],[t,348],[t,318],[m, 378], [m,348],[m,318],[m,288],[m,258]]
|
||||
|
||||
self.STARTING_IDX_P2 = [[cen, 378], [cen, 348], [cen, 318], [cen, 288], [cen, 258], [self.SCREEN_WIDTH-cen-22, 378], [self.SCREEN_WIDTH-cen-22, 348], [t, 0], [t, 30], [t, 60], [m, 0], [m,30],[m,60],[m,90],[m,120]]
|
||||
|
||||
pygame.init()
|
||||
|
||||
self.screen = pygame.display.set_mode((self.SCREEN_WIDTH, self.SCREEN_HEIGHT))
|
||||
#screen_rect = screen.get_rect()
|
||||
|
||||
pygame.display.set_caption("Backgammon")
|
||||
|
||||
|
||||
|
||||
self.all_rects = {-1 : [], 1 : []}
|
||||
|
||||
for p in [-1,1]:
|
||||
if p == -1:
|
||||
for idx in self.STARTING_IDX_P1:
|
||||
self.all_rects[p] += [pygame.rect.Rect(idx[0],idx[1], 22, 22)]
|
||||
|
||||
if p == 1:
|
||||
for idx in self.STARTING_IDX_P2:
|
||||
self.all_rects[p] += [pygame.rect.Rect(idx[0],idx[1], 22, 22)]
|
||||
# for i in range(num_pieces):
|
||||
# x = x+20
|
||||
# all_rects[p] += [pygame.rect.Rect(x,y, 22, 22)]
|
||||
# x = 100
|
||||
# y += 100
|
||||
|
||||
|
||||
|
||||
self.all_drag = {-1 : [], 1 : []}
|
||||
self.all_drag[-1] += [False]*self.num_pieces
|
||||
self.all_drag[1] += [False]*self.num_pieces
|
||||
|
||||
self.all_off = {-1 : [], 1 : []}
|
||||
self.all_off[-1] += [[0,0]]*self.num_pieces
|
||||
self.all_off[1] += [[0,0]]*self.num_pieces
|
||||
|
||||
self.is_true = False
|
||||
|
||||
|
||||
|
||||
self.clock = pygame.time.Clock()
|
||||
|
||||
self.buckets = [[0,0],[5,-1],[0,0],[0,0],[0,0],[3,1],[0,0],[5,1],[0,0],[0,0],[0,0],[0,0],[2,-1],[5,1],[0,0],[0,0],[0,0],[3,-1],[0,0],[5,-1],[0,0],[0,0],[0,0],[0,0],[2,1],[0,0]]
|
||||
self.running = True
|
||||
self.player = -1
|
||||
|
||||
self.roll = [random.randrange(1, 7), random.randrange(1, 7)]
|
||||
print("initial_roll:", self.roll)
|
||||
|
||||
self.from_board = None
|
||||
self.from_buckets = [x for x in self.buckets]
|
||||
self.from_locat = None
|
||||
self.total_moves = 0
|
||||
|
||||
def switch_player(self):
|
||||
self.player *= -1
|
||||
print("CHANGED PLAYER!")
|
||||
|
||||
|
||||
def gen_buckets_from_board(self, board):
|
||||
meh = []
|
||||
for i in range(13,25):
|
||||
pin = board[i]
|
||||
# print(pin)
|
||||
meh.append([abs(pin), np.sign(pin)])
|
||||
for i in range(1,13):
|
||||
pin = board[i]
|
||||
meh.append([abs(pin), np.sign(pin)])
|
||||
|
||||
return meh
|
||||
|
||||
|
||||
def gen_board_from_buckets(self, buckets):
|
||||
board = []
|
||||
board.append(buckets[0])
|
||||
for i in range(-2,-14,-1):
|
||||
board.append(buckets[i])
|
||||
for i in range(1,13):
|
||||
board.append(buckets[i])
|
||||
board.append(buckets[25])
|
||||
board = [x*y for x,y in board]
|
||||
|
||||
return board
|
||||
|
||||
def move_legal(self, from_board, buckets, roll):
|
||||
board = self.gen_board_from_buckets(buckets)
|
||||
legal_states = Board.calculate_legal_states(from_board, self.player, roll)
|
||||
# print(legal_states)
|
||||
if board in [list(state) for state in list(legal_states)]:
|
||||
return True
|
||||
return False
|
||||
|
||||
def find_pin(self, pos):
|
||||
SPACING = self.SPACING
|
||||
x,y = pos
|
||||
|
||||
|
||||
if 500 < x < 550:
|
||||
if y > 225:
|
||||
pin = 0
|
||||
idx = 0
|
||||
else:
|
||||
pin = 25
|
||||
idx = 25
|
||||
else:
|
||||
x -= 50 if x > 550 else 0
|
||||
if y < 175:
|
||||
pin = (13 + int(x / SPACING))
|
||||
idx = 1+int(x / SPACING)
|
||||
elif y > 225:
|
||||
pin = (12 - int(x / SPACING))
|
||||
idx = 13+ int(x / SPACING)
|
||||
return pin, idx
|
||||
|
||||
# Find the y position based on the chosen pin
|
||||
def calc_pos(self, buckets, chosen):
|
||||
amount = buckets[chosen][0]
|
||||
print(chosen)
|
||||
SPACING = self.SPACING
|
||||
|
||||
if chosen == 0:
|
||||
x = 525
|
||||
y = 350
|
||||
elif chosen == 25:
|
||||
x = 525
|
||||
y = 50
|
||||
else:
|
||||
if chosen > 12:
|
||||
# print("Amount at pin:", amount)
|
||||
y = 378 - (30 * amount)
|
||||
chosen -= 12
|
||||
x = (SPACING*(chosen-1))+(SPACING/2)
|
||||
x += 50 if x > 500 else 0
|
||||
else:
|
||||
|
||||
y = 30 * amount
|
||||
x = (SPACING*(chosen-1))+(SPACING/2)
|
||||
x += 50 if x > 500 else 0
|
||||
return x,y
|
||||
|
||||
def calc_move_sets(self, from_board, roll, player):
|
||||
# board = self.gen_board_from_buckets(buckets)
|
||||
board = from_board
|
||||
sets = []
|
||||
total = 0
|
||||
print("board!:",board)
|
||||
for r in roll:
|
||||
# print("Value of r:",r)
|
||||
sets.append([Board.calculate_legal_states(board, player, [r,0]), r])
|
||||
total += r
|
||||
sets.append([Board.calculate_legal_states(board, player, [total,0]), total])
|
||||
return sets
|
||||
|
||||
def calc_turn(self):
|
||||
player = self.player
|
||||
if self.total_moves == 0:
|
||||
return player * -1
|
||||
return player
|
||||
|
||||
def handle_move(self, from_board, buckets, roll, player):
|
||||
board = self.gen_board_from_buckets(buckets)
|
||||
# print("Cur board:",board)
|
||||
sets = self.calc_move_sets(from_board, roll, player)
|
||||
for idx, board_set in enumerate(sets):
|
||||
board_set[0] = list(board_set[0])
|
||||
# print("My board_set:",board_set)
|
||||
if board in [list(c) for c in board_set[0]]:
|
||||
self.total_moves -= board_set[1]
|
||||
if idx < 2:
|
||||
# print("Roll object:",self.roll)
|
||||
self.roll[idx] = 0
|
||||
else:
|
||||
self.roll = [0,0]
|
||||
break
|
||||
print("Total moves left:",self.total_moves)
|
||||
|
||||
|
||||
# while running:
|
||||
|
||||
def paint_board(self):
|
||||
# - events -
|
||||
if self.player != self.calc_turn():
|
||||
self.switch_player()
|
||||
self.roll = [random.randrange(1, 7), random.randrange(1, 7)]
|
||||
self.total_moves = self.roll[0] + self.roll[1]
|
||||
print("Player:",self.player,"rolled:",self.roll)
|
||||
|
||||
player = self.player
|
||||
rectangles_drag = self.all_drag[player]
|
||||
rectangles = self.all_rects[player]
|
||||
offsets = self.all_off[player]
|
||||
buckets = self.buckets
|
||||
|
||||
for event in pygame.event.get():
|
||||
if event.type == pygame.QUIT:
|
||||
running = False
|
||||
|
||||
elif event.type == pygame.MOUSEBUTTONDOWN:
|
||||
if event.button == 1:
|
||||
meh = [rect.collidepoint(event.pos) for rect in rectangles]
|
||||
if any(meh):
|
||||
is_true = np.where(meh)[0][0]
|
||||
if any(meh):
|
||||
# print("GETTING CALLED")
|
||||
rectangles_drag[is_true] = True
|
||||
mouse_x, mouse_y = event.pos
|
||||
|
||||
# Need this to be a deepcopy :<
|
||||
self.from_buckets = []
|
||||
for x in buckets:
|
||||
tmp = []
|
||||
for y in x:
|
||||
tmp.append(y)
|
||||
self.from_buckets.append(tmp)
|
||||
|
||||
self.from_board = [x for x in self.gen_board_from_buckets(buckets)]
|
||||
# print("From board in mousedown:", from_board)
|
||||
pin, idx = self.find_pin(event.pos)
|
||||
from_pin = pin
|
||||
buckets[idx][0] -= 1
|
||||
|
||||
if buckets[idx][0] == 0:
|
||||
buckets[idx][1] = 0
|
||||
|
||||
print("Location for mouse_down:", self.from_board)
|
||||
|
||||
offsets[is_true][0] = rectangles[is_true].x - mouse_x
|
||||
offsets[is_true][1] = rectangles[is_true].y - mouse_y
|
||||
|
||||
self.from_locat = [rectangles[is_true].x, rectangles[is_true].y]
|
||||
|
||||
elif event.type == pygame.MOUSEBUTTONUP:
|
||||
if event.button == 1:
|
||||
meh = [rect.collidepoint(event.pos) for rect in rectangles]
|
||||
if any(meh):
|
||||
is_true = np.where(meh)[0][0]
|
||||
|
||||
pin, idx = self.find_pin(event.pos)
|
||||
x, y = self.calc_pos(buckets,idx)
|
||||
|
||||
# Need to take care of bar stuff :<
|
||||
if (buckets[idx][1] == player*-1) and buckets[idx][0] == 1:
|
||||
to_idx = 0 if buckets[idx][1] == 1 else 25
|
||||
enemy_rects = self.all_rects[player*-1]
|
||||
|
||||
|
||||
# Have some check if we're looking for either rects in the bottom or top,
|
||||
# instead of having both here
|
||||
neg_tester = [rect.collidepoint(x,y-30) for rect in enemy_rects]
|
||||
pos_tester = [rect.collidepoint(x,y+30) for rect in enemy_rects]
|
||||
print("Neg tester:",neg_tester)
|
||||
print("Pos tester:",pos_tester)
|
||||
if any(neg_tester):
|
||||
enemy = np.where(neg_tester)[0][0]
|
||||
elif any(pos_tester):
|
||||
enemy = np.where(pos_tester)[0][0]
|
||||
|
||||
buckets[to_idx][0] += 1
|
||||
buckets[to_idx][1] = buckets[idx][1]
|
||||
|
||||
bar_x, bar_y = self.calc_pos(buckets, to_idx)
|
||||
enemy_rects[enemy].x = bar_x
|
||||
enemy_rects[enemy].y = bar_y
|
||||
|
||||
|
||||
buckets[idx][0] = 0
|
||||
print("In here"*20)
|
||||
|
||||
|
||||
|
||||
pin, idx = self.find_pin(event.pos)
|
||||
x, y = self.calc_pos(buckets,idx)
|
||||
buckets[idx][0] += 1
|
||||
buckets[idx][1] = player
|
||||
|
||||
|
||||
# print(self.from_board)
|
||||
# print("To :",self.gen_board_from_buckets(buckets))
|
||||
# print(move_legal(from_board, buckets, [1,2]))
|
||||
|
||||
|
||||
|
||||
# if self.move_legal(self.from_board, buckets, self.roll):
|
||||
pot_board = self.gen_board_from_buckets(buckets)
|
||||
sets = self.calc_move_sets(self.from_board, self.roll, player)
|
||||
|
||||
print("potential board:",pot_board)
|
||||
# print("board:",pot_board)
|
||||
truth_values = []
|
||||
for t in sets:
|
||||
b = [list(c) for c in list(t)[0]]
|
||||
if pot_board in list(b):
|
||||
truth_values.append(pot_board in list(b))
|
||||
|
||||
print("Truth values:",truth_values)
|
||||
if any(truth_values):
|
||||
self.handle_move(self.from_board, buckets, self.roll, player)
|
||||
# print("From:",self.gen_board_from_buckets(self.from_buckets))
|
||||
# print("WOHO!"*10)
|
||||
|
||||
rectangles_drag[is_true] = False
|
||||
rectangles[is_true].x = x
|
||||
rectangles[is_true].y = y
|
||||
else:
|
||||
# print("From:",self.gen_board_from_buckets(self.from_buckets))
|
||||
|
||||
self.buckets = []
|
||||
for x in self.from_buckets:
|
||||
tmp = []
|
||||
for y in x:
|
||||
tmp.append(y)
|
||||
self.buckets.append(tmp)
|
||||
|
||||
rectangles_drag[is_true] = False
|
||||
rectangles[is_true].x = self.from_locat[0]
|
||||
rectangles[is_true].y = self.from_locat[1]
|
||||
|
||||
# print("End :",self.gen_board_from_buckets(buckets))
|
||||
|
||||
|
||||
elif event.type == pygame.MOUSEMOTION:
|
||||
|
||||
if any(rectangles_drag):
|
||||
is_true = np.where(rectangles_drag)[0][0]
|
||||
|
||||
mouse_x, mouse_y = event.pos
|
||||
rectangles[is_true].x = mouse_x + offsets[is_true][0]
|
||||
rectangles[is_true].y = mouse_y + offsets[is_true][1]
|
||||
|
||||
self.screen.fill(self.GREEN_FILT)
|
||||
# pygame.draw.polygon(screen, (RED), [[0, 0], [50,0],[25,100]], 2)
|
||||
|
||||
|
||||
|
||||
|
||||
color = self.LIGHT_GREY
|
||||
x = 0
|
||||
y = 150
|
||||
# for _ in range(2):
|
||||
for i in range(12):
|
||||
if x < 500 and x+self.SPACING > 500:
|
||||
x = 550
|
||||
color = self.SALMON if color == self.LIGHT_GREY else self.LIGHT_GREY
|
||||
pygame.draw.polygon(self.screen, color, [[x, 0], [x+self.SPACING, 0], [(2*x+self.SPACING)/2, y]])
|
||||
x += self.SPACING
|
||||
# y += 50
|
||||
|
||||
x = 0
|
||||
y = 250
|
||||
# for _ in range(2):
|
||||
color = self.SALMON if color == self.LIGHT_GREY else self.LIGHT_GREY
|
||||
|
||||
for i in range(12):
|
||||
if x < 500 and x+self.SPACING > 500:
|
||||
x = 550
|
||||
color = self.SALMON if color == self.LIGHT_GREY else self.LIGHT_GREY
|
||||
pygame.draw.polygon(self.screen, color, [[x, 400], [x+self.SPACING, 400], [(2*x+self.SPACING)/2, y]])
|
||||
x += self.SPACING
|
||||
|
||||
|
||||
# print(gen_board_from_buckets(buckets))
|
||||
pygame.draw.rect(self.screen, self.BROWN, pygame.rect.Rect((500, 0, 50, 400)))
|
||||
for p in [-1,1]:
|
||||
for rect in self.all_rects[p]:
|
||||
|
||||
pygame.draw.rect(self.screen, self.RED if p == -1 else self.BLACK, rect)
|
||||
|
||||
pygame.display.flip()
|
||||
|
||||
# - constant game speed / FPS -
|
||||
|
||||
self.clock.tick(self.FPS)
|
||||
|
||||
def test(self):
|
||||
while True:
|
||||
self.paint_board()
|
||||
pygame.quit()
|
||||
|
||||
|
||||
|
||||
b = Board_painter()
|
||||
b.test()
|
||||
|
||||
|
||||
|
141
app.py
Normal file
141
app.py
Normal file
|
@ -0,0 +1,141 @@
|
|||
from flask import Flask, request, jsonify
|
||||
from flask_json import FlaskJSON, as_json_p
|
||||
from flask_cors import CORS
|
||||
from board import Board
|
||||
from eval import Eval
|
||||
import main
|
||||
import random
|
||||
from network import Network
|
||||
|
||||
app = Flask(__name__)
|
||||
|
||||
|
||||
app.config['JSON_ADD_STATUS'] = False
|
||||
app.config['JSON_JSONP_OPTIONAL'] = False
|
||||
|
||||
json = FlaskJSON(app)
|
||||
CORS(app)
|
||||
|
||||
config = main.config.copy()
|
||||
config['model'] = "player_testings"
|
||||
config['ply'] = "0"
|
||||
config['board_representation'] = 'tesauro'
|
||||
network = Network(config, config['model'])
|
||||
|
||||
network.restore_model()
|
||||
|
||||
|
||||
def calc_move_sets(from_board, roll, player):
|
||||
board = from_board
|
||||
sets = []
|
||||
total = 0
|
||||
for r in roll:
|
||||
# print("Value of r:", r)
|
||||
sets.append([Board.calculate_legal_states(board, player, [r, 0]), r])
|
||||
total += r
|
||||
sets.append([Board.calculate_legal_states(board, player, roll), total])
|
||||
return sets
|
||||
|
||||
|
||||
def tmp_name(from_board, to_board, roll, player, total_moves, is_quad=False):
|
||||
sets = calc_move_sets(from_board, roll, player)
|
||||
return_board = from_board
|
||||
print("To board:\n",to_board)
|
||||
print("All sets:\n",sets)
|
||||
for idx, board_set in enumerate(sets):
|
||||
board_set[0] = list(board_set[0])
|
||||
# print(to_board)
|
||||
# print(board_set)
|
||||
if to_board in board_set[0]:
|
||||
# print("To board:", to_board)
|
||||
# print(board_set[0])
|
||||
# print(board_set[1])
|
||||
total_moves -= board_set[1]
|
||||
# if it's not the sum of the moves
|
||||
if idx < (4 if is_quad else 2):
|
||||
roll[idx] = 0
|
||||
else:
|
||||
roll = [0, 0]
|
||||
return_board = to_board
|
||||
break
|
||||
|
||||
# print("Return board!:\n",return_board)
|
||||
return total_moves, roll, return_board
|
||||
|
||||
def calc_move_stuff(from_board, to_board, roll, player, total_roll, is_quad):
|
||||
|
||||
total_moves, roll, board = tmp_name(from_board, to_board, list(roll), player, total_roll, is_quad)
|
||||
return board, total_moves, roll
|
||||
|
||||
|
||||
@app.route('/get_board', methods=['GET'])
|
||||
@as_json_p
|
||||
def get_board():
|
||||
return {'board':'0, 2, 0, 0, 0, 0, -5, 0, -3, 0, 0, 0, 5, -5, 0, 0, 0, 3, 0, 5, 0, 0, 0, 0, -2, 0'}
|
||||
|
||||
|
||||
|
||||
def check_move(prev, curr):
|
||||
|
||||
# TODO: Decide on player system and implement roll properly
|
||||
legal_states = Board.calculate_legal_states(tuple(prev), -1, [1,2])
|
||||
|
||||
truth_list = [list(curr) == list(ele) for ele in legal_states]
|
||||
|
||||
return any(truth_list)
|
||||
|
||||
|
||||
|
||||
@app.route('/bot_move', methods=['POST'])
|
||||
def bot_move():
|
||||
data = request.get_json(force=True)
|
||||
|
||||
board = [int(x) for x in data['board'].split(',')]
|
||||
use_pubeval = bool(data['pubeval'])
|
||||
|
||||
roll = (random.randrange(1, 7), random.randrange(1, 7))
|
||||
|
||||
if use_pubeval:
|
||||
board, value = Eval.make_pubeval_move(tuple(board), 1, roll)
|
||||
else:
|
||||
board, _ = network.make_move(tuple(board), roll, 1)
|
||||
|
||||
# print("Board!:",board)
|
||||
|
||||
return ",".join([str(x) for x in list(board)])
|
||||
|
||||
|
||||
|
||||
@app.route('/post_board', methods=['POST'])
|
||||
def post_board():
|
||||
data = request.get_json(force=True)
|
||||
|
||||
# TODO: Fix hardcoded player
|
||||
player = -1
|
||||
|
||||
board = [int(x) for x in data['board'].split(',')]
|
||||
prev_board = [int(x) for x in data['prevBoard'].split(',')]
|
||||
print(data['roll'])
|
||||
roll = [int(x) for x in data['roll'].split(',')]
|
||||
print(roll)
|
||||
quad = data['quad'] == "true"
|
||||
|
||||
|
||||
# print(board)
|
||||
|
||||
total_roll = int(data['totalRoll'])
|
||||
print("total roll is:", total_roll)
|
||||
return_board, total_moves, roll = calc_move_stuff(tuple(prev_board), tuple(board), tuple(roll), player, total_roll, quad)
|
||||
|
||||
str_board = ",".join([str(x) for x in return_board])
|
||||
str_roll = ",".join([str(x) for x in roll])
|
||||
|
||||
|
||||
return_string = str_board + "#" + str(total_moves) + "#" + str_roll
|
||||
|
||||
print(return_string)
|
||||
|
||||
return return_string
|
||||
|
||||
if __name__ == '__main__':
|
||||
app.run(host = '0.0.0.0', port=35270)
|
78
bin/0-ply-tests.rb
Normal file
78
bin/0-ply-tests.rb
Normal file
|
@ -0,0 +1,78 @@
|
|||
def run_stuff(board_rep, model_name, ply)
|
||||
epi_count = 0
|
||||
system("python3 main.py --train --model #{model_name} --board-rep #{board_rep} --episodes 1 --ply #{ply}")
|
||||
while epi_count < 200000 do
|
||||
system("python3 main.py --eval --model #{model_name} --eval-methods dumbeval --episodes 250 --ply #{ply} --repeat-eval 3")
|
||||
system("python3 main.py --eval --model #{model_name} --eval-methods pubeval --episodes 250 --ply #{ply} --repeat-eval 3")
|
||||
system("python3 main.py --train --model #{model_name} --episodes 2000 --ply #{ply}")
|
||||
epi_count += 2000
|
||||
end
|
||||
end
|
||||
|
||||
|
||||
### ///////////////////////////////////////////////////////////////
|
||||
# QUACK TESTINGS
|
||||
### ///////////////////////////////////////////////////////////////
|
||||
|
||||
board_rep = "quack"
|
||||
model_name = "quack_test_0_ply"
|
||||
ply = 0
|
||||
|
||||
run_stuff(board_rep, model_name, ply)
|
||||
|
||||
|
||||
# board_rep = "quack"
|
||||
# model_name = "quack_test_1_ply"
|
||||
# ply = 1
|
||||
|
||||
# run_stuff(board_rep, model_name, ply)
|
||||
|
||||
### ///////////////////////////////////////////////////////////////
|
||||
# QUACK-FAT TESTING
|
||||
### ///////////////////////////////////////////////////////////////
|
||||
|
||||
board_rep = "quack-fat"
|
||||
model_name = "quack-fat_test_0_ply"
|
||||
ply = 0
|
||||
|
||||
run_stuff(board_rep, model_name, ply)
|
||||
|
||||
# board_rep = "quack-fat"
|
||||
# model_name = "quack-fat_test_1_ply"
|
||||
# ply = 1
|
||||
|
||||
# run_stuff(board_rep, model_name, ply)
|
||||
|
||||
### ///////////////////////////////////////////////////////////////
|
||||
# QUACK-NORM TESTING
|
||||
### ///////////////////////////////////////////////////////////////
|
||||
|
||||
|
||||
board_rep = "quack-norm"
|
||||
model_name = "quack-norm_test_0_ply"
|
||||
ply = 0
|
||||
|
||||
run_stuff(board_rep, model_name, ply)
|
||||
|
||||
# board_rep = "quack-norm"
|
||||
# model_name = "quack-norm_test_1_ply"
|
||||
# ply = 1
|
||||
|
||||
# run_stuff(board_rep, model_name, ply)
|
||||
|
||||
### ///////////////////////////////////////////////////////////////
|
||||
# TESAURO TESTING
|
||||
### ///////////////////////////////////////////////////////////////
|
||||
|
||||
|
||||
board_rep = "tesauro"
|
||||
model_name = "tesauro_test_0_ply"
|
||||
ply = 0
|
||||
|
||||
run_stuff(board_rep, model_name, ply)
|
||||
|
||||
# board_rep = "tesauro"
|
||||
# model_name = "tesauro_test_1_ply"
|
||||
# ply = 1
|
||||
|
||||
# run_stuff(board_rep, model_name, ply)
|
69
bin/train-evaluate-save
Executable file
69
bin/train-evaluate-save
Executable file
|
@ -0,0 +1,69 @@
|
|||
#!/usr/bin/env ruby
|
||||
MODELS_DIR = 'models'
|
||||
|
||||
def save(model_name)
|
||||
require 'date'
|
||||
|
||||
model_path = File.join(MODELS_DIR, model_name)
|
||||
|
||||
episode_count = (File.read File.join(model_path, 'episodes_trained')).to_i
|
||||
|
||||
puts "Found model #{model_name} with episodes #{episode_count} trained!"
|
||||
|
||||
file_name = "model-#{model_name}-#{episode_count}-#{Time.now.strftime('%Y%m%d-%H%M%S')}.tar.gz"
|
||||
save_path = File.join(MODELS_DIR, 'saves', file_name)
|
||||
puts "Saving to #{save_path}"
|
||||
|
||||
system("tar", "-cvzf", save_path, "-C", MODELS_DIR, model_name)
|
||||
end
|
||||
|
||||
def train(model, episodes)
|
||||
system("python3", "main.py", "--train", "--model", model, "--episodes", episodes.to_s)
|
||||
end
|
||||
|
||||
def force_train(model, episodes)
|
||||
system("python3", "main.py", "--train", "--force-creation", "--model", model, "--episodes", episodes.to_s)
|
||||
end
|
||||
|
||||
def evaluate(model, episodes, method)
|
||||
system("python3", "main.py", "--eval" , "--model", model, "--episodes", episodes.to_s, "--eval-methods", method)
|
||||
end
|
||||
|
||||
model = ARGV[0]
|
||||
|
||||
if model.nil? then raise "no model specified" end
|
||||
|
||||
if not File.exists? File.join(MODELS_DIR, model) then
|
||||
force_train model, 10
|
||||
save model
|
||||
3.times do
|
||||
evaluate model, 250, "pubeval"
|
||||
end
|
||||
3.times do
|
||||
evaluate model, 250, "dumbeval"
|
||||
end
|
||||
end
|
||||
|
||||
# while true do
|
||||
# save model
|
||||
# train model, 1000
|
||||
# save model
|
||||
# train model, 1000
|
||||
# 3.times do
|
||||
# evaluate model, 250, "pubeval"
|
||||
# end
|
||||
# 3.times do
|
||||
# evaluate model, 250, "dumbeval"
|
||||
# end
|
||||
# end
|
||||
|
||||
while true do
|
||||
save model
|
||||
train model, 500
|
||||
5.times do
|
||||
evaluate model, 250, "pubeval"
|
||||
end
|
||||
5.times do
|
||||
evaluate model, 250, "dumbeval"
|
||||
end
|
||||
end
|
343
board.py
343
board.py
|
@ -1,3 +1,4 @@
|
|||
import quack
|
||||
import numpy as np
|
||||
import itertools
|
||||
|
||||
|
@ -12,15 +13,9 @@ class Board:
|
|||
|
||||
@staticmethod
|
||||
def idxs_with_checkers_of_player(board, player):
|
||||
idxs = []
|
||||
for idx, checker_count in enumerate(board):
|
||||
if checker_count * player >= 1:
|
||||
idxs.append(idx)
|
||||
return idxs
|
||||
return quack.idxs_with_checkers_of_player(board, player)
|
||||
|
||||
|
||||
# TODO: Write a test for this
|
||||
# TODO: Make sure that the bars fit, 0 represents the -1 player and 25 represents the 1 player
|
||||
|
||||
# index 26 is player 1 home, index 27 is player -1 home
|
||||
@staticmethod
|
||||
def board_features_to_pubeval(board, player):
|
||||
|
@ -31,92 +26,161 @@ class Board:
|
|||
board = list(board)
|
||||
positives = [x if x > 0 else 0 for x in board]
|
||||
negatives = [x if x < 0 else 0 for x in board]
|
||||
board.append(15 - sum(positives))
|
||||
board.append( 15 - sum(positives))
|
||||
board.append(-15 - sum(negatives))
|
||||
return tuple(board)
|
||||
|
||||
|
||||
|
||||
# quack
|
||||
@staticmethod
|
||||
def board_features_quack(board, player):
|
||||
board = list(board)
|
||||
board += ([1, 0] if np.sign(player) > 0 else [0, 1])
|
||||
return np.array(board).reshape(1,28)
|
||||
|
||||
# quack-fat
|
||||
@staticmethod
|
||||
def board_features_quack_fat(board, player):
|
||||
return np.array(quack.board_features_quack_fat(board,player)).reshape(1,30)
|
||||
# board = list(board)
|
||||
# positives = [x if x > 0 else 0 for x in board]
|
||||
# negatives = [x if x < 0 else 0 for x in board]
|
||||
# board.append( 15 - sum(positives))
|
||||
# board.append(-15 - sum(negatives))
|
||||
# board += ([1, 0] if np.sign(player) > 0 else [0, 1])
|
||||
# return np.array(board).reshape(1,30)
|
||||
|
||||
# quack-fatter
|
||||
@staticmethod
|
||||
def board_features_quack_norm(board, player):
|
||||
board = list(board)
|
||||
positives = [x if x > 0 else 0 for x in board]
|
||||
negatives = [x if x < 0 else 0 for x in board]
|
||||
board[0] = board[0] / 2
|
||||
board[25] = board[25] / 2
|
||||
|
||||
board = [board[x] if x == 0 or 25 else board[x] / 15 for x in range(0, 26)]
|
||||
|
||||
board.append(15 - sum(positives))
|
||||
board.append(-15 - sum(negatives))
|
||||
board += ([1, 0] if np.sign(player) > 0 else [0, 1])
|
||||
return np.array(board).reshape(1, 30)
|
||||
|
||||
# tesauro
|
||||
@staticmethod
|
||||
def board_features_tesauro(board, cur_player):
|
||||
def ordinary_trans(val, player):
|
||||
abs_val = val * player
|
||||
if abs_val <= 0: return (0,0,0,0)
|
||||
elif abs_val == 1: return (1,0,0,0)
|
||||
elif abs_val == 2: return (1,1,0,0)
|
||||
elif abs_val == 3: return (1,1,1,0)
|
||||
else: return (1,1,1, (abs_val - 3) / 2)
|
||||
|
||||
def bar_trans(board, player):
|
||||
if player == 1: return (abs(board[0]/2),)
|
||||
elif player == -1: return (abs(board[25]/2),)
|
||||
|
||||
# def ordinary_trans_board(board, player):
|
||||
# return np.array(
|
||||
# [ordinary_trans(x, player) for x in board[1:25]]
|
||||
# ).flatten()
|
||||
|
||||
board_rep = []
|
||||
for player in [1,-1]:
|
||||
for x in board[1:25]:
|
||||
board_rep += ordinary_trans(x, player)
|
||||
board_rep += bar_trans(board, player)
|
||||
board_rep += (15 - Board.num_of_checkers_for_player(board, player),)
|
||||
|
||||
board_rep += ([1, 0] if cur_player == 1 else [0, 1])
|
||||
|
||||
return np.array(board_rep).reshape(1, 198)
|
||||
|
||||
|
||||
@staticmethod
|
||||
def board_features_tesauro_fat(board, cur_player):
|
||||
def ordinary_trans(val, player):
|
||||
abs_val = val*player
|
||||
if abs_val <= 0:
|
||||
return (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
|
||||
elif abs_val == 1:
|
||||
return (1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
|
||||
elif abs_val == 2:
|
||||
return (1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
|
||||
elif abs_val == 3:
|
||||
return (1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
|
||||
elif abs_val == 4:
|
||||
return (1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
|
||||
elif abs_val == 5:
|
||||
return (1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
|
||||
elif abs_val == 6:
|
||||
return (1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0)
|
||||
elif abs_val == 7:
|
||||
return (1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0)
|
||||
elif abs_val == 8:
|
||||
return (1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0)
|
||||
elif abs_val == 9:
|
||||
return (1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0)
|
||||
elif abs_val == 10:
|
||||
return (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0)
|
||||
elif abs_val == 11:
|
||||
return (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0)
|
||||
elif abs_val == 12:
|
||||
return (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0)
|
||||
elif abs_val == 13:
|
||||
return (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0)
|
||||
elif abs_val == 14:
|
||||
return (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0)
|
||||
elif abs_val == 15:
|
||||
return (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1)
|
||||
|
||||
def bar_trans(board, player):
|
||||
if player == 1: return (abs(board[0]/2),)
|
||||
elif player == -1: return (abs(board[25]/2),)
|
||||
|
||||
board_rep = []
|
||||
for player in [1, -1]:
|
||||
for x in board[1:25]:
|
||||
board_rep += ordinary_trans(x, player)
|
||||
board_rep += bar_trans(board, player)
|
||||
board_rep += (15 - Board.num_of_checkers_for_player(board, player),)
|
||||
|
||||
board_rep += ([1, 0] if cur_player == 1 else [0, 1])
|
||||
|
||||
return np.array(board_rep).reshape(1, len(board_rep))
|
||||
|
||||
|
||||
@staticmethod
|
||||
def board_features_tesauro_wrong(board, cur_player):
|
||||
features = []
|
||||
for player in [-1,1]:
|
||||
sum = 0.0
|
||||
for board_range in range(1,25):
|
||||
pin = board[board_range]
|
||||
#print("PIIIN:",pin)
|
||||
feature = [0.0]*4
|
||||
if np.sign(pin) == np.sign(player):
|
||||
sum += abs(pin)
|
||||
for i in range(min(abs(pin), 3)):
|
||||
feature[i] = 1
|
||||
if (abs(pin) > 3):
|
||||
feature[3] = (abs(pin)-3)/2
|
||||
features += feature
|
||||
#print("SUUUM:",sum)
|
||||
# Append the amount of men on the bar of the current player divided by 2
|
||||
features.append((board[0] if np.sign(player) < 0 else board[25]) / 2.0)
|
||||
# Calculate how many pieces there must be in the home state and divide it by 15
|
||||
features.append((15 - sum) / 15)
|
||||
features += ([1,0] if np.sign(cur_player) > 0 else [0,1])
|
||||
test = np.array(features)
|
||||
#print("TEST:",test)
|
||||
return test.reshape(1,198)
|
||||
|
||||
|
||||
|
||||
@staticmethod
|
||||
def is_move_valid(board, player, face_value, move):
|
||||
def sign(a):
|
||||
return (a > 0) - (a < 0)
|
||||
|
||||
from_idx = move[0]
|
||||
to_idx = move[1]
|
||||
to_state = None
|
||||
from_state = board[from_idx]
|
||||
delta = to_idx - from_idx
|
||||
direction = sign(delta)
|
||||
bearing_off = None
|
||||
|
||||
# FIXME: Use get instead of array-like indexing
|
||||
if to_idx >= 1 and to_idx <= 24:
|
||||
to_state = board[to_idx]
|
||||
bearing_off = False
|
||||
else: # Bearing off
|
||||
to_state = 0
|
||||
bearing_off = True
|
||||
|
||||
# print("_"*20)
|
||||
# print("board:", board)
|
||||
# print("to_idx:", to_idx, "board[to_idx]:", board[to_idx], "to_state:", to_state)
|
||||
# print("+"*20)
|
||||
|
||||
def is_forward_move():
|
||||
return direction == player
|
||||
|
||||
def face_value_match_move_length():
|
||||
return abs(delta) == face_value
|
||||
|
||||
def bear_in_if_checker_on_bar():
|
||||
if player == 1:
|
||||
bar = 0
|
||||
else:
|
||||
bar = 25
|
||||
|
||||
bar_state = board[bar]
|
||||
|
||||
if bar_state != 0:
|
||||
return from_idx == bar
|
||||
else:
|
||||
return True
|
||||
|
||||
def checkers_at_from_idx():
|
||||
return sign(from_state) == player
|
||||
|
||||
def no_block_at_to_idx():
|
||||
if -sign(to_state) == player:
|
||||
return abs(to_state) == 1
|
||||
else:
|
||||
return True
|
||||
|
||||
def can_bear_off():
|
||||
checker_idxs = Board.idxs_with_checkers_of_player(board, player)
|
||||
def is_moving_backmost_checker():
|
||||
if player == 1:
|
||||
return all([(idx >= from_idx) for idx in checker_idxs])
|
||||
else:
|
||||
return all([(idx <= from_idx) for idx in checker_idxs])
|
||||
|
||||
def all_checkers_in_last_quadrant():
|
||||
if player == 1:
|
||||
return all([(idx >= 19) for idx in checker_idxs])
|
||||
else:
|
||||
return all([(idx <= 6) for idx in checker_idxs])
|
||||
|
||||
return all([ is_moving_backmost_checker(),
|
||||
all_checkers_in_last_quadrant() ])
|
||||
|
||||
# TODO: add switch here instead of wonky ternary in all
|
||||
|
||||
return all([ is_forward_move(),
|
||||
face_value_match_move_length(),
|
||||
bear_in_if_checker_on_bar(),
|
||||
checkers_at_from_idx(),
|
||||
no_block_at_to_idx(),
|
||||
can_bear_off() if bearing_off else True ])
|
||||
return quack.is_move_valid(board, player, face_value, move)
|
||||
|
||||
@staticmethod
|
||||
def any_move_valid(board, player, roll):
|
||||
|
@ -156,40 +220,37 @@ class Board:
|
|||
|
||||
|
||||
@staticmethod
|
||||
def apply_moves_to_board(board, player, moves):
|
||||
for move in moves:
|
||||
from_idx, to_idx = move.split("/")
|
||||
board[int(from_idx)] -= int(player)
|
||||
board[int(to_idx)] += int(player)
|
||||
return board
|
||||
def apply_moves_to_board(board, player, move):
|
||||
from_idx = move[0]
|
||||
to_idx = move[1]
|
||||
board = list(board)
|
||||
board[from_idx] -= player
|
||||
|
||||
if (to_idx < 1 or to_idx > 24):
|
||||
return
|
||||
|
||||
if (board[to_idx] * player == -1):
|
||||
|
||||
if (player == 1):
|
||||
board[25] -= player
|
||||
else:
|
||||
board[0] -= player
|
||||
|
||||
board[to_idx] = 0
|
||||
|
||||
board[to_idx] += player
|
||||
|
||||
return tuple(board)
|
||||
|
||||
@staticmethod
|
||||
def calculate_legal_states(board, player, roll):
|
||||
# Find all points with checkers on them belonging to the player
|
||||
# Iterate through each index and check if it's a possible move given the roll
|
||||
|
||||
# TODO: make sure that it is not possible to do nothing on first part of
|
||||
# turn and then do something with the second die
|
||||
|
||||
def calc_moves(board, face_value):
|
||||
idxs_with_checkers = Board.idxs_with_checkers_of_player(board, player)
|
||||
if len(idxs_with_checkers) == 0:
|
||||
if face_value == 0:
|
||||
return [board]
|
||||
boards = [(Board.do_move(board,
|
||||
player,
|
||||
(idx, idx + (face_value * player)))
|
||||
if Board.is_move_valid(board,
|
||||
player,
|
||||
face_value,
|
||||
(idx, idx + (face_value * player)))
|
||||
else None)
|
||||
for idx in idxs_with_checkers]
|
||||
|
||||
board_list = list(filter(None, boards)) # Remove None-values
|
||||
# if len(board_list) == 0:
|
||||
# return [board]
|
||||
|
||||
return board_list
|
||||
return quack.calc_moves(board, player, face_value)
|
||||
|
||||
# Problem with cal_moves: Method can return empty list (should always contain at least same board).
|
||||
# *Update*: Seems to be fixed.
|
||||
|
@ -199,29 +260,21 @@ class Board:
|
|||
# 2. Iterate through remaining dice
|
||||
|
||||
legal_moves = set()
|
||||
|
||||
|
||||
if not Board.any_move_valid(board, player, roll):
|
||||
return { board }
|
||||
|
||||
dice_permutations = list(itertools.permutations(roll)) if roll[0] != roll[1] else [[roll[0]]*4]
|
||||
|
||||
#print("Permuts:",dice_permutations)
|
||||
# print("Dice permuts:",dice_permutations)
|
||||
for roll in dice_permutations:
|
||||
# Calculate boards resulting from first move
|
||||
#print("initial board: ", board)
|
||||
#print("roll:", roll)
|
||||
boards = calc_moves(board, roll[0])
|
||||
#print("boards after first die: ", boards)
|
||||
|
||||
for die in roll[1:]:
|
||||
# Calculate boards resulting from second move
|
||||
nested_boards = [calc_moves(board, die) for board in boards]
|
||||
#print("nested boards: ", nested_boards)
|
||||
boards = [board for boards in nested_boards for board in boards]
|
||||
|
||||
# What the fuck
|
||||
#for board in boards:
|
||||
# print(board)
|
||||
# print("type__:",type(board))
|
||||
# Add resulting unique boards to set of legal boards resulting from roll
|
||||
|
||||
#print("printing boards from calculate_legal_states: ", boards)
|
||||
|
@ -250,9 +303,9 @@ class Board:
|
|||
return """
|
||||
13 14 15 16 17 18 19 20 21 22 23 24
|
||||
+--------------------------------------------------------------------------+
|
||||
| {12}| {11}| {10}| {9}| {8}| {7}| bar -1: {0} | {6}| {5}| {4}| {3}| {2}| {1}| end -1: TODO|
|
||||
| {13}| {14}| {15}| {16}| {17}| {18}| bar -1: {25} | {19}| {20}| {21}| {22}| {23}| {24}| end 1: TODO|
|
||||
|---|---|---|---|---|---|------------|---|---|---|---|---|---| |
|
||||
| {13}| {14}| {15}| {16}| {17}| {18}| bar 1: {25} | {19}| {20}| {21}| {22}| {23}| {24}| end 1: TODO|
|
||||
| {12}| {11}| {10}| {9}| {8}| {7}| bar 1: {0} | {6}| {5}| {4}| {3}| {2}| {1}| end -1: TODO|
|
||||
+--------------------------------------------------------------------------+
|
||||
12 11 10 9 8 7 6 5 4 3 2 1
|
||||
""".format(*temp)
|
||||
|
@ -260,42 +313,8 @@ class Board:
|
|||
@staticmethod
|
||||
def do_move(board, player, move):
|
||||
# Implies that move is valid; make sure to check move validity before calling do_move(...)
|
||||
|
||||
def move_to_bar(board, to_idx):
|
||||
board = list(board)
|
||||
if player == 1:
|
||||
board[25] -= player
|
||||
else:
|
||||
board[0] -= player
|
||||
|
||||
board[to_idx] = 0
|
||||
return board
|
||||
return quack.do_move(board, player, move)
|
||||
|
||||
# TODO: Moving in from bar is handled by the representation
|
||||
# TODONE: Handle bearing off
|
||||
|
||||
from_idx = move[0]
|
||||
#print("from_idx: ", from_idx)
|
||||
to_idx = move[1]
|
||||
#print("to_idx: ", to_idx)
|
||||
# pdb.set_trace()
|
||||
board = list(board) # Make mutable copy of board
|
||||
|
||||
# 'Lift' checker
|
||||
board[from_idx] -= player
|
||||
|
||||
# Handle bearing off
|
||||
if to_idx < 1 or to_idx > 24:
|
||||
return tuple(board)
|
||||
|
||||
# Handle hitting checkers
|
||||
if board[to_idx] * player == -1:
|
||||
board = move_to_bar(board, to_idx)
|
||||
|
||||
# Put down checker
|
||||
board[to_idx] += player
|
||||
|
||||
return tuple(board)
|
||||
|
||||
@staticmethod
|
||||
def flip(board):
|
||||
|
|
84
bot.py
84
bot.py
|
@ -1,24 +1,8 @@
|
|||
from cup import Cup
|
||||
from network import Network
|
||||
from board import Board
|
||||
|
||||
import tensorflow as tf
|
||||
import numpy as np
|
||||
import random
|
||||
|
||||
class Bot:
|
||||
def __init__(self, sym, config = None, name = "unnamed"):
|
||||
self.config = config
|
||||
self.cup = Cup()
|
||||
def __init__(self, sym):
|
||||
self.sym = sym
|
||||
self.graph = tf.Graph()
|
||||
|
||||
self.network = Network(config, name)
|
||||
self.network.restore_model()
|
||||
|
||||
def restore_model(self):
|
||||
with self.graph.as_default():
|
||||
self.network.restore_model()
|
||||
|
||||
def get_session(self):
|
||||
return self.session
|
||||
|
@ -26,16 +10,60 @@ class Bot:
|
|||
def get_sym(self):
|
||||
return self.sym
|
||||
|
||||
def get_network(self):
|
||||
return self.network
|
||||
|
||||
# TODO: DEPRECATE
|
||||
def make_move(self, board, sym, roll):
|
||||
# print(Board.pretty(board))
|
||||
legal_moves = Board.calculate_legal_states(board, sym, roll)
|
||||
moves_and_scores = [ (move, self.network.eval_state(np.array(move).reshape(1,26))) for move in legal_moves ]
|
||||
scores = [ x[1] for x in moves_and_scores ]
|
||||
best_move_pair = moves_and_scores[np.array(scores).argmax()]
|
||||
#print("Found the best state, being:", np.array(move_scores).argmax())
|
||||
return best_move_pair
|
||||
def calc_move_sets(self, from_board, roll, player):
|
||||
board = from_board
|
||||
sets = []
|
||||
total = 0
|
||||
print("board!:",board)
|
||||
for r in roll:
|
||||
# print("Value of r:",r)
|
||||
sets.append([Board.calculate_legal_states(board, player, [r,0]), r])
|
||||
total += r
|
||||
sets.append([Board.calculate_legal_states(board, player, [total,0]), total])
|
||||
return sets
|
||||
|
||||
|
||||
def handle_move(self, from_board, to_board, roll, player):
|
||||
|
||||
# print("Cur board:",board)
|
||||
sets = self.calc_move_sets(from_board, roll, player)
|
||||
for idx, board_set in enumerate(sets):
|
||||
board_set[0] = list(board_set[0])
|
||||
# print("My board_set:",board_set)
|
||||
if to_board in [list(c) for c in board_set[0]]:
|
||||
self.total_moves -= board_set[1]
|
||||
if idx < 2:
|
||||
# print("Roll object:",self.roll)
|
||||
self.roll[idx] = 0
|
||||
else:
|
||||
self.roll = [0,0]
|
||||
break
|
||||
print("Total moves left:",self.total_moves)
|
||||
|
||||
|
||||
def tmp_name(self, from_board, to_board, roll, player, total_moves):
|
||||
sets = self.calc_move_sets(from_board, roll, player)
|
||||
return_board = from_board
|
||||
for idx, board_set in enumerate(sets):
|
||||
board_set = list(board_set[0])
|
||||
if to_board in [list(board) for board in board_set]:
|
||||
total_moves -= board_set[1]
|
||||
# if it's not the sum of the moves
|
||||
if idx < 2:
|
||||
roll[idx] = 0
|
||||
else:
|
||||
roll = [0,0]
|
||||
return_board = to_board
|
||||
break
|
||||
return total_moves, roll, return_board
|
||||
|
||||
def make_human_move(self, board, player, roll):
|
||||
total_moves = roll[0] + roll[1]
|
||||
previous_board = board
|
||||
while total_moves != 0:
|
||||
move = input("Pick a move!\n")
|
||||
to_board = Board.apply_moves_to_board(previous_board, player, move)
|
||||
total_moves, roll, board = self.tmp_name(board, to_board, roll, player, total_moves)
|
||||
|
||||
|
||||
|
|
1
dumbeval/.gitignore
vendored
Normal file
1
dumbeval/.gitignore
vendored
Normal file
|
@ -0,0 +1 @@
|
|||
build/
|
194
dumbeval/dumbeval.c
Normal file
194
dumbeval/dumbeval.c
Normal file
|
@ -0,0 +1,194 @@
|
|||
#include <Python.h>
|
||||
|
||||
static PyObject* DumbevalError;
|
||||
|
||||
static float x[122];
|
||||
|
||||
|
||||
/* With apologies to Gerry Tesauro */
|
||||
|
||||
/* Weights generated by weights.py */
|
||||
static const float wc[122] = {
|
||||
-1.91222, 1.45979, 0.40657, -1.39159, 3.64558, -0.45381, -0.03157,
|
||||
0.14539, 0.80232, 0.87558, 2.36202, -2.01887, -0.88918, 2.65871,
|
||||
-1.31587, 1.07476, 0.30491, -1.32892, 0.38018, -0.30714, -1.16178,
|
||||
0.71481, -1.01334, -0.44373, 0.51255, -0.17171, -0.88886, 0.02071,
|
||||
-0.53279, -0.22139, -1.02436, 0.17948, 0.95697, 0.49272, 0.31848,
|
||||
-0.58293, 0.14484, 0.22063, 1.0336 , -1.90554, 1.10291, -2.05589,
|
||||
-0.16964, -0.82442, 1.27217, -1.24968, -0.90372, 0.05546, 0.2535 ,
|
||||
-0.03533, -0.31773, 0.43704, 0.21699, 0.10519, 2.12775, -0.48196,
|
||||
-0.08445, -0.13156, -0.68362, 0.64765, 0.32537, 0.79493, 1.94577,
|
||||
-0.63827, 0.97057, -0.46039, 1.51801, -0.62955, -0.43632, 0.25876,
|
||||
-0.46623, -0.46963, 1.3532 , -0.07362, -1.53211, 0.69676, -0.92407,
|
||||
0.07153, 0.67173, 0.27661, -0.51579, -0.49019, 1.06603, -0.97673,
|
||||
-1.21231, -1.54966, -0.07795, 0.32697, 0.02873, 1.38703, 0.41725,
|
||||
0.78326, -0.7257 , 0.54165, 1.38882, 0.27304, 1.0739 , 0.74654,
|
||||
1.35561, 1.18697, 1.09146, 0.17552, -0.30773, 0.27812, -1.674 ,
|
||||
-0.31073, -0.40745, 0.51546, -1.10875, 2.0081 , -1.27931, -1.16321,
|
||||
0.95652, 0.7487 , -0.2347 , 0.20324, -0.41417, 0.05929, 0.72632,
|
||||
-1.15223, 1.2745 , -0.15947 };
|
||||
|
||||
static const float wr[122] = {
|
||||
0.13119, -0.13164, -1.2736 , 1.06352, -1.34749, -1.03086, -0.27417,
|
||||
-0.27762, 0.79454, -1.12623, 2.1134 , -0.7003 , 0.26056, -1.13518,
|
||||
-1.64548, -1.30828, -0.96589, -0.36258, -1.14323, -0.2006 , -1.00307,
|
||||
0.57739, -0.62693, 0.29721, -0.36996, -0.17462, 0.96704, 0.08902,
|
||||
1.4337 , -0.47107, 0.82156, 0.14988, 1.74034, 1.13313, -0.32083,
|
||||
-0.00048, -0.86622, 1.12808, 0.99875, 0.8049 , -0.16841, -0.42677,
|
||||
-1.9409 , -0.53565, -0.83708, 0.69603, 0.32079, 0.56942, 0.67965,
|
||||
1.49328, -1.65885, 0.96284, 0.63196, -0.27504, 0.39174, 0.71225,
|
||||
-0.3614 , 0.88761, 1.12882, 0.77764, 1.02618, -0.20245, -0.39245,
|
||||
-1.56799, 1.04888, -1.20858, -0.24361, -1.85157, -0.16912, 0.50512,
|
||||
-2.93122, 0.70477, -0.93066, 1.74867, 0.23963, -0.00699, -1.27183,
|
||||
-0.30604, 1.71039, 0.82202, -1.36734, -1.08352, -1.25054, 0.49436,
|
||||
-1.5037 , -0.73143, 0.74189, 0.32365, 0.30539, -0.72169, 0.41088,
|
||||
-1.56632, -0.63526, 0.58779, -0.05653, 0.76713, -1.40898, -0.33683,
|
||||
1.86802, 0.59773, 1.28668, -0.65817, 2.46829, -0.09331, 2.9034 ,
|
||||
1.04809, 0.73222, -0.44372, 0.53044, -1.9274 , -1.57183, -1.14068,
|
||||
1.26036, -0.9296 , 0.06662, -0.26572, -0.30862, 0.72915, 0.98977,
|
||||
0.63513, -1.43917, -0.12523 };
|
||||
|
||||
void setx(int pos[])
|
||||
{
|
||||
/* sets input vector x[] given board position pos[] */
|
||||
extern float x[];
|
||||
int j, jm1, n;
|
||||
/* initialize */
|
||||
for(j=0;j<122;++j) x[j] = 0.0;
|
||||
|
||||
/* first encode board locations 24-1 */
|
||||
for(j=1;j<=24;++j) {
|
||||
jm1 = j - 1;
|
||||
n = pos[25-j];
|
||||
if(n!=0) {
|
||||
if(n==-1) x[5*jm1+0] = 1.0;
|
||||
if(n==1) x[5*jm1+1] = 1.0;
|
||||
if(n>=2) x[5*jm1+2] = 1.0;
|
||||
if(n==3) x[5*jm1+3] = 1.0;
|
||||
if(n>=4) x[5*jm1+4] = (float)(n-3)/2.0;
|
||||
}
|
||||
}
|
||||
/* encode opponent barmen */
|
||||
x[120] = -(float)(pos[0])/2.0;
|
||||
/* encode computer's menoff */
|
||||
x[121] = (float)(pos[26])/15.0;
|
||||
}
|
||||
|
||||
float dumbeval(int race, int pos[])
|
||||
{
|
||||
/* Backgammon move-selection evaluation function
|
||||
for benchmark comparisons. Computes a linear
|
||||
evaluation function: Score = W * X, where X is
|
||||
an input vector encoding the board state (using
|
||||
a raw encoding of the number of men at each location),
|
||||
and W is a weight vector. Separate weight vectors
|
||||
are used for racing positions and contact positions.
|
||||
Makes lots of obvious mistakes, but provides a
|
||||
decent level of play for benchmarking purposes. */
|
||||
|
||||
/* Provided as a public service to the backgammon
|
||||
programming community by Gerry Tesauro, IBM Research.
|
||||
(e-mail: tesauro@watson.ibm.com) */
|
||||
|
||||
/* The following inputs are needed for this routine:
|
||||
|
||||
race is an integer variable which should be set
|
||||
based on the INITIAL position BEFORE the move.
|
||||
Set race=1 if the position is a race (i.e. no contact)
|
||||
and 0 if the position is a contact position.
|
||||
|
||||
pos[] is an integer array of dimension 28 which
|
||||
should represent a legal final board state after
|
||||
the move. Elements 1-24 correspond to board locations
|
||||
1-24 from computer's point of view, i.e. computer's
|
||||
men move in the negative direction from 24 to 1, and
|
||||
opponent's men move in the positive direction from
|
||||
1 to 24. Computer's men are represented by positive
|
||||
integers, and opponent's men are represented by negative
|
||||
integers. Element 25 represents computer's men on the
|
||||
bar (positive integer), and element 0 represents opponent's
|
||||
men on the bar (negative integer). Element 26 represents
|
||||
computer's men off the board (positive integer), and
|
||||
element 27 represents opponent's men off the board
|
||||
(negative integer). */
|
||||
|
||||
/* Also, be sure to call rdwts() at the start of your
|
||||
program to read in the weight values. Happy hacking] */
|
||||
|
||||
int i;
|
||||
float score;
|
||||
|
||||
if(pos[26]==15) return(99999999.);
|
||||
/* all men off, best possible move */
|
||||
|
||||
setx(pos); /* sets input array x[] */
|
||||
score = 0.0;
|
||||
if(race) { /* use race weights */
|
||||
for(i=0;i<122;++i) score += wr[i]*x[i];
|
||||
}
|
||||
else { /* use contact weights */
|
||||
for(i=0;i<122;++i) score += wc[i]*x[i];
|
||||
}
|
||||
return(score);
|
||||
}
|
||||
|
||||
static PyObject*
|
||||
dumbeval_eval(PyObject *self, PyObject *args) {
|
||||
int race;
|
||||
long numValues;
|
||||
int board[28];
|
||||
float eval_score;
|
||||
|
||||
PyObject* tuple_obj;
|
||||
PyObject* val_obj;
|
||||
|
||||
if (! PyArg_ParseTuple(args, "pO!", &race, &PyTuple_Type, &tuple_obj))
|
||||
return NULL;
|
||||
|
||||
numValues = PyTuple_Size(tuple_obj);
|
||||
|
||||
if (numValues < 0) return NULL;
|
||||
if (numValues != 28) {
|
||||
PyErr_SetString(DumbevalError, "Tuple must have 28 entries");
|
||||
return NULL;
|
||||
}
|
||||
|
||||
// Iterate over tuple to retreive positions
|
||||
for (int i=0; i<numValues; i++) {
|
||||
val_obj = PyTuple_GetItem(tuple_obj, i);
|
||||
board[i] = PyLong_AsLong(val_obj);
|
||||
}
|
||||
|
||||
eval_score = dumbeval(race, board);
|
||||
return Py_BuildValue("f", eval_score);
|
||||
}
|
||||
|
||||
static PyMethodDef dumbeval_methods[] = {
|
||||
{
|
||||
"eval", dumbeval_eval, METH_VARARGS,
|
||||
"Returns evaluation results for the given board position."
|
||||
},
|
||||
{NULL, NULL, 0, NULL}
|
||||
};
|
||||
|
||||
static struct PyModuleDef dumbeval_definition = {
|
||||
PyModuleDef_HEAD_INIT,
|
||||
"dumbeval",
|
||||
"A Python module that implements Gerald Tesauro's pubeval function for evaluation backgammon positions with badly initialized weights.",
|
||||
-1,
|
||||
dumbeval_methods
|
||||
};
|
||||
|
||||
PyMODINIT_FUNC PyInit_dumbeval(void) {
|
||||
PyObject* module;
|
||||
|
||||
module = PyModule_Create(&dumbeval_definition);
|
||||
if (module == NULL)
|
||||
return NULL;
|
||||
|
||||
DumbevalError = PyErr_NewException("dumbeval.error", NULL, NULL);
|
||||
Py_INCREF(DumbevalError);
|
||||
PyModule_AddObject(module, "error", DumbevalError);
|
||||
|
||||
return module;
|
||||
}
|
9
dumbeval/setup.py
Normal file
9
dumbeval/setup.py
Normal file
|
@ -0,0 +1,9 @@
|
|||
from distutils.core import setup, Extension
|
||||
|
||||
dumbeval = Extension('dumbeval',
|
||||
sources = ['dumbeval.c'])
|
||||
|
||||
setup (name = 'dumbeval',
|
||||
version = '0.1',
|
||||
description = 'Dumbeval for Python',
|
||||
ext_modules = [dumbeval])
|
14
dumbeval/weights.py
Normal file
14
dumbeval/weights.py
Normal file
|
@ -0,0 +1,14 @@
|
|||
#!/usr/bin/env python3
|
||||
import numpy as np
|
||||
import re
|
||||
|
||||
re.DOTALL = True
|
||||
|
||||
np.set_printoptions(precision=5, suppress=True, threshold=np.nan)
|
||||
def random_array_string():
|
||||
return re.sub(r'^\[(.*)\]$(?s)', r'{\n\1 };', np.array2string(np.random.normal(0,1,122), separator=', '))
|
||||
|
||||
print("/* Weights generated by weights.py */")
|
||||
print("static const float wc[122] =", random_array_string())
|
||||
print()
|
||||
print("static const float wr[122] =", random_array_string())
|
13
eval.py
13
eval.py
|
@ -2,6 +2,7 @@ from board import Board
|
|||
|
||||
import numpy as np
|
||||
import pubeval
|
||||
import dumbeval
|
||||
|
||||
|
||||
class Eval:
|
||||
|
@ -24,4 +25,16 @@ class Eval:
|
|||
|
||||
return best_move_pair
|
||||
|
||||
@staticmethod
|
||||
def make_dumbeval_move(board, sym, roll):
|
||||
legal_moves = Board.calculate_legal_states(board, sym, roll)
|
||||
moves_and_scores = [ ( board,
|
||||
dumbeval.eval(False, Board.board_features_to_pubeval(board, sym)))
|
||||
for board
|
||||
in legal_moves ]
|
||||
scores = [ x[1] for x in moves_and_scores ]
|
||||
best_move_pair = moves_and_scores[np.array(scores).argmax()]
|
||||
|
||||
return best_move_pair
|
||||
|
||||
|
||||
|
|
5
game.py
5
game.py
|
@ -23,18 +23,21 @@ class Game:
|
|||
|
||||
def roll(self):
|
||||
return self.cup.roll()
|
||||
|
||||
'''
|
||||
def best_move_and_score(self):
|
||||
roll = self.roll()
|
||||
move_and_val = self.p1.make_move(self.board, self.p1.get_sym(), roll)
|
||||
self.board = move_and_val[0]
|
||||
return move_and_val
|
||||
'''
|
||||
|
||||
'''
|
||||
def next_round(self):
|
||||
roll = self.roll()
|
||||
#print(roll)
|
||||
self.board = Board.flip(self.p2.make_move(Board.flip(self.board), self.p2.get_sym(), roll)[0])
|
||||
return self.board
|
||||
'''
|
||||
|
||||
def board_state(self):
|
||||
return self.board
|
||||
|
|
268
main.py
268
main.py
|
@ -2,39 +2,8 @@ import argparse
|
|||
import sys
|
||||
import os
|
||||
import time
|
||||
import subprocess
|
||||
|
||||
model_storage_path = 'models'
|
||||
|
||||
# Create models folder
|
||||
if not os.path.exists(model_storage_path):
|
||||
os.makedirs(model_storage_path)
|
||||
|
||||
# Define helper functions
|
||||
def log_train_outcome(outcome, trained_eps = 0):
|
||||
format_vars = { 'trained_eps': trained_eps,
|
||||
'count': len(train_outcome),
|
||||
'sum': sum(train_outcome),
|
||||
'mean': sum(train_outcome) / len(train_outcome),
|
||||
'time': int(time.time())
|
||||
}
|
||||
with open(os.path.join(config['model_path'], 'logs', "train.log"), 'a+') as f:
|
||||
f.write("{time};{trained_eps};{count};{sum};{mean}".format(**format_vars) + "\n")
|
||||
|
||||
|
||||
def log_eval_outcomes(outcomes, trained_eps = 0):
|
||||
for outcome in outcomes:
|
||||
scores = outcome[1]
|
||||
format_vars = { 'trained_eps': trained_eps,
|
||||
'method': outcome[0],
|
||||
'count': len(scores),
|
||||
'sum': sum(scores),
|
||||
'mean': sum(scores) / len(scores),
|
||||
'time': int(time.time())
|
||||
}
|
||||
with open(os.path.join(config['model_path'], 'logs', "eval.log"), 'a+') as f:
|
||||
f.write("{time};{method};{trained_eps};{count};{sum};{mean}".format(**format_vars) + "\n")
|
||||
|
||||
|
||||
# Parse command line arguments
|
||||
parser = argparse.ArgumentParser(description="Backgammon games")
|
||||
parser.add_argument('--episodes', action='store', dest='episode_count',
|
||||
|
@ -47,13 +16,15 @@ parser.add_argument('--eval-methods', action='store',
|
|||
default=['random'], nargs='*',
|
||||
help='specifies evaluation methods')
|
||||
parser.add_argument('--eval', action='store_true',
|
||||
help='whether to evaluate the neural network with a random choice bot')
|
||||
help='evaluate the neural network with a random choice bot')
|
||||
parser.add_argument('--bench-eval-scores', action='store_true',
|
||||
help='benchmark scores of evaluation measures. episode counts and model specified as options are ignored.')
|
||||
parser.add_argument('--train', action='store_true',
|
||||
help='whether to train the neural network')
|
||||
help='train the neural network')
|
||||
parser.add_argument('--eval-after-train', action='store_true', dest='eval_after_train',
|
||||
help='whether to evaluate after each training session')
|
||||
help='evaluate after each training session')
|
||||
parser.add_argument('--play', action='store_true',
|
||||
help='whether to play with the neural network')
|
||||
help='play with the neural network')
|
||||
parser.add_argument('--start-episode', action='store', dest='start_episode',
|
||||
type=int, default=0,
|
||||
help='episode count to start at; purely for display purposes')
|
||||
|
@ -61,32 +32,125 @@ parser.add_argument('--train-perpetually', action='store_true',
|
|||
help='start new training session as soon as the previous is finished')
|
||||
parser.add_argument('--list-models', action='store_true',
|
||||
help='list all known models')
|
||||
parser.add_argument('--board-rep', action='store', dest='board_rep',
|
||||
help='name of board representation to use as input to neural network')
|
||||
parser.add_argument('--verbose', action='store_true',
|
||||
help='If set, a lot of stuff will be printed')
|
||||
parser.add_argument('--ply', action='store', dest='ply', default='0',
|
||||
help='defines the amount of ply used when deciding what move to make')
|
||||
parser.add_argument('--repeat-eval', action='store', dest='repeat_eval', default='1',
|
||||
help='the amount of times the evaluation method should be repeated')
|
||||
|
||||
args = parser.parse_args()
|
||||
|
||||
|
||||
config = {
|
||||
'model': args.model,
|
||||
'model_path': os.path.join(model_storage_path, args.model),
|
||||
'episode_count': args.episode_count,
|
||||
'eval_methods': args.eval_methods,
|
||||
'train': args.train,
|
||||
'play': args.play,
|
||||
'eval': args.eval,
|
||||
'bench_eval_scores': args.bench_eval_scores,
|
||||
'eval_after_train': args.eval_after_train,
|
||||
'start_episode': args.start_episode,
|
||||
'train_perpetually': args.train_perpetually,
|
||||
'model_storage_path': model_storage_path
|
||||
'model_storage_path': 'models',
|
||||
'bench_storage_path': 'bench',
|
||||
'board_representation': args.board_rep,
|
||||
'global_step': 0,
|
||||
'verbose': args.verbose,
|
||||
'ply': args.ply,
|
||||
'repeat_eval': args.repeat_eval
|
||||
}
|
||||
|
||||
|
||||
# Create models folder
|
||||
if not os.path.exists(config['model_storage_path']):
|
||||
os.makedirs(config['model_storage_path'])
|
||||
|
||||
model_path = lambda: os.path.join(config['model_storage_path'], config['model'])
|
||||
|
||||
# Make sure directories exist
|
||||
model_path = os.path.join(config['model_path'])
|
||||
log_path = os.path.join(model_path, 'logs')
|
||||
if not os.path.isdir(model_path):
|
||||
os.mkdir(model_path)
|
||||
log_path = os.path.join(model_path(), 'logs')
|
||||
if not os.path.isdir(model_path()):
|
||||
os.mkdir(model_path())
|
||||
if not os.path.isdir(log_path):
|
||||
os.mkdir(log_path)
|
||||
|
||||
# Define helper functions
|
||||
def log_train_outcome(outcome, diff_in_values, trained_eps = 0, log_path = os.path.join(model_path(), 'logs', "train.log")):
|
||||
commit = subprocess.run(['git', 'describe', '--first-parent', '--always'], stdout=subprocess.PIPE).stdout.decode('utf-8').rstrip()
|
||||
format_vars = { 'trained_eps': trained_eps,
|
||||
'count': len(outcome),
|
||||
'sum': sum(outcome),
|
||||
'mean': sum(outcome) / len(outcome),
|
||||
'time': int(time.time()),
|
||||
'average_diff_in_vals': diff_in_values,
|
||||
'commit': commit
|
||||
}
|
||||
|
||||
with open(log_path, 'a+') as f:
|
||||
f.write("{time};{trained_eps};{count};{sum};{mean};{average_diff_in_vals};{commit}".format(**format_vars) + "\n")
|
||||
|
||||
|
||||
def log_eval_outcomes(outcomes, trained_eps = 0, log_path = os.path.join(model_path(), 'logs', "eval.log")):
|
||||
"""
|
||||
:param outcomes:
|
||||
:param average_diff_in_value:
|
||||
:param trained_eps:
|
||||
:param log_path:
|
||||
:return:
|
||||
"""
|
||||
commit = subprocess.run(['git', 'describe', '--first-parent', '--always'], stdout=subprocess.PIPE).stdout.decode('utf-8').rstrip()
|
||||
|
||||
for outcome in outcomes:
|
||||
scores = outcome[1]
|
||||
format_vars = { 'commit': commit,
|
||||
'trained_eps': trained_eps,
|
||||
'method': outcome[0],
|
||||
'count': len(scores),
|
||||
'sum': sum(scores),
|
||||
'mean': sum(scores) / len(scores),
|
||||
'time': int(time.time())
|
||||
}
|
||||
with open(log_path, 'a+') as f:
|
||||
f.write("{time};{method};{trained_eps};{count};{sum};{mean};{commit}".format(**format_vars) + "\n")
|
||||
|
||||
def log_bench_eval_outcomes(outcomes, log_path, index, time, trained_eps = 0):
|
||||
commit = subprocess.run(['git', 'describe', '--first-parent', '--always'], stdout=subprocess.PIPE).stdout.decode('utf-8').rstrip()
|
||||
for outcome in outcomes:
|
||||
scores = outcome[1]
|
||||
format_vars = { 'trained_eps': trained_eps,
|
||||
'method': outcome[0],
|
||||
'count': len(scores),
|
||||
'sum': sum(scores),
|
||||
'mean': sum(scores) / len(scores),
|
||||
'time': time,
|
||||
'index': index,
|
||||
'commit': commit
|
||||
}
|
||||
with open(log_path, 'a+') as f:
|
||||
f.write("{method};{count};{index};{time};{sum};{mean};{commit}".format(**format_vars) + "\n")
|
||||
|
||||
def find_board_rep():
|
||||
checkpoint_path = os.path.join(config['model_storage_path'], config['model'])
|
||||
board_rep_path = os.path.join(checkpoint_path, "board_representation")
|
||||
with open(board_rep_path, 'r') as f:
|
||||
return f.read()
|
||||
|
||||
|
||||
def board_rep_file_exists():
|
||||
checkpoint_path = os.path.join(config['model_storage_path'], config['model'])
|
||||
board_rep_path = os.path.join(checkpoint_path, "board_representation")
|
||||
return os.path.isfile(board_rep_path)
|
||||
|
||||
def create_board_rep():
|
||||
checkpoint_path = os.path.join(config['model_storage_path'], config['model'])
|
||||
board_rep_path = os.path.join(checkpoint_path, "board_representation")
|
||||
with open(board_rep_path, 'a+') as f:
|
||||
f.write(config['board_representation'])
|
||||
|
||||
# Do actions specified by command-line
|
||||
if args.list_models:
|
||||
def get_eps_trained(folder):
|
||||
|
@ -94,7 +158,7 @@ if args.list_models:
|
|||
return int(f.read())
|
||||
model_folders = [ f.path
|
||||
for f
|
||||
in os.scandir(model_storage_path)
|
||||
in os.scandir(config['model_storage_path'])
|
||||
if f.is_dir() ]
|
||||
models = [ (folder, get_eps_trained(folder)) for folder in model_folders ]
|
||||
sys.stderr.write("Found {} model(s)\n".format(len(models)))
|
||||
|
@ -102,29 +166,99 @@ if args.list_models:
|
|||
sys.stderr.write(" {name}: {eps_trained}\n".format(name = model[0], eps_trained = model[1]))
|
||||
|
||||
exit()
|
||||
|
||||
# Set up network
|
||||
from network import Network
|
||||
network = Network(config, config['model'])
|
||||
eps = config['start_episode']
|
||||
|
||||
# Set up variables
|
||||
episode_count = config['episode_count']
|
||||
if __name__ == "__main__":
|
||||
# Set up network
|
||||
from network import Network
|
||||
|
||||
# Set up variables
|
||||
episode_count = config['episode_count']
|
||||
|
||||
if config['board_representation'] is None:
|
||||
if board_rep_file_exists():
|
||||
config['board_representation'] = find_board_rep()
|
||||
else:
|
||||
sys.stderr.write("Was not given a board_rep and was unable to find a board_rep file\n")
|
||||
exit()
|
||||
else:
|
||||
if not board_rep_file_exists():
|
||||
create_board_rep()
|
||||
else:
|
||||
if config['board_representation'] != find_board_rep():
|
||||
sys.stderr.write("Board representation \"{given}\", does not match one in board_rep file, \"{board_rep}\"\n".
|
||||
format(given = config['board_representation'], board_rep = find_board_rep()))
|
||||
exit()
|
||||
|
||||
|
||||
if args.train:
|
||||
while True:
|
||||
train_outcome = network.train_model(episodes = episode_count, trained_eps = eps)
|
||||
eps += episode_count
|
||||
log_train_outcome(train_outcome, trained_eps = eps)
|
||||
if config['eval_after_train']:
|
||||
eval_outcomes = network.eval(trained_eps = eps)
|
||||
log_eval_outcomes(eval_outcomes, trained_eps = eps)
|
||||
if not config['train_perpetually']:
|
||||
break
|
||||
elif args.eval:
|
||||
eps = config['start_episode']
|
||||
outcomes = network.eval()
|
||||
log_eval_outcomes(outcomes, trained_eps = eps)
|
||||
#elif args.play:
|
||||
# g.play(episodes = episode_count)
|
||||
|
||||
if args.train:
|
||||
network = Network(config, config['model'])
|
||||
start_episode = network.episodes_trained
|
||||
while True:
|
||||
train_outcome, diff_in_values = network.train_model(episodes = episode_count, trained_eps = start_episode)
|
||||
start_episode += episode_count
|
||||
log_train_outcome(train_outcome, diff_in_values, trained_eps = start_episode)
|
||||
if config['eval_after_train']:
|
||||
eval_outcomes = network.eval(trained_eps = start_episode)
|
||||
log_eval_outcomes(eval_outcomes, trained_eps = start_episode)
|
||||
if not config['train_perpetually']:
|
||||
break
|
||||
|
||||
elif args.play:
|
||||
network = Network(config, config['model'])
|
||||
network.play_against_network()
|
||||
|
||||
elif args.eval:
|
||||
network = Network(config, config['model'])
|
||||
network.restore_model()
|
||||
|
||||
for i in range(int(config['repeat_eval'])):
|
||||
start_episode = network.episodes_trained
|
||||
# Evaluation measures are described in `config`
|
||||
outcomes = network.eval(config['episode_count'])
|
||||
log_eval_outcomes(outcomes, trained_eps = start_episode)
|
||||
# elif args.play:
|
||||
# g.play(episodes = episode_count)
|
||||
|
||||
|
||||
elif args.bench_eval_scores:
|
||||
# Make sure benchmark directory exists
|
||||
if not os.path.isdir(config['bench_storage_path']):
|
||||
os.mkdir(config['bench_storage_path'])
|
||||
|
||||
config = config.copy()
|
||||
config['model'] = 'bench'
|
||||
|
||||
network = Network(config, config['model'])
|
||||
start_episode = network.episodes_trained
|
||||
|
||||
if start_episode == 0:
|
||||
print("Model not trained! Beware of using non-existing models!")
|
||||
exit()
|
||||
|
||||
sample_count = 20
|
||||
episode_counts = [25, 50, 100, 250, 500, 1000, 2500, 5000,
|
||||
10000, 20000]
|
||||
|
||||
def do_eval():
|
||||
for eval_method in config['eval_methods']:
|
||||
result_path = os.path.join(config['bench_storage_path'],
|
||||
eval_method) + "-{}.log".format(int(time.time()))
|
||||
for n in episode_counts:
|
||||
for i in range(sample_count):
|
||||
start_time = time.time()
|
||||
# Evaluation measure to be benchmarked are described in `config`
|
||||
outcomes = network.eval(episode_count = n)
|
||||
time_diff = time.time() - start_time
|
||||
log_bench_eval_outcomes(outcomes,
|
||||
time = time_diff,
|
||||
index = i,
|
||||
trained_eps = start_episode,
|
||||
log_path = result_path)
|
||||
|
||||
# CMM: oh no
|
||||
import tensorflow as tf
|
||||
|
||||
network.restore_model()
|
||||
do_eval()
|
||||
|
||||
|
||||
|
|
725
network.py
725
network.py
|
@ -1,5 +1,4 @@
|
|||
import tensorflow as tf
|
||||
from cup import Cup
|
||||
import numpy as np
|
||||
from board import Board
|
||||
import os
|
||||
|
@ -7,129 +6,188 @@ import time
|
|||
import sys
|
||||
import random
|
||||
from eval import Eval
|
||||
import glob
|
||||
from operator import itemgetter
|
||||
import tensorflow.contrib.eager as tfe
|
||||
from player import Player
|
||||
|
||||
class Network:
|
||||
hidden_size = 40
|
||||
input_size = 26
|
||||
output_size = 1
|
||||
# Can't remember the best learning_rate, look this up
|
||||
learning_rate = 0.1
|
||||
# board_features_quack has size 28
|
||||
# board_features_quack_fat has size 30
|
||||
# board_features_tesauro has size 198
|
||||
|
||||
# TODO: Actually compile tensorflow properly
|
||||
#os.environ["TF_CPP_MIN_LOG_LEVEL"]="2"
|
||||
board_reps = {
|
||||
'quack-fat' : (30, Board.board_features_quack_fat),
|
||||
'quack' : (28, Board.board_features_quack),
|
||||
'tesauro' : (198, Board.board_features_tesauro),
|
||||
'quack-norm' : (30, Board.board_features_quack_norm),
|
||||
'tesauro-fat' : (726, Board.board_features_tesauro_fat),
|
||||
'tesauro-poop': (198, Board.board_features_tesauro_wrong)
|
||||
}
|
||||
|
||||
def custom_tanh(self, x, name=None):
|
||||
return tf.scalar_mul(tf.constant(2.00), tf.tanh(x, name))
|
||||
|
||||
|
||||
def __init__(self, config, name):
|
||||
self.config = config
|
||||
self.session = tf.Session()
|
||||
self.checkpoint_path = config['model_path']
|
||||
self.name = name
|
||||
|
||||
# input = x
|
||||
self.x = tf.placeholder('float', [1, Network.input_size], name='x')
|
||||
self.value_next = tf.placeholder('float', [1, Network.output_size], name="value_next")
|
||||
"""
|
||||
:param config:
|
||||
:param name:
|
||||
"""
|
||||
|
||||
move_options = {
|
||||
'1': self.make_move_1_ply,
|
||||
'0': self.make_move_0_ply
|
||||
}
|
||||
|
||||
self.max_or_min = {
|
||||
1: np.argmax,
|
||||
-1: np.argmin
|
||||
}
|
||||
|
||||
tf.enable_eager_execution()
|
||||
|
||||
xavier_init = tf.contrib.layers.xavier_initializer()
|
||||
|
||||
W_1 = tf.get_variable("w_1", (Network.input_size, Network.hidden_size),
|
||||
initializer=xavier_init)
|
||||
W_2 = tf.get_variable("w_2", (Network.hidden_size, Network.output_size),
|
||||
initializer=xavier_init)
|
||||
|
||||
b_1 = tf.get_variable("b_1", (Network.hidden_size,),
|
||||
initializer=tf.zeros_initializer)
|
||||
b_2 = tf.get_variable("b_2", (Network.output_size,),
|
||||
initializer=tf.zeros_initializer)
|
||||
self.config = config
|
||||
self.checkpoint_path = os.path.join(config['model_storage_path'], config['model'])
|
||||
|
||||
value_after_input = self.custom_tanh(tf.matmul(self.x, W_1) + b_1, name='hidden_layer')
|
||||
self.name = name
|
||||
|
||||
self.value = self.custom_tanh(tf.matmul(value_after_input, W_2) + b_2, name='output_layer')
|
||||
self.make_move = move_options[
|
||||
self.config['ply']
|
||||
]
|
||||
|
||||
# tf.reduce_sum basically finds the sum of its input, so this gives the
|
||||
# difference between the two values, in case they should be lists, which
|
||||
# they might be if our input changes
|
||||
# Set board representation from config
|
||||
self.input_size, self.board_trans_func = Network.board_reps[
|
||||
self.config['board_representation']
|
||||
]
|
||||
self.output_size = 1
|
||||
self.hidden_size = 40
|
||||
self.max_learning_rate = 0.1
|
||||
self.min_learning_rate = 0.001
|
||||
|
||||
# TODO: Alexander thinks that self.value will be computed twice (instead of once)
|
||||
difference_in_values = tf.reduce_sum(self.value_next - self.value, name='difference')
|
||||
|
||||
trainable_vars = tf.trainable_variables()
|
||||
gradients = tf.gradients(self.value, trainable_vars)
|
||||
# Restore trained episode count for model
|
||||
episode_count_path = os.path.join(self.checkpoint_path, "episodes_trained")
|
||||
if os.path.isfile(episode_count_path):
|
||||
with open(episode_count_path, 'r') as f:
|
||||
self.episodes_trained = int(f.read())
|
||||
else:
|
||||
self.episodes_trained = 0
|
||||
|
||||
apply_gradients = []
|
||||
|
||||
with tf.variable_scope('apply_gradients'):
|
||||
for gradient, trainable_var in zip(gradients, trainable_vars):
|
||||
# Hopefully this is Δw_t = α(V_t+1 - V_t)▿_wV_t.
|
||||
backprop_calc = Network.learning_rate * difference_in_values * gradient
|
||||
grad_apply = trainable_var.assign_add(backprop_calc)
|
||||
apply_gradients.append(grad_apply)
|
||||
|
||||
self.training_op = tf.group(*apply_gradients, name='training_op')
|
||||
|
||||
self.saver = tf.train.Saver(max_to_keep=1)
|
||||
self.session.run(tf.global_variables_initializer())
|
||||
global_step_path = os.path.join(self.checkpoint_path, "global_step")
|
||||
if os.path.isfile(global_step_path):
|
||||
with open(global_step_path, 'r') as f:
|
||||
self.global_step = int(f.read())
|
||||
else:
|
||||
self.global_step = 0
|
||||
|
||||
|
||||
self.model = tf.keras.Sequential([
|
||||
tf.keras.layers.Dense(40, activation="sigmoid", kernel_initializer=xavier_init,
|
||||
input_shape=(1,self.input_size)),
|
||||
tf.keras.layers.Dense(1, activation="sigmoid", kernel_initializer=xavier_init)
|
||||
])
|
||||
|
||||
|
||||
def exp_decay(self, max_lr, global_step, decay_rate, decay_steps):
|
||||
"""
|
||||
Calculates the exponential decay on a learning rate
|
||||
:param max_lr: The learning rate that the network starts at
|
||||
:param global_step: The global step
|
||||
:param decay_rate: The rate at which the learning rate should decay
|
||||
:param decay_steps: The amount of steps between each decay
|
||||
:return: The result of the exponential decay performed on the learning rate
|
||||
"""
|
||||
res = max_lr * decay_rate ** (global_step // decay_steps)
|
||||
return res
|
||||
|
||||
def do_backprop(self, prev_state, value_next):
|
||||
"""
|
||||
Performs the Temporal-difference backpropagation step on the model
|
||||
:param prev_state: The previous state of the game, this has its value recalculated
|
||||
:param value_next: The value of the current move
|
||||
:return: Nothing, the calculation is performed on the model of the network
|
||||
"""
|
||||
self.learning_rate = tf.maximum(self.min_learning_rate,
|
||||
self.exp_decay(self.max_learning_rate, self.global_step, 0.96, 50000),
|
||||
name="learning_rate")
|
||||
|
||||
with tf.GradientTape() as tape:
|
||||
value = self.model(prev_state.reshape(1,-1))
|
||||
|
||||
grads = tape.gradient(value, self.model.variables)
|
||||
|
||||
difference_in_values = tf.reshape(tf.subtract(value_next, value, name='difference_in_values'), [])
|
||||
|
||||
for grad, train_var in zip(grads, self.model.variables):
|
||||
backprop_calc = self.learning_rate * difference_in_values * grad
|
||||
train_var.assign_add(backprop_calc)
|
||||
|
||||
|
||||
|
||||
def print_variables(self):
|
||||
"""
|
||||
Prints all the variables of the model
|
||||
:return:
|
||||
"""
|
||||
variables = self.model.variables
|
||||
for k in variables:
|
||||
print(k)
|
||||
|
||||
self.restore_model()
|
||||
|
||||
def eval_state(self, state):
|
||||
# Run state through a network
|
||||
|
||||
# Remember to create placeholders for everything because wtf tensorflow
|
||||
# and graphs
|
||||
|
||||
# Remember to create the dense layers
|
||||
|
||||
# Figure out a way of giving a layer a custom activiation function (we
|
||||
# want something which gives [-2,2]. Naively tahn*2, however I fell this
|
||||
# is wrong.
|
||||
|
||||
# tf.group, groups a bunch of actions, so calculate the different
|
||||
# gradients for the different weights, by using tf.trainable_variables()
|
||||
# to find all variables and tf.gradients(current_value,
|
||||
# trainable_variables) to find all the gradients. We can then loop
|
||||
# through this and calculate the trace for each gradient and variable
|
||||
# pair (note, zip can be used to combine the two lists found before),
|
||||
# and then we can calculate the overall change in weights, based on the
|
||||
# formula listed in tesauro (learning_rate * difference_in_values *
|
||||
# trace), this calculation can be assigned to a tf variable and put in a
|
||||
# list and then this can be grouped into a single operation, essentially
|
||||
# building our own backprop function.
|
||||
|
||||
# Grouping them is done by
|
||||
# tf.group(*the_gradients_from_before_we_want_to_apply,
|
||||
# name="training_op")
|
||||
|
||||
# If we remove the eligibily trace to begin with, we only have to
|
||||
# implement learning_rate * (difference_in_values) * gradients (the
|
||||
# before-mentioned calculation.
|
||||
|
||||
|
||||
# print("Network is evaluating")
|
||||
val = self.session.run(self.value, feed_dict={self.x: state})
|
||||
#print("eval ({})".format(self.name), state, val, sep="\n")
|
||||
return val
|
||||
"""
|
||||
Evaluates a single state
|
||||
:param state:
|
||||
:return:
|
||||
"""
|
||||
return self.model(state.reshape(1,-1))
|
||||
|
||||
def save_model(self, episode_count):
|
||||
self.saver.save(self.session, os.path.join(self.checkpoint_path, 'model.ckpt'))
|
||||
"""
|
||||
Saves the model of the network, it references global_step as self.global_step
|
||||
:param episode_count:
|
||||
:return:
|
||||
"""
|
||||
|
||||
tfe.Saver(self.model.variables).save(os.path.join(self.checkpoint_path, 'model.ckpt'))
|
||||
|
||||
with open(os.path.join(self.checkpoint_path, "episodes_trained"), 'w+') as f:
|
||||
print("[NETWK] ({name}) Saving model to:".format(name = self.name),
|
||||
print("[NETWK] ({name}) Saving model to:".format(name=self.name),
|
||||
os.path.join(self.checkpoint_path, 'model.ckpt'))
|
||||
f.write(str(episode_count) + "\n")
|
||||
|
||||
|
||||
with open(os.path.join(self.checkpoint_path, "global_step"), 'w+') as f:
|
||||
print("[NETWK] ({name}) Saving global step to:".format(name=self.name),
|
||||
os.path.join(self.checkpoint_path, 'model.ckpt'))
|
||||
f.write(str(self.global_step) + "\n")
|
||||
if self.config['verbose']:
|
||||
self.print_variables()
|
||||
|
||||
|
||||
def calc_vals(self, states):
|
||||
"""
|
||||
Calculate a score of each state in states
|
||||
:param states: A number of states. The states have to be transformed before being given to this function.
|
||||
:return:
|
||||
"""
|
||||
return self.model.predict_on_batch(states)
|
||||
|
||||
|
||||
def restore_model(self):
|
||||
if os.path.isfile(os.path.join(self.checkpoint_path, 'model.ckpt.index')):
|
||||
"""
|
||||
Restore a model for a session, such that a trained model and either be further trained or
|
||||
used for evaluation
|
||||
|
||||
:return: Nothing. It's a side-effect that a model gets restored for the network.
|
||||
"""
|
||||
|
||||
|
||||
if glob.glob(os.path.join(self.checkpoint_path, 'model.ckpt*.index')):
|
||||
|
||||
latest_checkpoint = tf.train.latest_checkpoint(self.checkpoint_path)
|
||||
print("[NETWK] ({name}) Restoring model from:".format(name = self.name),
|
||||
print("[NETWK] ({name}) Restoring model from:".format(name=self.name),
|
||||
str(latest_checkpoint))
|
||||
self.saver.restore(self.session, latest_checkpoint)
|
||||
variables_names = [v.name for v in tf.trainable_variables()]
|
||||
values = self.session.run(variables_names)
|
||||
for k, v in zip(variables_names, values):
|
||||
print("Variable: ", k)
|
||||
print("Shape: ", v.shape)
|
||||
print(v)
|
||||
tfe.Saver(self.model.variables).restore(latest_checkpoint)
|
||||
|
||||
# Restore trained episode count for model
|
||||
episode_count_path = os.path.join(self.checkpoint_path, "episodes_trained")
|
||||
|
@ -137,208 +195,341 @@ class Network:
|
|||
with open(episode_count_path, 'r') as f:
|
||||
self.config['start_episode'] = int(f.read())
|
||||
|
||||
# Have a circular dependency, #fuck, need to rewrite something
|
||||
def adjust_weights(self, board, v_next):
|
||||
# print("lol")
|
||||
board = np.array(board).reshape((1,26))
|
||||
self.session.run(self.training_op, feed_dict = { self.x: board,
|
||||
self.value_next: v_next })
|
||||
|
||||
global_step_path = os.path.join(self.checkpoint_path, "global_step")
|
||||
if os.path.isfile(global_step_path):
|
||||
with open(global_step_path, 'r') as f:
|
||||
self.config['global_step'] = int(f.read())
|
||||
|
||||
# while game isn't done:
|
||||
#x_next = g.next_move()
|
||||
#value_next = network.eval_state(x_next)
|
||||
#self.session.run(self.training_op, feed_dict={self.x: x, self.value_next: value_next})
|
||||
#x = x_next
|
||||
if self.config['verbose']:
|
||||
self.print_variables()
|
||||
|
||||
|
||||
|
||||
def make_move(self, board, roll):
|
||||
# print(Board.pretty(board))
|
||||
legal_moves = Board.calculate_legal_states(board, 1, roll)
|
||||
moves_and_scores = [ (move, self.eval_state(np.array(move).reshape(1,26))) for move in legal_moves ]
|
||||
scores = [ x[1] for x in moves_and_scores ]
|
||||
best_score_index = np.array(scores).argmax()
|
||||
best_move_pair = moves_and_scores[best_score_index]
|
||||
#print("Found the best state, being:", np.array(move_scores).argmax())
|
||||
return best_move_pair
|
||||
|
||||
|
||||
def train_model(self, episodes=1000, save_step_size = 100, trained_eps = 0):
|
||||
start_time = time.time()
|
||||
def make_move_0_ply(self, board, roll, player):
|
||||
"""
|
||||
Find the best move given a board, roll and a player, by finding all possible states one can go to
|
||||
and then picking the best, by using the network to evaluate each state. This is 0-ply, ie. no look-ahead.
|
||||
The highest score is picked for the 1-player and the max(1-score) is picked for the -1-player.
|
||||
|
||||
def print_time_estimate(eps_completed):
|
||||
cur_time = time.time()
|
||||
time_diff = cur_time - start_time
|
||||
eps_per_sec = eps_completed / time_diff
|
||||
secs_per_ep = time_diff / eps_completed
|
||||
eps_remaining = (episodes - eps_completed)
|
||||
sys.stderr.write("[TRAIN] Averaging {per_sec} episodes per second\n".format(per_sec = round(eps_per_sec, 2)))
|
||||
sys.stderr.write("[TRAIN] {eps_remaining} episodes remaining; approx. {time_remaining} seconds remaining\n".format(eps_remaining = eps_remaining, time_remaining = int(eps_remaining * secs_per_ep)))
|
||||
:param board: Current board
|
||||
:param roll: Current roll
|
||||
:param player: Current player
|
||||
:return: A pair of the best state to go to, together with the score of that state
|
||||
"""
|
||||
legal_moves = list(Board.calculate_legal_states(board, player, roll))
|
||||
legal_states = np.array([self.board_trans_func(move, player)[0] for move in legal_moves])
|
||||
|
||||
|
||||
sys.stderr.write("[TRAIN] Training {} episodes and save_step_size {}\n".format(episodes, save_step_size))
|
||||
outcomes = []
|
||||
for episode in range(1, episodes + 1):
|
||||
sys.stderr.write("[TRAIN] Episode {}".format(episode + trained_eps))
|
||||
# TODO decide which player should be here
|
||||
player = 1
|
||||
|
||||
roll = (random.randrange(1,7), random.randrange(1,7))
|
||||
prev_board, _ = self.make_move(Board.flip(Board.initial_state) if player == -1 else Board.initial_state, roll)
|
||||
if player == -1:
|
||||
prev_board = Board.flip(prev_board)
|
||||
|
||||
# find the best move here, make this move, then change turn as the
|
||||
# first thing inside of the while loop and then call
|
||||
# best_move_and_score to get V_t+1
|
||||
scores = self.model.predict_on_batch(legal_states)
|
||||
|
||||
# i = 0
|
||||
while Board.outcome(prev_board) is None:
|
||||
# print("-"*30)
|
||||
# print(i)
|
||||
# print(roll)
|
||||
# print(Board.pretty(prev_board))
|
||||
# print("/"*30)
|
||||
# i += 1
|
||||
|
||||
player *= -1
|
||||
roll = (random.randrange(1,7), random.randrange(1,7))
|
||||
best_score_idx = self.max_or_min[player](scores)
|
||||
|
||||
cur_board, cur_board_value = self.make_move(Board.flip(prev_board) if player == -1 else prev_board, roll)
|
||||
if player == -1:
|
||||
cur_board = Board.flip(cur_board)
|
||||
best_move, best_score = legal_moves[best_score_idx], scores[best_score_idx]
|
||||
|
||||
self.adjust_weights(prev_board, cur_board_value)
|
||||
return (best_move, best_score)
|
||||
|
||||
prev_board = cur_board
|
||||
|
||||
final_board = prev_board
|
||||
sys.stderr.write("\t outcome {}".format(Board.outcome(final_board)[1]))
|
||||
outcomes.append(Board.outcome(final_board)[1])
|
||||
final_score = np.array([ Board.outcome(final_board)[1] ])
|
||||
self.adjust_weights(prev_board, final_score.reshape((1, 1)))
|
||||
|
||||
sys.stderr.write("\n")
|
||||
|
||||
if episode % min(save_step_size, episodes) == 0:
|
||||
sys.stderr.write("[TRAIN] Saving model...\n")
|
||||
self.save_model(episode+trained_eps)
|
||||
|
||||
if episode % 50 == 0:
|
||||
print_time_estimate(episode)
|
||||
|
||||
sys.stderr.write("[TRAIN] Saving model for final episode...\n")
|
||||
self.save_model(episode+trained_eps)
|
||||
|
||||
return outcomes
|
||||
|
||||
|
||||
# take turn, which finds the best state and picks it, based on the current network
|
||||
# save current state
|
||||
# run training operation (session.run(self.training_op, {x:x, value_next, value_next})), (something which does the backprop, based on the state after having taken a turn, found before, and the state we saved in the beginning and from now we'll save it at the end of the turn
|
||||
# save the current state again, so we can continue running backprop based on the "previous" turn.
|
||||
|
||||
# NOTE: We need to make a method so that we can take a single turn or at least just pick the next best move, so we know how to evaluate according to TD-learning. Right now, our game just continues in a while loop without nothing to stop it!
|
||||
|
||||
def make_move_1_ply(self, board, roll, player):
|
||||
"""
|
||||
Return the best board and best score based on a 1-ply look-ahead.
|
||||
:param board:
|
||||
:param roll:
|
||||
:param player:
|
||||
:return:
|
||||
"""
|
||||
start = time.time()
|
||||
best_pair = self.calculate_1_ply(board, roll, player)
|
||||
#print(time.time() - start)
|
||||
return best_pair
|
||||
|
||||
|
||||
def eval(self, trained_eps = 0):
|
||||
def calculate_1_ply(self, board, roll, player):
|
||||
"""
|
||||
Find the best move based on a 1-ply look-ahead. First the x best moves are picked from a 0-ply and then
|
||||
all moves and scores are found for them. The expected score is then calculated for each of the boards from the
|
||||
0-ply.
|
||||
|
||||
:param board:
|
||||
:param roll: The original roll
|
||||
:param player: The current player
|
||||
:return: Best possible move based on 1-ply look-ahead
|
||||
"""
|
||||
|
||||
# find all legal states from the given board and the given roll
|
||||
init_legal_states = Board.calculate_legal_states(board, player, roll)
|
||||
legal_states = np.array([self.board_trans_func(state, player)[0] for state in init_legal_states])
|
||||
|
||||
scores = [ score.numpy()
|
||||
for score
|
||||
in self.calc_vals(legal_states) ]
|
||||
|
||||
moves_and_scores = list(zip(init_legal_states, scores))
|
||||
sorted_moves_and_scores = sorted(moves_and_scores, key=itemgetter(1), reverse=(player == 1))
|
||||
best_boards = [ x[0] for x in sorted_moves_and_scores[:10] ]
|
||||
|
||||
scores = self.do_ply(best_boards, player)
|
||||
|
||||
best_score_idx = self.max_or_min[player](scores)
|
||||
# best_score_idx = np.array(trans_scores).argmax()
|
||||
|
||||
return (best_boards[best_score_idx], scores[best_score_idx])
|
||||
|
||||
def do_ply(self, boards, player):
|
||||
"""
|
||||
Calculates a single extra ply, resulting in a larger search space for our best move.
|
||||
This is somewhat hardcoded to only do a single ply, seeing that it calls max on all scores, rather than
|
||||
allowing the function to search deeper, which could result in an even larger search space. If we wish
|
||||
to have more than 2-ply, this should be fixed, so we could extend this method to allow for 3-ply.
|
||||
|
||||
:param boards: The boards to try all rolls on
|
||||
:param player: The player of the previous ply
|
||||
:return: An array of scores where each index describes one of the boards which was given as param
|
||||
to this function.
|
||||
"""
|
||||
|
||||
all_rolls = [ (1, 1), (1, 2), (1, 3), (1, 4), (1, 5),
|
||||
(1, 6), (2, 2), (2, 3), (2, 4), (2, 5),
|
||||
(2, 6), (3, 3), (3, 4), (3, 5), (3, 6),
|
||||
(4, 4), (4, 5), (4, 6), (5, 5), (5, 6),
|
||||
(6, 6) ]
|
||||
|
||||
|
||||
# start = time.time()
|
||||
|
||||
# print("/"*50)
|
||||
length_list = []
|
||||
test_list = []
|
||||
# Prepping of data
|
||||
# start = time.time()
|
||||
for board in boards:
|
||||
length = 0
|
||||
for roll in all_rolls:
|
||||
all_states = Board.calculate_legal_states(board, player*-1, roll)
|
||||
for state in all_states:
|
||||
state = np.array(self.board_trans_func(state, player*-1)[0])
|
||||
test_list.append(state)
|
||||
length += 1
|
||||
length_list.append(length)
|
||||
|
||||
# print(time.time() - start)
|
||||
|
||||
start = time.time()
|
||||
|
||||
all_scores = self.model.predict_on_batch(np.array(test_list))
|
||||
|
||||
split_scores = []
|
||||
from_idx = 0
|
||||
for length in length_list:
|
||||
split_scores.append(all_scores[from_idx:from_idx+length])
|
||||
from_idx += length
|
||||
|
||||
means_splits = [tf.reduce_mean(scores) for scores in split_scores]
|
||||
|
||||
# print(time.time() - start)
|
||||
# print("/"*50)
|
||||
return means_splits
|
||||
|
||||
|
||||
def eval(self, episode_count, trained_eps = 0):
|
||||
"""
|
||||
Used to evaluate a model. Can either use pubeval, a model playing at an intermediate level, or dumbeval
|
||||
a model which has been given random weights, so it acts deterministically random.
|
||||
|
||||
:param episode_count: The amount of episodes to run
|
||||
:param trained_eps: The amount of episodes the model we want to evaluate, has trained
|
||||
:param tf_session:
|
||||
:return: outcomes: The outcomes of the evaluation session
|
||||
"""
|
||||
|
||||
def do_eval(method, episodes = 1000, trained_eps = 0):
|
||||
"""
|
||||
Do the actual evaluation
|
||||
|
||||
:param method: Either pubeval or dumbeval
|
||||
:param episodes: Amount of episodes to use in the evaluation
|
||||
:param trained_eps:
|
||||
:return: outcomes : Described above
|
||||
"""
|
||||
|
||||
start_time = time.time()
|
||||
|
||||
def print_time_estimate(eps_completed):
|
||||
cur_time = time.time()
|
||||
time_diff = cur_time - start_time
|
||||
eps_per_sec = eps_completed / time_diff
|
||||
secs_per_ep = time_diff / eps_completed
|
||||
cur_time = time.time()
|
||||
time_diff = cur_time - start_time
|
||||
eps_per_sec = eps_completed / time_diff
|
||||
secs_per_ep = time_diff / eps_completed
|
||||
eps_remaining = (episodes - eps_completed)
|
||||
sys.stderr.write("[EVAL ] Averaging {per_sec} episodes per second\n".format(per_sec = round(eps_per_sec, 2)))
|
||||
sys.stderr.write("[EVAL ] {eps_remaining} episodes remaining; approx. {time_remaining} seconds remaining\n".format(eps_remaining = eps_remaining, time_remaining = int(eps_remaining * secs_per_ep)))
|
||||
sys.stderr.write(
|
||||
"[EVAL ] Averaging {per_sec} episodes per second\n".format(per_sec=round(eps_per_sec, 2)))
|
||||
sys.stderr.write(
|
||||
"[EVAL ] {eps_remaining} episodes remaining; approx. {time_remaining} seconds remaining\n".format(
|
||||
eps_remaining=eps_remaining, time_remaining=int(eps_remaining * secs_per_ep)))
|
||||
|
||||
sys.stderr.write("[EVAL ] Evaluating {eps} episode(s) with method '{method}'\n".format(eps=episodes, method=method))
|
||||
|
||||
if method == 'random':
|
||||
sys.stderr.write(
|
||||
"[EVAL ] Evaluating {eps} episode(s) with method '{method}'\n".format(eps=episodes, method=method))
|
||||
|
||||
if method == 'pubeval':
|
||||
outcomes = []
|
||||
for i in range(1, episodes + 1):
|
||||
sys.stderr.write("[EVAL ] Episode {}".format(i))
|
||||
board = Board.initial_state
|
||||
while Board.outcome(board) is None:
|
||||
roll = (random.randrange(1,7), random.randrange(1,7))
|
||||
board = (self.p1.make_move(board, self.p1.get_sym(), roll))[0]
|
||||
roll = (random.randrange(1,7), random.randrange(1,7))
|
||||
board = Board.flip(Eval.make_random_move(Board.flip(board), 1, roll))
|
||||
sys.stderr.write("\t outcome {}".format(Board.outcome(board)[1]))
|
||||
outcomes.append(Board.outcome(board)[1])
|
||||
sys.stderr.write("\n")
|
||||
roll = (random.randrange(1, 7), random.randrange(1, 7))
|
||||
board = (self.make_move(board, roll, 1))[0]
|
||||
|
||||
if i % 50 == 0:
|
||||
print_time_estimate(i)
|
||||
return outcomes
|
||||
elif method == 'pubeval':
|
||||
outcomes = []
|
||||
# Add the evaluation code for pubeval, the bot has a method make_pubeval_move(board, sym, roll), which can be used to get the best move according to pubeval
|
||||
for i in range(1, episodes + 1):
|
||||
sys.stderr.write("[EVAL ] Episode {}".format(i))
|
||||
board = Board.initial_state
|
||||
#print("init:", board, sep="\n")
|
||||
while Board.outcome(board) is None:
|
||||
#print("-"*30)
|
||||
roll = (random.randrange(1,7), random.randrange(1,7))
|
||||
#print(roll)
|
||||
|
||||
prev_board = tuple(board)
|
||||
board = (self.make_move(board, roll))[0]
|
||||
#print("post p1:", board, sep="\n")
|
||||
|
||||
#print("."*30)
|
||||
roll = (random.randrange(1,7), random.randrange(1,7))
|
||||
#print(roll)
|
||||
|
||||
prev_board = tuple(board)
|
||||
roll = (random.randrange(1, 7), random.randrange(1, 7))
|
||||
board = Eval.make_pubeval_move(board, -1, roll)[0][0:26]
|
||||
#print("post pubeval:", board, sep="\n")
|
||||
|
||||
|
||||
#print("*"*30)
|
||||
#print(board)
|
||||
#print("+"*30)
|
||||
sys.stderr.write("\t outcome {}".format(Board.outcome(board)[1]))
|
||||
outcomes.append(Board.outcome(board)[1])
|
||||
sys.stderr.write("\n")
|
||||
|
||||
if i % 10 == 0:
|
||||
print_time_estimate(i)
|
||||
|
||||
return outcomes
|
||||
# elif method == 'dumbmodel':
|
||||
# config_prime = self.config.copy()
|
||||
# config_prime['model_path'] = os.path.join(config_prime['model_storage_path'], 'dumbmodel')
|
||||
# eval_bot = Bot(1, config = config_prime, name = "dumbmodel")
|
||||
# #print(self.config, "\n", config_prime)
|
||||
# outcomes = []
|
||||
# for i in range(1, episodes + 1):
|
||||
# sys.stderr.write("[EVAL ] Episode {}".format(i))
|
||||
# board = Board.initial_state
|
||||
# while Board.outcome(board) is None:
|
||||
# roll = (random.randrange(1,7), random.randrange(1,7))
|
||||
# board = (self.make_move(board, self.p1.get_sym(), roll))[0]
|
||||
|
||||
# roll = (random.randrange(1,7), random.randrange(1,7))
|
||||
# board = Board.flip(eval_bot.make_move(Board.flip(board), self.p1.get_sym(), roll)[0])
|
||||
# sys.stderr.write("\t outcome {}".format(Board.outcome(board)[1]))
|
||||
# outcomes.append(Board.outcome(board)[1])
|
||||
# sys.stderr.write("\n")
|
||||
|
||||
# if i % 50 == 0:
|
||||
# print_time_estimate(i)
|
||||
# return outcomes
|
||||
return outcomes
|
||||
|
||||
elif method == 'dumbeval':
|
||||
outcomes = []
|
||||
for i in range(1, episodes + 1):
|
||||
sys.stderr.write("[EVAL ] Episode {}".format(i))
|
||||
board = Board.initial_state
|
||||
while Board.outcome(board) is None:
|
||||
roll = (random.randrange(1, 7), random.randrange(1, 7))
|
||||
board = (self.make_move(board, roll, 1))[0]
|
||||
|
||||
roll = (random.randrange(1, 7), random.randrange(1, 7))
|
||||
board = Eval.make_dumbeval_move(board, -1, roll)[0][0:26]
|
||||
|
||||
sys.stderr.write("\t outcome {}".format(Board.outcome(board)[1]))
|
||||
outcomes.append(Board.outcome(board)[1])
|
||||
sys.stderr.write("\n")
|
||||
|
||||
if i % 10 == 0:
|
||||
print_time_estimate(i)
|
||||
|
||||
return outcomes
|
||||
|
||||
else:
|
||||
sys.stderr.write("[EVAL ] Evaluation method '{}' is not defined\n".format(method))
|
||||
return [0]
|
||||
|
||||
return [ (method, do_eval(method,
|
||||
self.config['episode_count'],
|
||||
trained_eps = trained_eps))
|
||||
for method
|
||||
in self.config['eval_methods'] ]
|
||||
|
||||
outcomes = [ (method, do_eval(method,
|
||||
episode_count,
|
||||
trained_eps = trained_eps))
|
||||
for method
|
||||
in self.config['eval_methods'] ]
|
||||
return outcomes
|
||||
|
||||
|
||||
def play_against_network(self):
|
||||
"""
|
||||
Allows you to play against a supplied model.
|
||||
:return:
|
||||
"""
|
||||
self.restore_model()
|
||||
human_player = Player(-1)
|
||||
cur_player = 1
|
||||
player = 1
|
||||
board = Board.initial_state
|
||||
i = 0
|
||||
while Board.outcome(board) is None:
|
||||
print(Board.pretty(board))
|
||||
roll = (random.randrange(1, 7), random.randrange(1, 7))
|
||||
print("Bot rolled:", roll)
|
||||
|
||||
board, _ = self.make_move(board, roll, player)
|
||||
print(Board.pretty(board))
|
||||
roll = (random.randrange(1, 7), random.randrange(1, 7))
|
||||
print("You rolled:", roll)
|
||||
board = human_player.make_human_move(board, roll)
|
||||
print("DONE "*10)
|
||||
print(Board.pretty(board))
|
||||
|
||||
|
||||
|
||||
def train_model(self, episodes=1000, save_step_size=100, trained_eps=0):
|
||||
"""
|
||||
Train a model to by self-learning.
|
||||
:param episodes:
|
||||
:param save_step_size:
|
||||
:param trained_eps:
|
||||
:return:
|
||||
"""
|
||||
|
||||
self.restore_model()
|
||||
average_diffs = 0
|
||||
start_time = time.time()
|
||||
|
||||
def print_time_estimate(eps_completed):
|
||||
cur_time = time.time()
|
||||
time_diff = cur_time - start_time
|
||||
eps_per_sec = eps_completed / time_diff
|
||||
secs_per_ep = time_diff / eps_completed
|
||||
eps_remaining = (episodes - eps_completed)
|
||||
sys.stderr.write(
|
||||
"[TRAIN] Averaging {per_sec} episodes per second\n".format(per_sec=round(eps_per_sec, 2)))
|
||||
sys.stderr.write(
|
||||
"[TRAIN] {eps_remaining} episodes remaining; approx. {time_remaining} seconds remaining\n".format(
|
||||
eps_remaining=eps_remaining, time_remaining=int(eps_remaining * secs_per_ep)))
|
||||
|
||||
sys.stderr.write("[TRAIN] Training {} episodes and save_step_size {}\n".format(episodes, save_step_size))
|
||||
outcomes = []
|
||||
for episode in range(1, episodes + 1):
|
||||
|
||||
sys.stderr.write("[TRAIN] Episode {}".format(episode + trained_eps))
|
||||
|
||||
# player = 1
|
||||
player = random.choice([-1,1])
|
||||
prev_board = Board.initial_state
|
||||
i = 0
|
||||
difference_in_values = 0
|
||||
while Board.outcome(prev_board) is None:
|
||||
i += 1
|
||||
self.global_step += 1
|
||||
|
||||
cur_board, cur_board_value = self.make_move(prev_board,
|
||||
(random.randrange(1, 7), random.randrange(1, 7)),
|
||||
player)
|
||||
|
||||
difference_in_values += abs((cur_board_value - self.eval_state(self.board_trans_func(prev_board, player))))
|
||||
|
||||
if self.config['verbose']:
|
||||
print("Difference in values:", difference_in_vals)
|
||||
print("Current board value :", cur_board_value)
|
||||
print("Current board is :\n",cur_board)
|
||||
|
||||
# adjust weights
|
||||
if Board.outcome(cur_board) is None:
|
||||
self.do_backprop(self.board_trans_func(prev_board, player), cur_board_value)
|
||||
player *= -1
|
||||
|
||||
prev_board = cur_board
|
||||
|
||||
final_board = prev_board
|
||||
sys.stderr.write("\t outcome {}\t turns {}".format(Board.outcome(final_board)[1], i))
|
||||
outcomes.append(Board.outcome(final_board)[1])
|
||||
final_score = np.array([Board.outcome(final_board)[1]])
|
||||
scaled_final_score = ((final_score + 2) / 4)
|
||||
|
||||
difference_in_values += abs(scaled_final_score-cur_board_value)
|
||||
|
||||
average_diffs += (difference_in_values[0][0] / (i+1))
|
||||
|
||||
self.do_backprop(self.board_trans_func(prev_board, player), scaled_final_score.reshape(1,1))
|
||||
|
||||
sys.stderr.write("\n")
|
||||
|
||||
if episode % min(save_step_size, episodes) == 0:
|
||||
sys.stderr.write("[TRAIN] Saving model...\n")
|
||||
self.save_model(episode + trained_eps)
|
||||
|
||||
if episode % 50 == 0:
|
||||
print_time_estimate(episode)
|
||||
|
||||
sys.stderr.write("[TRAIN] Saving model for final episode...\n")
|
||||
|
||||
self.save_model(episode+trained_eps)
|
||||
|
||||
return outcomes, average_diffs/len(outcomes)
|
||||
|
||||
|
||||
|
|
|
@ -3,30 +3,65 @@ import tensorflow as tf
|
|||
import random
|
||||
import numpy as np
|
||||
|
||||
session = tf.Session()
|
||||
graph_lol = tf.Graph()
|
||||
|
||||
from board import Board
|
||||
|
||||
import main
|
||||
|
||||
config = main.config.copy()
|
||||
config['model'] = "player_testings"
|
||||
config['ply'] = "1"
|
||||
config['board_representation'] = 'quack-fat'
|
||||
network = Network(config, config['model'])
|
||||
|
||||
network.restore_model()
|
||||
initial_state = Board.initial_state
|
||||
|
||||
initial_state_1 = ( 0,
|
||||
0, 0, 0, 2, 0, -5,
|
||||
0, -3, 0, 0, 0, 0,
|
||||
-5, 0, 0, 0, 3, 5,
|
||||
0, 0, 0, 0, 5, -2,
|
||||
0 )
|
||||
|
||||
initial_state_2 = ( 0,
|
||||
-5, -5, -3, -2, 0, 0,
|
||||
0, 0, 0, 0, 0, 0,
|
||||
0, 0, 0, 15, 0, 0,
|
||||
0, 0, 0, 0, 0, 0,
|
||||
0 )
|
||||
|
||||
boards = {initial_state,
|
||||
initial_state_1,
|
||||
initial_state_2 }
|
||||
|
||||
|
||||
|
||||
network = Network(session)
|
||||
|
||||
initial_state = np.array(( 0,
|
||||
2, 0, 0, 0, 0, -5,
|
||||
0, -3, 0, 0, 0, 5,
|
||||
-5, 0, 0, 0, 3, 0,
|
||||
5, 0, 0, 0, 0, -2,
|
||||
0 )).reshape((1,26))
|
||||
|
||||
|
||||
|
||||
|
||||
#print(x.shape)
|
||||
with graph_lol.as_default():
|
||||
session_2 = tf.Session(graph = graph_lol)
|
||||
network_2 = Network(session_2)
|
||||
network_2.restore_model()
|
||||
print(network_2.eval_state(initial_state))
|
||||
|
||||
print(network.eval_state(initial_state))
|
||||
# board = network.board_trans_func(Board.initial_state, 1)
|
||||
|
||||
|
||||
# pair = network.make_move(Board.initial_state, [3,2], 1)
|
||||
|
||||
# print(pair[1])
|
||||
|
||||
# network.do_backprop(board, 0.9)
|
||||
|
||||
|
||||
# network.print_variables()
|
||||
|
||||
|
||||
# network.save_model(2)
|
||||
|
||||
# print(network.calculate_1_ply(Board.initial_state, [3,2], 1))
|
||||
|
||||
|
||||
diff = [0, 0]
|
||||
val = network.eval_state(Board.board_features_quack_fat(initial_state, 1))
|
||||
print(val)
|
||||
diff[0] += abs(-1-val)
|
||||
diff[1] += 1
|
||||
|
||||
print(diff[1])
|
68
player.py
68
player.py
|
@ -11,19 +11,59 @@ class Player:
|
|||
def get_sym(self):
|
||||
return self.sym
|
||||
|
||||
def make_move(self, board, sym, roll):
|
||||
print(Board.pretty(board))
|
||||
legal_moves = Board.calculate_legal_states(board, sym, roll)
|
||||
if roll[0] == roll[1]:
|
||||
print("Example of move: 4/6,6/8,12/14,13/15")
|
||||
else:
|
||||
print("Example of move: 4/6,13/17")
|
||||
def calc_move_sets(self, from_board, roll, player):
|
||||
board = from_board
|
||||
sets = []
|
||||
total = 0
|
||||
for r in roll:
|
||||
# print("Value of r:",r)
|
||||
sets.append([Board.calculate_legal_states(board, player, [r,0]), r])
|
||||
total += r
|
||||
sets.append([Board.calculate_legal_states(board, player, [total,0]), total])
|
||||
print(sets)
|
||||
return sets
|
||||
|
||||
user_moves = input("Enter your move: ").strip().split(",")
|
||||
board = Board.apply_moves_to_board(board, sym, user_moves)
|
||||
while board not in legal_moves:
|
||||
print("Move is invalid, please enter a new move")
|
||||
user_moves = input("Enter your move: ").strip().split(",")
|
||||
board = Board.apply_moves_to_board(board, sym, user_moves)
|
||||
|
||||
return board
|
||||
def tmp_name(self, from_board, to_board, roll, player, total_moves, is_quad = False):
|
||||
sets = self.calc_move_sets(from_board, roll, player)
|
||||
return_board = from_board
|
||||
for idx, board_set in enumerate(sets):
|
||||
|
||||
board_set[0] = list(board_set[0])
|
||||
# print(to_board)
|
||||
# print(board_set)
|
||||
if to_board in board_set[0]:
|
||||
total_moves -= board_set[1]
|
||||
# if it's not the sum of the moves
|
||||
if idx < (4 if is_quad else 2):
|
||||
roll[idx] = 0
|
||||
else:
|
||||
roll = [0,0]
|
||||
return_board = to_board
|
||||
break
|
||||
return total_moves, roll, return_board
|
||||
|
||||
def make_human_move(self, board, roll):
|
||||
is_quad = roll[0] == roll[1]
|
||||
total_moves = roll[0] + roll[1] if not is_quad else int(roll[0])*4
|
||||
if is_quad:
|
||||
roll = [roll[0]]*4
|
||||
|
||||
while total_moves != 0:
|
||||
while True:
|
||||
print("You have {roll} left!".format(roll=total_moves))
|
||||
move = input("Pick a move!\n")
|
||||
pot_move = move.split("/")
|
||||
if len(pot_move) == 2:
|
||||
try:
|
||||
pot_move[0] = int(pot_move[0])
|
||||
pot_move[1] = int(pot_move[1])
|
||||
move = pot_move
|
||||
break;
|
||||
except TypeError:
|
||||
print("The correct syntax is: 2/5 for a move from index 2 to 5.")
|
||||
|
||||
to_board = Board.apply_moves_to_board(board, self.get_sym(), move)
|
||||
total_moves, roll, board = self.tmp_name(board, to_board, list(roll), self.get_sym(), total_moves, is_quad)
|
||||
print(Board.pretty(board))
|
||||
return board
|
19
plot.py
19
plot.py
|
@ -9,9 +9,26 @@ import matplotlib.dates as mdates
|
|||
|
||||
train_headers = ['timestamp', 'eps_train', 'eps_trained_session', 'sum', 'mean']
|
||||
eval_headers = ['timestamp', 'method', 'eps_train', 'eval_eps_used', 'sum', 'mean']
|
||||
bench_headers = ['method', 'sample_count', 'i', 'time', 'sum', 'mean']
|
||||
|
||||
model_path = 'models'
|
||||
|
||||
def plot_bench(data_path):
|
||||
df = pd.read_csv(data_path, sep=";",
|
||||
names=bench_headers, index_col=[0,1,2])
|
||||
for method_label in df.index.levels[0]:
|
||||
df_prime = df[['mean']].loc[method_label].unstack().T
|
||||
plot = df_prime.plot.box()
|
||||
plot.set_title("Evaluation variance, {}".format(method_label))
|
||||
plot.set_xlabel("Sample count")
|
||||
plot.set_ylabel("Mean score")
|
||||
plt.show(plot.figure)
|
||||
|
||||
# for later use:
|
||||
variances = df_prime.var()
|
||||
print(variances)
|
||||
|
||||
del df_prime, plot, variances
|
||||
|
||||
def dataframes(model_name):
|
||||
def df_timestamp_to_datetime(df):
|
||||
|
@ -44,7 +61,7 @@ if __name__ == '__main__':
|
|||
plt.show()
|
||||
|
||||
while True:
|
||||
df = dataframes('default')['eval']
|
||||
df = dataframes('a')['eval']
|
||||
|
||||
print(df)
|
||||
|
||||
|
|
484
quack/quack.c
Normal file
484
quack/quack.c
Normal file
|
@ -0,0 +1,484 @@
|
|||
#include <Python.h>
|
||||
|
||||
static PyObject* QuackError;
|
||||
|
||||
typedef struct board_list board_list;
|
||||
struct board_list {
|
||||
int size;
|
||||
PyObject* list[16];
|
||||
};
|
||||
|
||||
/* Utility functions */
|
||||
int sign(int x) {
|
||||
return (x > 0) - (x < 0);
|
||||
}
|
||||
|
||||
int abs(int x) {
|
||||
if (x >= 0) return x;
|
||||
else return -x;
|
||||
}
|
||||
/* end utility functions */
|
||||
|
||||
/* Helper functions */
|
||||
|
||||
int *idxs_with_checkers_of_player(int board[], int player) {
|
||||
int idxs_tmp[26];
|
||||
int ctr = 0;
|
||||
|
||||
for (int i = 0; i < 26; i++) {
|
||||
if (board[i] * player >= 1) {
|
||||
idxs_tmp[ctr] = i;
|
||||
ctr++;
|
||||
}
|
||||
}
|
||||
|
||||
int *idxs = malloc((1 + ctr) * sizeof(int));
|
||||
if (idxs == NULL) {
|
||||
PyErr_NoMemory();
|
||||
abort();
|
||||
}
|
||||
|
||||
idxs[0] = ctr;
|
||||
for (int i = 0; i < ctr; i++) {
|
||||
idxs[i+1] = idxs_tmp[i];
|
||||
}
|
||||
|
||||
return idxs;
|
||||
}
|
||||
|
||||
int is_forward_move(int direction, int player) {
|
||||
return direction == player;
|
||||
}
|
||||
|
||||
int face_value_match_move_length(int delta, int face_value) {
|
||||
return abs(delta) == face_value;
|
||||
}
|
||||
|
||||
int bear_in_if_checker_on_bar(int board[], int player, int from_idx) {
|
||||
int bar;
|
||||
|
||||
if (player == 1) bar = 0;
|
||||
else bar = 25;
|
||||
|
||||
if (board[bar] != 0) return from_idx == bar;
|
||||
else return 1;
|
||||
}
|
||||
|
||||
int checkers_at_from_idx(int from_state, int player) {
|
||||
return sign(from_state) == player;
|
||||
}
|
||||
|
||||
int no_block_at_to_idx(int to_state, int player) {
|
||||
if (-sign(to_state) == player) return abs(to_state) == 1;
|
||||
else return 1;
|
||||
}
|
||||
|
||||
|
||||
int can_bear_off(int board[], int player, int from_idx, int to_idx) {
|
||||
int* checker_idxs = idxs_with_checkers_of_player(board, player);
|
||||
|
||||
int moving_backmost_checker = 1;
|
||||
int bearing_directly_off = 0;
|
||||
int all_checkers_in_last_quadrant = 1;
|
||||
|
||||
/* Check if bearing directly off */
|
||||
if (player == 1 && to_idx == 25) bearing_directly_off = 1;
|
||||
else if (player == -1 && to_idx == 0) bearing_directly_off = 1;
|
||||
|
||||
for (int i = 1; i <= checker_idxs[0]; i++) {
|
||||
if (player == 1 ) {
|
||||
/* Check if all checkers are in last quardrant */
|
||||
if (checker_idxs[i] < 19) {
|
||||
all_checkers_in_last_quadrant = 0;
|
||||
break;
|
||||
}
|
||||
|
||||
/* Check if moving backmost checker */
|
||||
if (checker_idxs[i] < from_idx) {
|
||||
moving_backmost_checker = 0;
|
||||
if (!bearing_directly_off) break;
|
||||
}
|
||||
} else {
|
||||
if (checker_idxs[i] > 6) {
|
||||
all_checkers_in_last_quadrant = 0;
|
||||
break;
|
||||
}
|
||||
|
||||
if (checker_idxs[i] > from_idx) {
|
||||
moving_backmost_checker = 0;
|
||||
if (!bearing_directly_off) break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
free(checker_idxs);
|
||||
|
||||
if (all_checkers_in_last_quadrant &&
|
||||
(bearing_directly_off || moving_backmost_checker)) return 1;
|
||||
else return 0;
|
||||
}
|
||||
|
||||
|
||||
|
||||
/* end helper functions */
|
||||
|
||||
int is_move_valid(int board[], int player, int face_value, int move[]) {
|
||||
int from_idx = move[0];
|
||||
int to_idx = move[1];
|
||||
int to_state;
|
||||
int from_state = board[from_idx];
|
||||
int delta = to_idx - from_idx;
|
||||
int direction = sign(delta);
|
||||
int bearing_off;
|
||||
|
||||
if (to_idx >= 1 && to_idx <= 24) {
|
||||
to_state = board[to_idx];
|
||||
bearing_off = 0;
|
||||
} else {
|
||||
to_state = 0;
|
||||
bearing_off = 1;
|
||||
}
|
||||
|
||||
return is_forward_move(direction, player)
|
||||
&& face_value_match_move_length(delta, face_value)
|
||||
&& bear_in_if_checker_on_bar(board, player, from_idx)
|
||||
&& checkers_at_from_idx(from_state, player)
|
||||
&& no_block_at_to_idx(to_state, player)
|
||||
&& (!bearing_off || can_bear_off(board, player, from_idx, to_idx))
|
||||
;
|
||||
}
|
||||
|
||||
void do_move(int board[], int player, int move[]) {
|
||||
int from_idx = move[0];
|
||||
int to_idx = move[1];
|
||||
|
||||
/* "lift" checker */
|
||||
board[from_idx] -= player;
|
||||
|
||||
/* Return early if bearing off */
|
||||
if (to_idx < 1 || to_idx > 24) return;
|
||||
|
||||
/* Hit opponent checker */
|
||||
if (board[to_idx] * player == -1) {
|
||||
/* Move checker to bar */
|
||||
if (player == 1) board[25] -= player;
|
||||
else board[0] -= player;
|
||||
|
||||
board[to_idx] = 0;
|
||||
}
|
||||
|
||||
/* Put down checker */
|
||||
board[to_idx] += player;
|
||||
|
||||
return;
|
||||
}
|
||||
|
||||
int* do_move_clone(int board[], int player, int move[]) {
|
||||
int* new_board = malloc(sizeof(int) * 26);
|
||||
if (new_board == NULL) {
|
||||
PyErr_NoMemory();
|
||||
abort();
|
||||
}
|
||||
|
||||
for (int i = 0; i < 26; i++) {
|
||||
new_board[i] = board[i];
|
||||
}
|
||||
|
||||
do_move(new_board, player, move);
|
||||
return new_board;
|
||||
}
|
||||
|
||||
PyObject* store_board_to_pytuple(int board[], int size) {
|
||||
PyObject* board_tuple = PyTuple_New(size);
|
||||
for (int i = 0; i < size; i++) {
|
||||
PyTuple_SetItem(board_tuple, i, Py_BuildValue("i", board[i]));
|
||||
}
|
||||
return board_tuple;
|
||||
}
|
||||
|
||||
board_list calc_moves(int board[], int player, int face_value) {
|
||||
int* checker_idxs = idxs_with_checkers_of_player(board, player);
|
||||
board_list boards = { .size = 0 };
|
||||
|
||||
if (checker_idxs[0] == 0) {
|
||||
boards.size = 1;
|
||||
PyObject* board_tuple = store_board_to_pytuple(board, 26);
|
||||
boards.list[0] = board_tuple;
|
||||
free(checker_idxs);
|
||||
return boards;
|
||||
}
|
||||
|
||||
int ctr = 0;
|
||||
for (int i = 1; i <= checker_idxs[0]; i++) {
|
||||
int move[2];
|
||||
move[0] = checker_idxs[i];
|
||||
move[1] = checker_idxs[i] + (face_value * player);
|
||||
|
||||
if (is_move_valid(board, player, face_value, move)) {
|
||||
int* new_board = do_move_clone(board, player, move);
|
||||
PyObject* board_tuple = store_board_to_pytuple(new_board, 26);
|
||||
|
||||
// segfault maybe :'(
|
||||
free(new_board);
|
||||
|
||||
boards.list[ctr] = board_tuple;
|
||||
ctr++;
|
||||
}
|
||||
}
|
||||
|
||||
free(checker_idxs);
|
||||
|
||||
boards.size = ctr;
|
||||
return boards;
|
||||
}
|
||||
|
||||
int* board_features_quack_fat(int board[], int player) {
|
||||
int* new_board = malloc(sizeof(int) * 30);
|
||||
if (new_board == NULL) {
|
||||
PyErr_NoMemory();
|
||||
abort();
|
||||
}
|
||||
|
||||
int pos_sum = 0;
|
||||
int neg_sum = 0;
|
||||
for (int i = 0; i < 26; i++) {
|
||||
new_board[i] = board[i];
|
||||
if (sign(new_board[i] > 0)) pos_sum += new_board[i];
|
||||
else neg_sum += new_board[i];
|
||||
}
|
||||
|
||||
new_board[26] = 15 - pos_sum;
|
||||
new_board[27] = -15 - neg_sum;
|
||||
if (player == 1) {
|
||||
new_board[28] = 1;
|
||||
new_board[29] = 0;
|
||||
} else {
|
||||
new_board[28] = 0;
|
||||
new_board[29] = 1;
|
||||
}
|
||||
|
||||
return new_board;
|
||||
}
|
||||
|
||||
/* Meta definitions */
|
||||
int extract_board(int *board, PyObject* board_tuple_obj) {
|
||||
long numValuesBoard;
|
||||
numValuesBoard = PyTuple_Size(board_tuple_obj);
|
||||
if (numValuesBoard != 26) {
|
||||
PyErr_SetString(QuackError, "Board tuple must have 26 entries");
|
||||
return 1;
|
||||
}
|
||||
|
||||
PyObject* board_val_obj;
|
||||
// Iterate over tuple to retreive positions
|
||||
for (int i=0; i<numValuesBoard; i++) {
|
||||
board_val_obj = PyTuple_GetItem(board_tuple_obj, i);
|
||||
board[i] = PyLong_AsLong(board_val_obj);
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
int extract_move(int *move, PyObject* move_tuple_obj) {
|
||||
long numValuesMove;
|
||||
numValuesMove = PyTuple_Size(move_tuple_obj);
|
||||
if (numValuesMove != 2) {
|
||||
PyErr_SetString(QuackError, "Move tuple must have exactly 2 entries");
|
||||
return 1;
|
||||
}
|
||||
PyObject* move_val_obj;
|
||||
for (int i=0; i<numValuesMove; i++) {
|
||||
move_val_obj = PyTuple_GetItem(move_tuple_obj, i);
|
||||
move[i] = PyLong_AsLong(move_val_obj);
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
static PyObject*
|
||||
quack_is_move_valid(PyObject *self, PyObject *args) {
|
||||
int board[26];
|
||||
int player;
|
||||
int face_value;
|
||||
int move[2];
|
||||
|
||||
PyObject* board_tuple_obj;
|
||||
PyObject* move_tuple_obj;
|
||||
|
||||
if (! PyArg_ParseTuple(args, "O!iiO!",
|
||||
&PyTuple_Type, &board_tuple_obj,
|
||||
&player,
|
||||
&face_value,
|
||||
&PyTuple_Type, &move_tuple_obj))
|
||||
return NULL;
|
||||
|
||||
if (extract_board(board, board_tuple_obj)) return NULL;
|
||||
if (extract_move(move, move_tuple_obj)) return NULL;
|
||||
|
||||
if (is_move_valid(board, player, face_value, move)) Py_RETURN_TRUE;
|
||||
else Py_RETURN_FALSE;
|
||||
}
|
||||
|
||||
static PyObject*
|
||||
quack_idxs_with_checkers_of_player(PyObject *self, PyObject *args) {
|
||||
|
||||
int board[26];
|
||||
int player;
|
||||
|
||||
int* idxs;
|
||||
|
||||
PyObject* board_tuple_obj;
|
||||
|
||||
if (! PyArg_ParseTuple(args, "O!i",
|
||||
&PyTuple_Type, &board_tuple_obj,
|
||||
&player))
|
||||
return NULL;
|
||||
|
||||
if (extract_board(board, board_tuple_obj)) return NULL;
|
||||
|
||||
idxs = idxs_with_checkers_of_player(board, player);
|
||||
PyObject* idxs_list = PyList_New(idxs[0]);
|
||||
|
||||
for (int i = 0; i < idxs[0]; i++) {
|
||||
PyList_SetItem(idxs_list, i, Py_BuildValue("i", idxs[i+1]));
|
||||
}
|
||||
free(idxs);
|
||||
|
||||
PyObject *result = Py_BuildValue("O", idxs_list);
|
||||
Py_DECREF(idxs_list);
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
static PyObject*
|
||||
quack_do_move(PyObject *self, PyObject *args) {
|
||||
int board[26];
|
||||
int player;
|
||||
int move[2];
|
||||
|
||||
PyObject* board_tuple_obj;
|
||||
PyObject* move_tuple_obj;
|
||||
|
||||
if (! PyArg_ParseTuple(args, "O!iO!",
|
||||
&PyTuple_Type, &board_tuple_obj,
|
||||
&player,
|
||||
&PyTuple_Type, &move_tuple_obj))
|
||||
return NULL;
|
||||
|
||||
if (extract_board(board, board_tuple_obj)) return NULL;
|
||||
if (extract_move(move, move_tuple_obj)) return NULL;
|
||||
|
||||
do_move(board, player, move);
|
||||
PyObject* board_tuple = store_board_to_pytuple(board, 26);
|
||||
|
||||
// This is shaky
|
||||
Py_DECREF(board);
|
||||
|
||||
PyObject *result = Py_BuildValue("O", board_tuple);
|
||||
Py_DECREF(board_tuple);
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
static PyObject*
|
||||
quack_calc_moves(PyObject *self, PyObject *args) {
|
||||
int board[26];
|
||||
int player;
|
||||
int face_value;
|
||||
|
||||
PyObject* board_tuple_obj;
|
||||
|
||||
if (! PyArg_ParseTuple(args, "O!ii",
|
||||
&PyTuple_Type, &board_tuple_obj,
|
||||
&player,
|
||||
&face_value))
|
||||
return NULL;
|
||||
|
||||
if (extract_board(board, board_tuple_obj)) return NULL;
|
||||
|
||||
board_list boards = calc_moves(board, player, face_value);
|
||||
PyObject* boards_list = PyList_New(boards.size);
|
||||
|
||||
for (int i = 0; i < boards.size; i++) {
|
||||
if (PyList_SetItem(boards_list, i, boards.list[i])) {
|
||||
printf("list insertion failed at index %i\n",i);
|
||||
abort();
|
||||
}
|
||||
}
|
||||
|
||||
PyObject *result = Py_BuildValue("O", boards_list);
|
||||
Py_DECREF(boards_list);
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
static PyObject*
|
||||
quack_board_features_quack_fat(PyObject *self, PyObject *args) {
|
||||
int board[26];
|
||||
int player;
|
||||
|
||||
PyObject* board_tuple_obj;
|
||||
|
||||
if (! PyArg_ParseTuple(args, "O!i",
|
||||
&PyTuple_Type, &board_tuple_obj,
|
||||
&player))
|
||||
return NULL;
|
||||
|
||||
if (extract_board(board, board_tuple_obj)) return NULL;
|
||||
|
||||
int* new_board = board_features_quack_fat(board, player);
|
||||
PyObject* board_tuple = store_board_to_pytuple(new_board, 30);
|
||||
free(new_board);
|
||||
|
||||
PyObject *result = Py_BuildValue("O", board_tuple);
|
||||
Py_DECREF(board_tuple);
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
|
||||
static PyMethodDef quack_methods[] = {
|
||||
{
|
||||
"is_move_valid", quack_is_move_valid, METH_VARARGS,
|
||||
"Evaluates the validity of the proposed move."
|
||||
},
|
||||
{
|
||||
"idxs_with_checkers_of_player", quack_idxs_with_checkers_of_player, METH_VARARGS,
|
||||
"Returns a list of indexes with checkers of the specified player"
|
||||
},
|
||||
{
|
||||
"do_move", quack_do_move, METH_VARARGS,
|
||||
"Returns the board after doing the specified move"
|
||||
},
|
||||
{
|
||||
"calc_moves", quack_calc_moves, METH_VARARGS,
|
||||
"Calculates all legal moves from board with specified face value"
|
||||
},
|
||||
{
|
||||
"board_features_quack_fat", quack_board_features_quack_fat, METH_VARARGS,
|
||||
"Transforms a board to the quack-fat board representation"
|
||||
},
|
||||
{NULL, NULL, 0, NULL}
|
||||
};
|
||||
|
||||
static struct PyModuleDef quack_definition = {
|
||||
PyModuleDef_HEAD_INIT,
|
||||
"quack",
|
||||
"A Python module that provides various useful Backgammon-related functions.",
|
||||
-1,
|
||||
quack_methods
|
||||
};
|
||||
|
||||
PyMODINIT_FUNC PyInit_quack(void) {
|
||||
PyObject* module;
|
||||
|
||||
module = PyModule_Create(&quack_definition);
|
||||
if (module == NULL)
|
||||
return NULL;
|
||||
|
||||
QuackError = PyErr_NewException("quack.error", NULL, NULL);
|
||||
Py_INCREF(QuackError);
|
||||
PyModule_AddObject(module, "error", QuackError);
|
||||
|
||||
return module;
|
||||
}
|
9
quack/setup.py
Normal file
9
quack/setup.py
Normal file
|
@ -0,0 +1,9 @@
|
|||
from distutils.core import setup, Extension
|
||||
|
||||
quack = Extension('quack',
|
||||
sources = ['quack.c'])
|
||||
|
||||
setup (name = 'quack',
|
||||
version = '0.1',
|
||||
description = 'Quack Backgammon Tools',
|
||||
ext_modules = [quack])
|
28
report_docs.txt
Normal file
28
report_docs.txt
Normal file
|
@ -0,0 +1,28 @@
|
|||
<christoffer> Alexander og jeg skrev noget af vores bachelorprojekt om til C her i fredags.
|
||||
<christoffer> Man skal virkelig passe på sine hukommelsesallokeringer.
|
||||
<Jmaa> Ja, helt klart.
|
||||
<christoffer> Jeg fandt et memory leak, der lækkede 100 MiB hukommelse i sekundet.
|
||||
<Jmaa> Hvilken del blev C-ificeret?
|
||||
<Jmaa> Damned
|
||||
<christoffer> Årsagen var at vi gav et objekt med tilbage til Python uden at dekrementere dets ref-count, så fortolkeren stadig troede at nogen havde brug for det.
|
||||
<christoffer> Den del af spillogikken, der tjekker om træk er gyldige.
|
||||
<christoffer> Det bliver kaldt ret mange tusinde gange pr. spil, så vi tænkte at der måske kunne være lidt optimering at hente i at omskrive det til C.
|
||||
<Jmaa> Ok, så I har ikke selv brugt alloc og free. Det er alligevel noget.
|
||||
<christoffer> Metoden selv blev 7 gange hurtigere!
|
||||
<Jmaa> Wow!
|
||||
<christoffer> Jo. Det endte vi også med at gøre.
|
||||
<christoffer> Vi havde brug for lister af variabel størrelse. Det endte med en struct med et "size" felt og et "list" felt.
|
||||
<Jmaa> Inkluderer det speedup, frem og tilbagen mellem C og python?
|
||||
<christoffer> Det burde det gøre, ja!
|
||||
<Jmaa> Gjorde det nogen stor effekt for hvor hurtigt I kan evaluere?
|
||||
<christoffer> Jeg tror ikke at der er særligt meget "frem og tilbage"-stads. Det ser ud til at det kode man skriver bliver kastet ret direkte ind i fortolkeren.
|
||||
<christoffer> Det gjorde en stor forskel for når vi laver 1-ply.
|
||||
<christoffer> "ply" er hvor mange træk man kigger fremad.
|
||||
<christoffer> Så kun at kigge på det umiddelbart næste træk er 0-ply, hvilket er det vi har gjort indtil nu
|
||||
<christoffer> 1-ply var for langsomt. Det tog ca. 6-7 sekunder at evaluere ét træk.
|
||||
<christoffer> Alexander lavede lidt omskrivninger, så TensorFlow udregnede det hurtigere og fik det ned på ca. 3-4 sekunder *pr. spil*.
|
||||
<christoffer> Så skrev vi noget af det om til C, og nu er vi så på ca. 2 sekunder pr. spil med 1-ply, hvilket er ret vildt.
|
||||
<christoffer> Det er så godt at Python-fortolkeren kan udvides med C!
|
||||
<christoffer> caspervk, kan I optimere jeres bachelorprojekt med et par C-moduler?
|
||||
<Jmaa> Det er en hel lille sektion til rapporten det der.
|
||||
<christoffer> Yeah. Kopierer bare det her verbatim ind.
|
|
@ -1,14 +1,24 @@
|
|||
absl-py==0.1.10
|
||||
astor==0.6.2
|
||||
bleach==1.5.0
|
||||
cycler==0.10.0
|
||||
gast==0.2.0
|
||||
grpcio==1.10.0
|
||||
html5lib==0.9999999
|
||||
kiwisolver==1.0.1
|
||||
Markdown==2.6.11
|
||||
matplotlib==2.2.2
|
||||
numpy==1.14.1
|
||||
pandas==0.22.0
|
||||
protobuf==3.5.1
|
||||
pubeval==0.3
|
||||
pyparsing==2.2.0
|
||||
python-dateutil==2.7.2
|
||||
pytz==2018.3
|
||||
six==1.11.0
|
||||
tensorboard==1.6.0
|
||||
tensorflow==1.6.0
|
||||
tensorboard==1.8.0
|
||||
tensorflow==1.8.0
|
||||
termcolor==1.1.0
|
||||
Werkzeug==0.14.1
|
||||
pygame==1.9.3
|
||||
|
||||
|
|
94
tensorflow_impl_tests/eager_main.py
Normal file
94
tensorflow_impl_tests/eager_main.py
Normal file
|
@ -0,0 +1,94 @@
|
|||
import time
|
||||
import numpy as np
|
||||
import tensorflow as tf
|
||||
from board import Board
|
||||
import tensorflow.contrib.eager as tfe
|
||||
|
||||
|
||||
tf.enable_eager_execution()
|
||||
xavier_init = tf.contrib.layers.xavier_initializer()
|
||||
|
||||
|
||||
|
||||
opt = tf.train.MomentumOptimizer(learning_rate=0.1, momentum=1)
|
||||
|
||||
output_size = 1
|
||||
hidden_size = 40
|
||||
input_size = 30
|
||||
|
||||
|
||||
model = tf.keras.Sequential([
|
||||
tf.keras.layers.Dense(40, activation="sigmoid", kernel_initializer=tf.constant_initializer(-2), input_shape=(1,input_size)),
|
||||
tf.keras.layers.Dense(1, activation="sigmoid", kernel_initializer=tf.constant_initializer(0.2))
|
||||
])
|
||||
|
||||
|
||||
# tfe.Saver(model.variables).restore(tf.train.latest_checkpoint("./"))
|
||||
|
||||
input = [0, 2, 0, 0, 0, 0, -5, 0, -3, 0, 0, 0, 5, -5, 0, 0, 0, 3, 0, 5, 0, 0, 0, 0, -2, 0]
|
||||
|
||||
|
||||
|
||||
all_input = np.array([Board.board_features_quack_fat(input, 1) for _ in range(20)])
|
||||
|
||||
|
||||
single_in = Board.board_features_quack_fat(input, 1)
|
||||
|
||||
|
||||
start = time.time()
|
||||
|
||||
all_predictions = model.predict_on_batch(all_input)
|
||||
|
||||
|
||||
learning_rate = 0.1
|
||||
|
||||
with tf.GradientTape() as tape:
|
||||
value = model(single_in)
|
||||
|
||||
|
||||
print("Before:", value)
|
||||
|
||||
grads = tape.gradient(value, model.variables)
|
||||
print("/"*40,"model_variables","/"*40)
|
||||
print(model.variables)
|
||||
print("/"*40,"grads","/"*40)
|
||||
print(grads)
|
||||
|
||||
difference_in_values = tf.reshape(tf.subtract(0.9, value, name='difference_in_values'), [])
|
||||
|
||||
for grad, train_var in zip(grads, model.variables):
|
||||
backprop_calc = 0.1 * difference_in_values * grad
|
||||
train_var.assign_add(backprop_calc)
|
||||
|
||||
value = model(single_in)
|
||||
print("/"*40,"model_variables","/"*40)
|
||||
print(model.variables)
|
||||
print("After:", value)
|
||||
|
||||
|
||||
# # grads = [0.1*val-np.random.uniform(-1,1)+grad for grad, trainable_var in zip(grads, model.variables)]
|
||||
#
|
||||
# # print(model.variables[0][0])
|
||||
# weights_before = model.weights[0]
|
||||
#
|
||||
# start = time.time()
|
||||
# #[trainable_var.assign_add(0.1*val-0.3+grad) for grad, trainable_var in zip(grads, model.variables)]
|
||||
#
|
||||
# start = time.time()
|
||||
# for gradient, trainable_var in zip(grads, model.variables):
|
||||
# backprop_calc = 0.1 * (0.9 - val) * gradient
|
||||
# trainable_var.assign_add(backprop_calc)
|
||||
#
|
||||
# # opt.apply_gradients(zip(grads, model.variables))
|
||||
#
|
||||
# print(time.time() - start)
|
||||
#
|
||||
# print(model(single_in))
|
||||
#
|
||||
# vals = model.predict_on_batch(all_input)
|
||||
# vals = list(vals)
|
||||
# vals[3] = 4
|
||||
# print(vals)
|
||||
# print(np.argmax(np.array(vals)))
|
||||
|
||||
# tfe.Saver(model.variables).save("./tmp_ckpt")
|
67
tensorflow_impl_tests/normal_main.py
Normal file
67
tensorflow_impl_tests/normal_main.py
Normal file
|
@ -0,0 +1,67 @@
|
|||
import tensorflow as tf
|
||||
import numpy as np
|
||||
import time
|
||||
|
||||
class Everything:
|
||||
|
||||
def __init__(self):
|
||||
|
||||
self.output_size = 1
|
||||
self.hidden_size = 40
|
||||
self.input_size = 30
|
||||
|
||||
self.input = tf.placeholder('float', [1, self.input_size])
|
||||
|
||||
xavier_init = tf.contrib.layers.xavier_initializer()
|
||||
|
||||
|
||||
W_1 = tf.get_variable("w_1", (self.input_size, self.hidden_size),
|
||||
initializer=tf.constant_initializer(-2))
|
||||
W_2 = tf.get_variable("w_2", (self.hidden_size, self.output_size),
|
||||
initializer=tf.constant_initializer(0.2))
|
||||
|
||||
b_1 = tf.get_variable("b_1", (self.hidden_size,),
|
||||
initializer=tf.zeros_initializer)
|
||||
b_2 = tf.get_variable("b_2", (self.output_size,),
|
||||
initializer=tf.zeros_initializer)
|
||||
|
||||
value_after_input = tf.sigmoid(tf.matmul(self.input, W_1) + b_1, name='hidden_layer')
|
||||
|
||||
self.value = tf.sigmoid(tf.matmul(value_after_input, W_2) + b_2, name='output_layer')
|
||||
|
||||
apply_gradients = []
|
||||
|
||||
|
||||
trainable_vars = tf.trainable_variables()
|
||||
gradients = tf.gradients(self.value, trainable_vars)
|
||||
|
||||
difference_in_values = tf.reshape(tf.subtract(0.9, self.value, name='difference_in_values'), [])
|
||||
|
||||
with tf.variable_scope('apply_gradients'):
|
||||
for gradient, trainable_var in zip(gradients, trainable_vars):
|
||||
backprop_calc = 0.1 * difference_in_values * gradient
|
||||
grad_apply = trainable_var.assign_add(backprop_calc)
|
||||
apply_gradients.append(grad_apply)
|
||||
|
||||
|
||||
self.training_op = tf.group(*apply_gradients, name='training_op')
|
||||
|
||||
|
||||
|
||||
def eval(self):
|
||||
input = np.array([0, 2, 0, 0, 0, 0, -5, 0, -3, 0, 0, 0, 5, -5, 0, 0, 0, 3, 0, 5, 0, 0, 0, 0, -2, 0, 0, 0, 1, 0])
|
||||
start = time.time()
|
||||
sess = tf.Session()
|
||||
sess.run(tf.global_variables_initializer())
|
||||
for i in range(20):
|
||||
val = sess.run(self.value, feed_dict={self.input: input.reshape(1,-1)})
|
||||
print(time.time() - start)
|
||||
print(val)
|
||||
sess.run(self.training_op, feed_dict={self.input: input.reshape(1,-1)})
|
||||
val = sess.run(self.value, feed_dict={self.input: input.reshape(1, -1)})
|
||||
print(val)
|
||||
|
||||
everything = Everything()
|
||||
everything.eval()
|
||||
|
||||
|
373
test.py
373
test.py
|
@ -141,6 +141,56 @@ class TestIsMoveValid(unittest.TestCase):
|
|||
# TODO: More tests for bearing off are needed
|
||||
|
||||
|
||||
def test_bear_off_non_backmost(self):
|
||||
board = ( 0,
|
||||
0, 0, 0, 0, 0, 0,
|
||||
0, 0, 0, 0, 0, 0,
|
||||
0, 0, 0, 0, 0, 0,
|
||||
0, 0, 0, 0, 1, 1,
|
||||
0 )
|
||||
self.assertEqual(Board.is_move_valid(board, 1, 2, (23, 25)), True)
|
||||
self.assertEqual(Board.is_move_valid(board, 1, 1, (24, 25)), True)
|
||||
self.assertEqual(Board.is_move_valid(board, 1, 2, (24, 26)), False)
|
||||
|
||||
def test_bear_off_quadrant_limits_white(self):
|
||||
board = ( 0,
|
||||
0, 0, 0, 0, 0, 0,
|
||||
0, 0, 0, 0, 0, 0,
|
||||
0, 0, 0, 0, 0, 1,
|
||||
1, 1, 1, 1, 1, 1,
|
||||
0 )
|
||||
self.assertEqual(Board.is_move_valid(board, 1, 2, (23, 25)), False)
|
||||
self.assertEqual(Board.is_move_valid(board, 1, 1, (24, 25)), False)
|
||||
|
||||
def test_bear_off_quadrant_limits_black(self):
|
||||
board = ( 0,
|
||||
-1, -1, -1, -1, -1, -1,
|
||||
-1, 0, 0, 0, 0, 0,
|
||||
0, 0, 0, 0, 0, 0,
|
||||
0, 0, 0, 0, 0, 0,
|
||||
0 )
|
||||
self.assertEqual(Board.is_move_valid(board, -1, 2, (2, 0)), False)
|
||||
self.assertEqual(Board.is_move_valid(board, -1, 1, (1, 0)), False)
|
||||
|
||||
def test_bear_off_quadrant_limits_white_2(self):
|
||||
board = ( 0,
|
||||
0, 0, 0, 0, 0, 0,
|
||||
0, 0, 0, 0, 0, 0,
|
||||
0, 0, 0, 0, 0, 0,
|
||||
1, 0, 0, 0, 0, 1,
|
||||
0 )
|
||||
self.assertEqual(Board.is_move_valid(board, 1, 1, (24, 25)), True)
|
||||
|
||||
def test_bear_off_quadrant_limits_black_2(self):
|
||||
board = ( 0,
|
||||
-1, 0, 0, 0, 0, -1,
|
||||
0, 0, 0, 0, 0, 0,
|
||||
0, 0, 0, 0, 0, 0,
|
||||
0, 0, 0, 0, 0, 0,
|
||||
0 )
|
||||
self.assertEqual(Board.is_move_valid(board, -1, 1, (1, 0)), True)
|
||||
|
||||
|
||||
class TestNumOfChecker(unittest.TestCase):
|
||||
def test_simple_1(self):
|
||||
board = ( 0,
|
||||
|
@ -613,6 +663,329 @@ class TestBoardFlip(unittest.TestCase):
|
|||
-2)
|
||||
|
||||
self.assertEqual(Board.flip(Board.flip(board)), board)
|
||||
|
||||
def test_tesauro_initial(self):
|
||||
board = Board.initial_state
|
||||
|
||||
expected = (1,1,0,0,
|
||||
0,0,0,0,
|
||||
0,0,0,0,
|
||||
0,0,0,0,
|
||||
0,0,0,0,
|
||||
0,0,0,0,
|
||||
|
||||
0,0,0,0,
|
||||
0,0,0,0,
|
||||
0,0,0,0,
|
||||
0,0,0,0,
|
||||
0,0,0,0,
|
||||
1,1,1,1,
|
||||
|
||||
0,0,0,0,
|
||||
0,0,0,0,
|
||||
0,0,0,0,
|
||||
0,0,0,0,
|
||||
1,1,1,0,
|
||||
0,0,0,0,
|
||||
|
||||
1,1,1,1,
|
||||
0,0,0,0,
|
||||
0,0,0,0,
|
||||
0,0,0,0,
|
||||
0,0,0,0,
|
||||
0,0,0,0,
|
||||
|
||||
0.0,
|
||||
0,
|
||||
|
||||
0,0,0,0,
|
||||
0,0,0,0,
|
||||
0,0,0,0,
|
||||
0,0,0,0,
|
||||
0,0,0,0,
|
||||
1,1,1,1,
|
||||
|
||||
0,0,0,0,
|
||||
1,1,1,0,
|
||||
0,0,0,0,
|
||||
0,0,0,0,
|
||||
0,0,0,0,
|
||||
0,0,0,0,
|
||||
|
||||
1,1,1,1,
|
||||
0,0,0,0,
|
||||
0,0,0,0,
|
||||
0,0,0,0,
|
||||
0,0,0,0,
|
||||
0,0,0,0,
|
||||
|
||||
0,0,0,0,
|
||||
0,0,0,0,
|
||||
0,0,0,0,
|
||||
0,0,0,0,
|
||||
0,0,0,0,
|
||||
1,1,0,0,
|
||||
|
||||
0.0,
|
||||
0,
|
||||
|
||||
1,
|
||||
0
|
||||
)
|
||||
|
||||
import numpy as np
|
||||
self.assertTrue((Board.board_features_tesauro(board, 1) ==
|
||||
np.array(expected).reshape(1, 198)).all())
|
||||
|
||||
def test_pubeval_features(self):
|
||||
board = Board.initial_state
|
||||
|
||||
expected = (0,
|
||||
2, 0, 0, 0, 0, -5,
|
||||
0, -3, 0, 0, 0, 5,
|
||||
-5, 0, 0, 0, 3, 0,
|
||||
5, 0, 0, 0, 0, -2,
|
||||
0,
|
||||
0, 0)
|
||||
|
||||
import numpy as np
|
||||
self.assertTrue((Board.board_features_to_pubeval(board, 1) ==
|
||||
np.array(expected).reshape(1, 28)).all())
|
||||
self.assertTrue((Board.board_features_to_pubeval(board, -1) ==
|
||||
np.array(expected).reshape(1, 28)).all())
|
||||
|
||||
def test_tesauro_bars(self):
|
||||
board = list(Board.initial_state)
|
||||
board[1] = 0
|
||||
board[0] = 2
|
||||
board[24] = 0
|
||||
board[25] = -2
|
||||
|
||||
board = tuple(board)
|
||||
|
||||
expected = (0,0,0,0,
|
||||
0,0,0,0,
|
||||
0,0,0,0,
|
||||
0,0,0,0,
|
||||
0,0,0,0,
|
||||
0,0,0,0,
|
||||
|
||||
0,0,0,0,
|
||||
0,0,0,0,
|
||||
0,0,0,0,
|
||||
0,0,0,0,
|
||||
0,0,0,0,
|
||||
1,1,1,1,
|
||||
|
||||
0,0,0,0,
|
||||
0,0,0,0,
|
||||
0,0,0,0,
|
||||
0,0,0,0,
|
||||
1,1,1,0,
|
||||
0,0,0,0,
|
||||
|
||||
1,1,1,1,
|
||||
0,0,0,0,
|
||||
0,0,0,0,
|
||||
0,0,0,0,
|
||||
0,0,0,0,
|
||||
0,0,0,0,
|
||||
|
||||
1.0,
|
||||
0,
|
||||
|
||||
0,0,0,0,
|
||||
0,0,0,0,
|
||||
0,0,0,0,
|
||||
0,0,0,0,
|
||||
0,0,0,0,
|
||||
1,1,1,1,
|
||||
|
||||
0,0,0,0,
|
||||
1,1,1,0,
|
||||
0,0,0,0,
|
||||
0,0,0,0,
|
||||
0,0,0,0,
|
||||
0,0,0,0,
|
||||
|
||||
1,1,1,1,
|
||||
0,0,0,0,
|
||||
0,0,0,0,
|
||||
0,0,0,0,
|
||||
0,0,0,0,
|
||||
0,0,0,0,
|
||||
|
||||
0,0,0,0,
|
||||
0,0,0,0,
|
||||
0,0,0,0,
|
||||
0,0,0,0,
|
||||
0,0,0,0,
|
||||
0,0,0,0,
|
||||
|
||||
1.0,
|
||||
0,
|
||||
|
||||
1,
|
||||
0
|
||||
)
|
||||
|
||||
import numpy as np
|
||||
self.assertTrue((Board.board_features_tesauro(board, 1) ==
|
||||
np.array(expected).reshape(1, 198)).all())
|
||||
|
||||
|
||||
def test_tesauro_home(self):
|
||||
board = list(Board.initial_state)
|
||||
|
||||
board[1] = 0
|
||||
board[24] = 0
|
||||
|
||||
board = tuple(board)
|
||||
|
||||
expected = (0,0,0,0,
|
||||
0,0,0,0,
|
||||
0,0,0,0,
|
||||
0,0,0,0,
|
||||
0,0,0,0,
|
||||
0,0,0,0,
|
||||
|
||||
0,0,0,0,
|
||||
0,0,0,0,
|
||||
0,0,0,0,
|
||||
0,0,0,0,
|
||||
0,0,0,0,
|
||||
1,1,1,1,
|
||||
|
||||
0,0,0,0,
|
||||
0,0,0,0,
|
||||
0,0,0,0,
|
||||
0,0,0,0,
|
||||
1,1,1,0,
|
||||
0,0,0,0,
|
||||
|
||||
1,1,1,1,
|
||||
0,0,0,0,
|
||||
0,0,0,0,
|
||||
0,0,0,0,
|
||||
0,0,0,0,
|
||||
0,0,0,0,
|
||||
|
||||
0.0,
|
||||
2,
|
||||
|
||||
0,0,0,0,
|
||||
0,0,0,0,
|
||||
0,0,0,0,
|
||||
0,0,0,0,
|
||||
0,0,0,0,
|
||||
1,1,1,1,
|
||||
|
||||
0,0,0,0,
|
||||
1,1,1,0,
|
||||
0,0,0,0,
|
||||
0,0,0,0,
|
||||
0,0,0,0,
|
||||
0,0,0,0,
|
||||
|
||||
1,1,1,1,
|
||||
0,0,0,0,
|
||||
0,0,0,0,
|
||||
0,0,0,0,
|
||||
0,0,0,0,
|
||||
0,0,0,0,
|
||||
|
||||
0,0,0,0,
|
||||
0,0,0,0,
|
||||
0,0,0,0,
|
||||
0,0,0,0,
|
||||
0,0,0,0,
|
||||
0,0,0,0,
|
||||
|
||||
0.0,
|
||||
2,
|
||||
|
||||
1,
|
||||
0
|
||||
)
|
||||
|
||||
import numpy as np
|
||||
self.assertTrue((Board.board_features_tesauro(board, 1) ==
|
||||
np.array(expected).reshape(1, 198)).all())
|
||||
|
||||
|
||||
def test_tesauro_black_player(self):
|
||||
board = Board.initial_state
|
||||
|
||||
expected = (1,1,0,0,
|
||||
0,0,0,0,
|
||||
0,0,0,0,
|
||||
0,0,0,0,
|
||||
0,0,0,0,
|
||||
0,0,0,0,
|
||||
|
||||
0,0,0,0,
|
||||
0,0,0,0,
|
||||
0,0,0,0,
|
||||
0,0,0,0,
|
||||
0,0,0,0,
|
||||
1,1,1,1,
|
||||
|
||||
0,0,0,0,
|
||||
0,0,0,0,
|
||||
0,0,0,0,
|
||||
0,0,0,0,
|
||||
1,1,1,0,
|
||||
0,0,0,0,
|
||||
|
||||
1,1,1,1,
|
||||
0,0,0,0,
|
||||
0,0,0,0,
|
||||
0,0,0,0,
|
||||
0,0,0,0,
|
||||
0,0,0,0,
|
||||
|
||||
0.0,
|
||||
0,
|
||||
|
||||
0,0,0,0,
|
||||
0,0,0,0,
|
||||
0,0,0,0,
|
||||
0,0,0,0,
|
||||
0,0,0,0,
|
||||
1,1,1,1,
|
||||
|
||||
0,0,0,0,
|
||||
1,1,1,0,
|
||||
0,0,0,0,
|
||||
0,0,0,0,
|
||||
0,0,0,0,
|
||||
0,0,0,0,
|
||||
|
||||
1,1,1,1,
|
||||
0,0,0,0,
|
||||
0,0,0,0,
|
||||
0,0,0,0,
|
||||
0,0,0,0,
|
||||
0,0,0,0,
|
||||
|
||||
0,0,0,0,
|
||||
0,0,0,0,
|
||||
0,0,0,0,
|
||||
0,0,0,0,
|
||||
0,0,0,0,
|
||||
1,1,0,0,
|
||||
|
||||
0.0,
|
||||
0,
|
||||
|
||||
0,
|
||||
1
|
||||
)
|
||||
|
||||
import numpy as np
|
||||
self.assertTrue((Board.board_features_tesauro(board, -1) ==
|
||||
np.array(expected).reshape(1, 198)).all())
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
unittest.main()
|
||||
|
|
Loading…
Reference in New Issue
Block a user