Merge branch 'eager_eval' into 'master'
Eager eval See merge request Pownie/backgammon!5
This commit is contained in:
commit
ff9664eb38
205
board.py
205
board.py
|
@ -1,3 +1,4 @@
|
|||
import quack
|
||||
import numpy as np
|
||||
import itertools
|
||||
|
||||
|
@ -12,11 +13,7 @@ class Board:
|
|||
|
||||
@staticmethod
|
||||
def idxs_with_checkers_of_player(board, player):
|
||||
idxs = []
|
||||
for idx, checker_count in enumerate(board):
|
||||
if checker_count * player >= 1:
|
||||
idxs.append(idx)
|
||||
return idxs
|
||||
return quack.idxs_with_checkers_of_player(board, player)
|
||||
|
||||
|
||||
# TODO: Write a test for this
|
||||
|
@ -40,18 +37,19 @@ class Board:
|
|||
def board_features_quack(board, player):
|
||||
board = list(board)
|
||||
board += ([1, 0] if np.sign(player) > 0 else [0, 1])
|
||||
return np.array(board).reshape(1, -1)
|
||||
return np.array(board).reshape(1,28)
|
||||
|
||||
# quack-fat
|
||||
@staticmethod
|
||||
def board_features_quack_fat(board, player):
|
||||
board = list(board)
|
||||
positives = [x if x > 0 else 0 for x in board]
|
||||
negatives = [x if x < 0 else 0 for x in board]
|
||||
board.append( 15 - sum(positives))
|
||||
board.append(-15 - sum(negatives))
|
||||
board += ([1, 0] if np.sign(player) > 0 else [0, 1])
|
||||
return np.array(board).reshape(1,-1)
|
||||
return np.array(quack.board_features_quack_fat(board,player)).reshape(1,30)
|
||||
# board = list(board)
|
||||
# positives = [x if x > 0 else 0 for x in board]
|
||||
# negatives = [x if x < 0 else 0 for x in board]
|
||||
# board.append( 15 - sum(positives))
|
||||
# board.append(-15 - sum(negatives))
|
||||
# board += ([1, 0] if np.sign(player) > 0 else [0, 1])
|
||||
# return np.array(board).reshape(1,30)
|
||||
|
||||
|
||||
# quack-fatter
|
||||
|
@ -68,7 +66,7 @@ class Board:
|
|||
board.append(15 - sum(positives))
|
||||
board.append(-15 - sum(negatives))
|
||||
board += ([1, 0] if np.sign(player) > 0 else [0, 1])
|
||||
return np.array(board).reshape(1, -1)
|
||||
return np.array(board).reshape(1,30)
|
||||
|
||||
# tesauro
|
||||
@staticmethod
|
||||
|
@ -124,98 +122,15 @@ class Board:
|
|||
# Calculate how many pieces there must be in the home state and divide it by 15
|
||||
features.append((15 - sum) / 15)
|
||||
features += ([1,0] if np.sign(cur_player) > 0 else [0,1])
|
||||
test = np.array(features).reshape(1,-1)
|
||||
test = np.array(features)
|
||||
#print("TEST:",test)
|
||||
return test
|
||||
return test.reshape(1,198)
|
||||
|
||||
|
||||
|
||||
@staticmethod
|
||||
def is_move_valid(board, player, face_value, move):
|
||||
if face_value == 0:
|
||||
return True
|
||||
else:
|
||||
def sign(a):
|
||||
return (a > 0) - (a < 0)
|
||||
|
||||
from_idx = move[0]
|
||||
to_idx = move[1]
|
||||
to_state = None
|
||||
from_state = board[from_idx]
|
||||
delta = to_idx - from_idx
|
||||
direction = sign(delta)
|
||||
bearing_off = None
|
||||
|
||||
# FIXME: Use get instead of array-like indexing
|
||||
if to_idx >= 1 and to_idx <= 24:
|
||||
to_state = board[to_idx]
|
||||
bearing_off = False
|
||||
else: # Bearing off
|
||||
to_state = 0
|
||||
bearing_off = True
|
||||
|
||||
# print("_"*20)
|
||||
# print("board:", board)
|
||||
# print("to_idx:", to_idx, "board[to_idx]:", board[to_idx], "to_state:", to_state)
|
||||
# print("+"*20)
|
||||
|
||||
def is_forward_move():
|
||||
return direction == player
|
||||
|
||||
def face_value_match_move_length():
|
||||
return abs(delta) == face_value
|
||||
|
||||
def bear_in_if_checker_on_bar():
|
||||
if player == 1:
|
||||
bar = 0
|
||||
else:
|
||||
bar = 25
|
||||
|
||||
bar_state = board[bar]
|
||||
|
||||
if bar_state != 0:
|
||||
return from_idx == bar
|
||||
else:
|
||||
return True
|
||||
|
||||
def checkers_at_from_idx():
|
||||
return sign(from_state) == player
|
||||
|
||||
def no_block_at_to_idx():
|
||||
if -sign(to_state) == player:
|
||||
return abs(to_state) == 1
|
||||
else:
|
||||
return True
|
||||
|
||||
def can_bear_off():
|
||||
checker_idxs = Board.idxs_with_checkers_of_player(board, player)
|
||||
def is_moving_backmost_checker():
|
||||
if player == 1:
|
||||
return all([(idx >= from_idx) for idx in checker_idxs])
|
||||
else:
|
||||
return all([(idx <= from_idx) for idx in checker_idxs])
|
||||
|
||||
def all_checkers_in_last_quadrant():
|
||||
if player == 1:
|
||||
return all([(idx >= 19) for idx in checker_idxs])
|
||||
else:
|
||||
return all([(idx <= 6) for idx in checker_idxs])
|
||||
|
||||
return all([ is_moving_backmost_checker(),
|
||||
all_checkers_in_last_quadrant() ])
|
||||
|
||||
# TODO: add switch here instead of wonky ternary in all
|
||||
# print("is_forward:",is_forward_move())
|
||||
# print("face_value:",face_value_match_move_length())
|
||||
# print("Checkes_at_from:",checkers_at_from_idx())
|
||||
# print("no_block:",no_block_at_to_idx())
|
||||
|
||||
return all([ is_forward_move(),
|
||||
face_value_match_move_length(),
|
||||
bear_in_if_checker_on_bar(),
|
||||
checkers_at_from_idx(),
|
||||
no_block_at_to_idx(),
|
||||
can_bear_off() if bearing_off else True ])
|
||||
return quack.is_move_valid(board, player, face_value, move)
|
||||
|
||||
@staticmethod
|
||||
def any_move_valid(board, player, roll):
|
||||
|
@ -255,12 +170,27 @@ class Board:
|
|||
|
||||
|
||||
@staticmethod
|
||||
def apply_moves_to_board(board, player, moves):
|
||||
for move in moves:
|
||||
from_idx, to_idx = move.split("/")
|
||||
board[int(from_idx)] -= int(player)
|
||||
board[int(to_idx)] += int(player)
|
||||
return board
|
||||
def apply_moves_to_board(board, player, move):
|
||||
from_idx = move[0]
|
||||
to_idx = move[1]
|
||||
board = list(board)
|
||||
board[from_idx] -= player
|
||||
|
||||
if (to_idx < 1 or to_idx > 24):
|
||||
return
|
||||
|
||||
if (board[to_idx] * player == -1):
|
||||
|
||||
if (player == 1):
|
||||
board[25] -= player
|
||||
else:
|
||||
board[0] -= player
|
||||
|
||||
board[to_idx] = 0
|
||||
|
||||
board[to_idx] += player
|
||||
|
||||
return tuple(board)
|
||||
|
||||
@staticmethod
|
||||
def calculate_legal_states(board, player, roll):
|
||||
|
@ -271,24 +201,9 @@ class Board:
|
|||
# turn and then do something with the second die
|
||||
|
||||
def calc_moves(board, face_value):
|
||||
idxs_with_checkers = Board.idxs_with_checkers_of_player(board, player)
|
||||
if len(idxs_with_checkers) == 0:
|
||||
if face_value == 0:
|
||||
return [board]
|
||||
boards = [(Board.do_move(board,
|
||||
player,
|
||||
(idx, idx + (face_value * player)))
|
||||
if Board.is_move_valid(board,
|
||||
player,
|
||||
face_value,
|
||||
(idx, idx + (face_value * player)))
|
||||
else None)
|
||||
for idx in idxs_with_checkers]
|
||||
# print("pls:",boards)
|
||||
board_list = list(filter(None, boards)) # Remove None-values
|
||||
# if len(board_list) == 0:
|
||||
# return [board]
|
||||
# print("board list:", board_list)
|
||||
return board_list
|
||||
return quack.calc_moves(board, player, face_value)
|
||||
|
||||
# Problem with cal_moves: Method can return empty list (should always contain at least same board).
|
||||
# *Update*: Seems to be fixed.
|
||||
|
@ -302,12 +217,16 @@ class Board:
|
|||
if not Board.any_move_valid(board, player, roll):
|
||||
return { board }
|
||||
dice_permutations = list(itertools.permutations(roll)) if roll[0] != roll[1] else [[roll[0]]*4]
|
||||
#print("Permuts:",dice_permutations)
|
||||
# print("Dice permuts:",dice_permutations)
|
||||
for roll in dice_permutations:
|
||||
# Calculate boards resulting from first move
|
||||
#print("initial board: ", board)
|
||||
#print("roll:", roll)
|
||||
#print("Rest of roll:",roll[1:])
|
||||
boards = calc_moves(board, roll[0])
|
||||
#print("Boards:",boards)
|
||||
#print("Roll:",roll[0])
|
||||
#print("boards after first die: ", boards)
|
||||
|
||||
for die in roll[1:]:
|
||||
|
@ -347,9 +266,9 @@ class Board:
|
|||
return """
|
||||
13 14 15 16 17 18 19 20 21 22 23 24
|
||||
+--------------------------------------------------------------------------+
|
||||
| {13}| {14}| {15}| {16}| {17}| {18}| bar -1: {25} | {19}| {20}| {21}| {22}| {23}| {24}| end -1: TODO|
|
||||
| {13}| {14}| {15}| {16}| {17}| {18}| bar -1: {25} | {19}| {20}| {21}| {22}| {23}| {24}| end 1: TODO|
|
||||
|---|---|---|---|---|---|------------|---|---|---|---|---|---| |
|
||||
| {12}| {11}| {10}| {9}| {8}| {7}| bar 1: {0} | {6}| {5}| {4}| {3}| {2}| {1}| end 1: TODO|
|
||||
| {12}| {11}| {10}| {9}| {8}| {7}| bar 1: {0} | {6}| {5}| {4}| {3}| {2}| {1}| end -1: TODO|
|
||||
+--------------------------------------------------------------------------+
|
||||
12 11 10 9 8 7 6 5 4 3 2 1
|
||||
""".format(*temp)
|
||||
|
@ -357,42 +276,8 @@ class Board:
|
|||
@staticmethod
|
||||
def do_move(board, player, move):
|
||||
# Implies that move is valid; make sure to check move validity before calling do_move(...)
|
||||
return quack.do_move(board, player, move)
|
||||
|
||||
def move_to_bar(board, to_idx):
|
||||
board = list(board)
|
||||
if player == 1:
|
||||
board[25] -= player
|
||||
else:
|
||||
board[0] -= player
|
||||
|
||||
board[to_idx] = 0
|
||||
return board
|
||||
|
||||
# TODO: Moving in from bar is handled by the representation
|
||||
# TODONE: Handle bearing off
|
||||
|
||||
from_idx = move[0]
|
||||
#print("from_idx: ", from_idx)
|
||||
to_idx = move[1]
|
||||
#print("to_idx: ", to_idx)
|
||||
# pdb.set_trace()
|
||||
board = list(board) # Make mutable copy of board
|
||||
|
||||
# 'Lift' checker
|
||||
board[from_idx] -= player
|
||||
|
||||
# Handle bearing off
|
||||
if to_idx < 1 or to_idx > 24:
|
||||
return tuple(board)
|
||||
|
||||
# Handle hitting checkers
|
||||
if board[to_idx] * player == -1:
|
||||
board = move_to_bar(board, to_idx)
|
||||
|
||||
# Put down checker
|
||||
board[to_idx] += player
|
||||
|
||||
return tuple(board)
|
||||
|
||||
@staticmethod
|
||||
def flip(board):
|
||||
|
|
84
bot.py
84
bot.py
|
@ -1,24 +1,8 @@
|
|||
from cup import Cup
|
||||
from network import Network
|
||||
from board import Board
|
||||
|
||||
import tensorflow as tf
|
||||
import numpy as np
|
||||
import random
|
||||
|
||||
class Bot:
|
||||
def __init__(self, sym, config = None, name = "unnamed"):
|
||||
self.config = config
|
||||
self.cup = Cup()
|
||||
def __init__(self, sym):
|
||||
self.sym = sym
|
||||
self.graph = tf.Graph()
|
||||
|
||||
self.network = Network(config, name)
|
||||
self.network.restore_model()
|
||||
|
||||
def restore_model(self):
|
||||
with self.graph.as_default():
|
||||
self.network.restore_model()
|
||||
|
||||
def get_session(self):
|
||||
return self.session
|
||||
|
@ -26,16 +10,60 @@ class Bot:
|
|||
def get_sym(self):
|
||||
return self.sym
|
||||
|
||||
def get_network(self):
|
||||
return self.network
|
||||
|
||||
# TODO: DEPRECATE
|
||||
def make_move(self, board, sym, roll):
|
||||
# print(Board.pretty(board))
|
||||
legal_moves = Board.calculate_legal_states(board, sym, roll)
|
||||
moves_and_scores = [ (move, self.network.eval_state(np.array(move).reshape(1,26))) for move in legal_moves ]
|
||||
scores = [ x[1] for x in moves_and_scores ]
|
||||
best_move_pair = moves_and_scores[np.array(scores).argmax()]
|
||||
#print("Found the best state, being:", np.array(move_scores).argmax())
|
||||
return best_move_pair
|
||||
def calc_move_sets(self, from_board, roll, player):
|
||||
board = from_board
|
||||
sets = []
|
||||
total = 0
|
||||
print("board!:",board)
|
||||
for r in roll:
|
||||
# print("Value of r:",r)
|
||||
sets.append([Board.calculate_legal_states(board, player, [r,0]), r])
|
||||
total += r
|
||||
sets.append([Board.calculate_legal_states(board, player, [total,0]), total])
|
||||
return sets
|
||||
|
||||
|
||||
def handle_move(self, from_board, to_board, roll, player):
|
||||
|
||||
# print("Cur board:",board)
|
||||
sets = self.calc_move_sets(from_board, roll, player)
|
||||
for idx, board_set in enumerate(sets):
|
||||
board_set[0] = list(board_set[0])
|
||||
# print("My board_set:",board_set)
|
||||
if to_board in [list(c) for c in board_set[0]]:
|
||||
self.total_moves -= board_set[1]
|
||||
if idx < 2:
|
||||
# print("Roll object:",self.roll)
|
||||
self.roll[idx] = 0
|
||||
else:
|
||||
self.roll = [0,0]
|
||||
break
|
||||
print("Total moves left:",self.total_moves)
|
||||
|
||||
|
||||
def tmp_name(self, from_board, to_board, roll, player, total_moves):
|
||||
sets = self.calc_move_sets(from_board, roll, player)
|
||||
return_board = from_board
|
||||
for idx, board_set in enumerate(sets):
|
||||
board_set = list(board_set[0])
|
||||
if to_board in [list(board) for board in board_set]:
|
||||
total_moves -= board_set[1]
|
||||
# if it's not the sum of the moves
|
||||
if idx < 2:
|
||||
roll[idx] = 0
|
||||
else:
|
||||
roll = [0,0]
|
||||
return_board = to_board
|
||||
break
|
||||
return total_moves, roll, return_board
|
||||
|
||||
def make_human_move(self, board, player, roll):
|
||||
total_moves = roll[0] + roll[1]
|
||||
previous_board = board
|
||||
while total_moves != 0:
|
||||
move = input("Pick a move!\n")
|
||||
to_board = Board.apply_moves_to_board(previous_board, player, move)
|
||||
total_moves, roll, board = self.tmp_name(board, to_board, roll, player, total_moves)
|
||||
|
||||
|
||||
|
|
79
main.py
79
main.py
|
@ -31,19 +31,17 @@ parser.add_argument('--train-perpetually', action='store_true',
|
|||
help='start new training session as soon as the previous is finished')
|
||||
parser.add_argument('--list-models', action='store_true',
|
||||
help='list all known models')
|
||||
parser.add_argument('--force-creation', action='store_true',
|
||||
help='force model creation if model does not exist')
|
||||
parser.add_argument('--board-rep', action='store', dest='board_rep',
|
||||
default='tesauro',
|
||||
help='name of board representation to use as input to neural network')
|
||||
parser.add_argument('--use-baseline', action='store_true',
|
||||
help='use the baseline model, note, has size 28')
|
||||
parser.add_argument('--verbose', action='store_true',
|
||||
help='If set, a lot of stuff will be printed')
|
||||
parser.add_argument('--ply', action='store', dest='ply', default='0',
|
||||
help='defines the amount of ply used when deciding what move to make')
|
||||
parser.add_argument('--repeat-eval', action='store', dest='repeat_eval', default='1',
|
||||
help='the amount of times the evaluation method should be repeated')
|
||||
|
||||
args = parser.parse_args()
|
||||
|
||||
if args.model == "baseline_model":
|
||||
print("Model name 'baseline_model' not allowed")
|
||||
exit()
|
||||
|
||||
config = {
|
||||
'model': args.model,
|
||||
|
@ -59,10 +57,13 @@ config = {
|
|||
'model_storage_path': 'models',
|
||||
'bench_storage_path': 'bench',
|
||||
'board_representation': args.board_rep,
|
||||
'force_creation': args.force_creation,
|
||||
'use_baseline': args.use_baseline
|
||||
'global_step': 0,
|
||||
'verbose': args.verbose,
|
||||
'ply': args.ply,
|
||||
'repeat_eval': args.repeat_eval
|
||||
}
|
||||
|
||||
|
||||
# Create models folder
|
||||
if not os.path.exists(config['model_storage_path']):
|
||||
os.makedirs(config['model_storage_path'])
|
||||
|
@ -77,6 +78,14 @@ if not os.path.isdir(log_path):
|
|||
os.mkdir(log_path)
|
||||
|
||||
|
||||
def save_config():
|
||||
import yaml
|
||||
# checkpoint_path = os.path.join(config['model_storage_path'], config['model'])
|
||||
# config_path = os.path.join(checkpoint_path, 'config')
|
||||
# with open(config_path, 'a+') as f:
|
||||
# print("lol")
|
||||
print(yaml.dump(config))
|
||||
|
||||
# Define helper functions
|
||||
def log_train_outcome(outcome, diff_in_values, trained_eps = 0, log_path = os.path.join(model_path(), 'logs', "train.log")):
|
||||
format_vars = { 'trained_eps': trained_eps,
|
||||
|
@ -125,6 +134,24 @@ def log_bench_eval_outcomes(outcomes, log_path, index, time, trained_eps = 0):
|
|||
with open(log_path, 'a+') as f:
|
||||
f.write("{method};{count};{index};{time};{sum};{mean}".format(**format_vars) + "\n")
|
||||
|
||||
def find_board_rep():
|
||||
checkpoint_path = os.path.join(config['model_storage_path'], config['model'])
|
||||
board_rep_path = os.path.join(checkpoint_path, "board_representation")
|
||||
with open(board_rep_path, 'r') as f:
|
||||
return f.read()
|
||||
|
||||
|
||||
def board_rep_file_exists():
|
||||
checkpoint_path = os.path.join(config['model_storage_path'], config['model'])
|
||||
board_rep_path = os.path.join(checkpoint_path, "board_representation")
|
||||
return os.path.isfile(board_rep_path)
|
||||
|
||||
def create_board_rep():
|
||||
checkpoint_path = os.path.join(config['model_storage_path'], config['model'])
|
||||
board_rep_path = os.path.join(checkpoint_path, "board_representation")
|
||||
with open(board_rep_path, 'a+') as f:
|
||||
f.write(config['board_representation'])
|
||||
|
||||
# Do actions specified by command-line
|
||||
if args.list_models:
|
||||
def get_eps_trained(folder):
|
||||
|
@ -145,9 +172,26 @@ if __name__ == "__main__":
|
|||
# Set up network
|
||||
from network import Network
|
||||
|
||||
save_config()
|
||||
# Set up variables
|
||||
episode_count = config['episode_count']
|
||||
|
||||
if config['board_representation'] is None:
|
||||
if board_rep_file_exists():
|
||||
config['board_representation'] = find_board_rep()
|
||||
else:
|
||||
sys.stderr.write("Was not given a board_rep and was unable to find a board_rep file\n")
|
||||
exit()
|
||||
else:
|
||||
if not board_rep_file_exists():
|
||||
create_board_rep()
|
||||
else:
|
||||
if config['board_representation'] != find_board_rep():
|
||||
sys.stderr.write("Board representation \"{given}\", does not match one in board_rep file, \"{board_rep}\"\n".
|
||||
format(given = config['board_representation'], board_rep = find_board_rep()))
|
||||
exit()
|
||||
|
||||
|
||||
if args.train:
|
||||
network = Network(config, config['model'])
|
||||
start_episode = network.episodes_trained
|
||||
|
@ -161,9 +205,13 @@ if __name__ == "__main__":
|
|||
if not config['train_perpetually']:
|
||||
break
|
||||
|
||||
elif args.play:
|
||||
network = Network(config, config['model'])
|
||||
network.play_against_network()
|
||||
|
||||
elif args.eval:
|
||||
network = Network(config, config['model'])
|
||||
for i in range(int(config['repeat_eval'])):
|
||||
start_episode = network.episodes_trained
|
||||
# Evaluation measures are described in `config`
|
||||
outcomes = network.eval(config['episode_count'])
|
||||
|
@ -191,7 +239,7 @@ if __name__ == "__main__":
|
|||
episode_counts = [25, 50, 100, 250, 500, 1000, 2500, 5000,
|
||||
10000, 20000]
|
||||
|
||||
def do_eval(sess):
|
||||
def do_eval():
|
||||
for eval_method in config['eval_methods']:
|
||||
result_path = os.path.join(config['bench_storage_path'],
|
||||
eval_method) + "-{}.log".format(int(time.time()))
|
||||
|
@ -199,8 +247,7 @@ if __name__ == "__main__":
|
|||
for i in range(sample_count):
|
||||
start_time = time.time()
|
||||
# Evaluation measure to be benchmarked are described in `config`
|
||||
outcomes = network.eval(episode_count = n,
|
||||
tf_session = sess)
|
||||
outcomes = network.eval(episode_count = n)
|
||||
time_diff = time.time() - start_time
|
||||
log_bench_eval_outcomes(outcomes,
|
||||
time = time_diff,
|
||||
|
@ -210,8 +257,8 @@ if __name__ == "__main__":
|
|||
|
||||
# CMM: oh no
|
||||
import tensorflow as tf
|
||||
with tf.Session() as session:
|
||||
network.restore_model(session)
|
||||
do_eval(session)
|
||||
|
||||
network.restore_model()
|
||||
do_eval()
|
||||
|
||||
|
||||
|
|
492
network.py
492
network.py
|
@ -8,6 +8,8 @@ import random
|
|||
from eval import Eval
|
||||
import glob
|
||||
from operator import itemgetter
|
||||
import tensorflow.contrib.eager as tfe
|
||||
from player import Player
|
||||
|
||||
class Network:
|
||||
# board_features_quack has size 28
|
||||
|
@ -18,18 +20,38 @@ class Network:
|
|||
'quack-fat' : (30, Board.board_features_quack_fat),
|
||||
'quack' : (28, Board.board_features_quack),
|
||||
'tesauro' : (198, Board.board_features_tesauro),
|
||||
'quack-norm': (30, Board.board_features_quack_norm)
|
||||
'quack-norm' : (30, Board.board_features_quack_norm),
|
||||
'tesauro-poop': (198, Board.board_features_tesauro_wrong)
|
||||
}
|
||||
|
||||
|
||||
def custom_tanh(self, x, name=None):
|
||||
return tf.scalar_mul(tf.constant(2.00), tf.tanh(x, name))
|
||||
|
||||
def __init__(self, config, name):
|
||||
"""
|
||||
:param config:
|
||||
:param name:
|
||||
"""
|
||||
|
||||
move_options = {
|
||||
'1': self.make_move_1_ply,
|
||||
'0': self.make_move_0_ply
|
||||
}
|
||||
|
||||
tf.enable_eager_execution()
|
||||
|
||||
xavier_init = tf.contrib.layers.xavier_initializer()
|
||||
|
||||
self.config = config
|
||||
self.checkpoint_path = os.path.join(config['model_storage_path'], config['model'])
|
||||
|
||||
self.name = name
|
||||
|
||||
self.make_move = move_options[
|
||||
self.config['ply']
|
||||
]
|
||||
|
||||
# Set board representation from config
|
||||
self.input_size, self.board_trans_func = Network.board_reps[
|
||||
self.config['board_representation']
|
||||
|
@ -39,16 +61,6 @@ class Network:
|
|||
self.max_learning_rate = 0.1
|
||||
self.min_learning_rate = 0.001
|
||||
|
||||
self.global_step = tf.Variable(0, trainable=False, name="global_step")
|
||||
self.learning_rate = tf.maximum(self.min_learning_rate,
|
||||
tf.train.exponential_decay(self.max_learning_rate,
|
||||
self.global_step, 50000,
|
||||
0.96,
|
||||
staircase=True),
|
||||
name="learning_rate")
|
||||
|
||||
|
||||
|
||||
# Restore trained episode count for model
|
||||
episode_count_path = os.path.join(self.checkpoint_path, "episodes_trained")
|
||||
if os.path.isfile(episode_count_path):
|
||||
|
@ -57,62 +69,107 @@ class Network:
|
|||
else:
|
||||
self.episodes_trained = 0
|
||||
|
||||
self.x = tf.placeholder('float', [1, self.input_size], name='input')
|
||||
self.value_next = tf.placeholder('float', [1, self.output_size], name="value_next")
|
||||
|
||||
xavier_init = tf.contrib.layers.xavier_initializer()
|
||||
|
||||
W_1 = tf.get_variable("w_1", (self.input_size, self.hidden_size),
|
||||
initializer=xavier_init)
|
||||
W_2 = tf.get_variable("w_2", (self.hidden_size, self.output_size),
|
||||
initializer=xavier_init)
|
||||
|
||||
b_1 = tf.get_variable("b_1", (self.hidden_size,),
|
||||
initializer=tf.zeros_initializer)
|
||||
b_2 = tf.get_variable("b_2", (self.output_size,),
|
||||
initializer=tf.zeros_initializer)
|
||||
global_step_path = os.path.join(self.checkpoint_path, "global_step")
|
||||
if os.path.isfile(global_step_path):
|
||||
with open(global_step_path, 'r') as f:
|
||||
self.global_step = int(f.read())
|
||||
else:
|
||||
self.global_step = 0
|
||||
|
||||
|
||||
value_after_input = tf.sigmoid(tf.matmul(self.x, W_1) + b_1, name='hidden_layer')
|
||||
self.model = tf.keras.Sequential([
|
||||
tf.keras.layers.Dense(40, activation="sigmoid", kernel_initializer=xavier_init,
|
||||
input_shape=(1,self.input_size)),
|
||||
tf.keras.layers.Dense(1, activation="sigmoid", kernel_initializer=xavier_init)
|
||||
])
|
||||
|
||||
self.value = tf.sigmoid(tf.matmul(value_after_input, W_2) + b_2, name='output_layer')
|
||||
|
||||
# TODO: Alexander thinks that self.value will be computed twice (instead of once)
|
||||
difference_in_values = tf.reshape(tf.subtract(self.value_next, self.value, name='difference_in_values'), [])
|
||||
def exp_decay(self, max_lr, global_step, decay_rate, decay_steps):
|
||||
"""
|
||||
Calculates the exponential decay on a learning rate
|
||||
:param max_lr: The learning rate that the network starts at
|
||||
:param global_step: The global step
|
||||
:param decay_rate: The rate at which the learning rate should decay
|
||||
:param decay_steps: The amount of steps between each decay
|
||||
:return: The result of the exponential decay performed on the learning rate
|
||||
"""
|
||||
res = max_lr * decay_rate**(global_step // decay_steps)
|
||||
return res
|
||||
|
||||
def do_backprop(self, prev_state, value_next):
|
||||
"""
|
||||
Performs the Temporal-difference backpropagation step on the model
|
||||
:param prev_state: The previous state of the game, this has its value recalculated
|
||||
:param value_next: The value of the current move
|
||||
:return: Nothing, the calculation is performed on the model of the network
|
||||
"""
|
||||
self.learning_rate = tf.maximum(self.min_learning_rate,
|
||||
self.exp_decay(self.max_learning_rate, self.global_step, 0.96, 50000),
|
||||
name="learning_rate")
|
||||
|
||||
with tf.GradientTape() as tape:
|
||||
value = self.model(prev_state.reshape(1,-1))
|
||||
grads = tape.gradient(value, self.model.variables)
|
||||
|
||||
difference_in_values = tf.reshape(tf.subtract(value_next, value, name='difference_in_values'), [])
|
||||
tf.summary.scalar("difference_in_values", tf.abs(difference_in_values))
|
||||
|
||||
trainable_vars = tf.trainable_variables()
|
||||
gradients = tf.gradients(self.value, trainable_vars)
|
||||
|
||||
apply_gradients = []
|
||||
|
||||
global_step_op = self.global_step.assign_add(1)
|
||||
|
||||
|
||||
with tf.variable_scope('apply_gradients'):
|
||||
for gradient, trainable_var in zip(gradients, trainable_vars):
|
||||
backprop_calc = self.learning_rate * difference_in_values * gradient
|
||||
grad_apply = trainable_var.assign_add(backprop_calc)
|
||||
apply_gradients.append(grad_apply)
|
||||
for grad, train_var in zip(grads, self.model.variables):
|
||||
backprop_calc = self.learning_rate * difference_in_values * grad
|
||||
train_var.assign_add(backprop_calc)
|
||||
|
||||
|
||||
with tf.control_dependencies([global_step_op]):
|
||||
|
||||
self.training_op = tf.group(*apply_gradients, name='training_op')
|
||||
def print_variables(self):
|
||||
"""
|
||||
Prints all the variables of the model
|
||||
:return:
|
||||
"""
|
||||
variables = self.model.variables
|
||||
for k in variables:
|
||||
print(k)
|
||||
|
||||
self.saver = tf.train.Saver(max_to_keep=1)
|
||||
def eval_state(self, state):
|
||||
"""
|
||||
Evaluates a single state
|
||||
:param state:
|
||||
:return:
|
||||
"""
|
||||
return self.model(state.reshape(1,-1))
|
||||
|
||||
def eval_state(self, sess, state):
|
||||
return sess.run(self.value, feed_dict={self.x: state})
|
||||
|
||||
def save_model(self, sess, episode_count, global_step):
|
||||
self.saver.save(sess, os.path.join(self.checkpoint_path, 'model.ckpt'), global_step=global_step)
|
||||
def save_model(self, episode_count):
|
||||
"""
|
||||
Saves the model of the network, it references global_step as self.global_step
|
||||
:param episode_count:
|
||||
:return:
|
||||
"""
|
||||
tfe.Saver(self.model.variables).save(os.path.join(self.checkpoint_path, 'model.ckpt'))
|
||||
#self.saver.save(sess, os.path.join(self.checkpoint_path, 'model.ckpt'), global_step=global_step)
|
||||
with open(os.path.join(self.checkpoint_path, "episodes_trained"), 'w+') as f:
|
||||
print("[NETWK] ({name}) Saving model to:".format(name=self.name),
|
||||
os.path.join(self.checkpoint_path, 'model.ckpt'))
|
||||
f.write(str(episode_count) + "\n")
|
||||
|
||||
def restore_model(self, sess):
|
||||
with open(os.path.join(self.checkpoint_path, "global_step"), 'w+') as f:
|
||||
print("[NETWK] ({name}) Saving global step to:".format(name=self.name),
|
||||
os.path.join(self.checkpoint_path, 'model.ckpt'))
|
||||
f.write(str(self.global_step) + "\n")
|
||||
if self.config['verbose']:
|
||||
self.print_variables()
|
||||
|
||||
|
||||
def calc_vals(self, states):
|
||||
"""
|
||||
Calculate a score of each state in states
|
||||
:param states: A number of states. The states have to be transformed before being given to this function.
|
||||
:return:
|
||||
"""
|
||||
values = self.model.predict_on_batch(states)
|
||||
return values
|
||||
|
||||
|
||||
def restore_model(self):
|
||||
"""
|
||||
Restore a model for a session, such that a trained model and either be further trained or
|
||||
used for evaluation
|
||||
|
@ -121,47 +178,38 @@ class Network:
|
|||
:return: Nothing. It's a side-effect that a model gets restored for the network.
|
||||
"""
|
||||
|
||||
|
||||
if glob.glob(os.path.join(self.checkpoint_path, 'model.ckpt*.index')):
|
||||
|
||||
latest_checkpoint = tf.train.latest_checkpoint(self.checkpoint_path)
|
||||
print("[NETWK] ({name}) Restoring model from:".format(name=self.name),
|
||||
str(latest_checkpoint))
|
||||
self.saver.restore(sess, latest_checkpoint)
|
||||
variables_names = [v.name for v in tf.trainable_variables()]
|
||||
values = sess.run(variables_names)
|
||||
for k, v in zip(variables_names, values):
|
||||
print("Variable: ", k)
|
||||
print("Shape: ", v.shape)
|
||||
print(v)
|
||||
tfe.Saver(self.model.variables).restore(latest_checkpoint)
|
||||
|
||||
# variables_names = [v.name for v in self.model.variables]
|
||||
|
||||
|
||||
# Restore trained episode count for model
|
||||
episode_count_path = os.path.join(self.checkpoint_path, "episodes_trained")
|
||||
if os.path.isfile(episode_count_path):
|
||||
with open(episode_count_path, 'r') as f:
|
||||
self.config['start_episode'] = int(f.read())
|
||||
elif self.config['use_baseline'] and glob.glob(os.path.join(os.path.join(self.config['model_storage_path'], "baseline_model"), 'model.ckpt*.index')):
|
||||
checkpoint_path = os.path.join(self.config['model_storage_path'], "baseline_model")
|
||||
latest_checkpoint = tf.train.latest_checkpoint(checkpoint_path)
|
||||
print("[NETWK] ({name}) Restoring model from:".format(name=self.name),
|
||||
str(latest_checkpoint))
|
||||
self.saver.restore(sess, latest_checkpoint)
|
||||
|
||||
variables_names = [v.name for v in tf.trainable_variables()]
|
||||
values = sess.run(variables_names)
|
||||
for k, v in zip(variables_names, values):
|
||||
print("Variable: ", k)
|
||||
print("Shape: ", v.shape)
|
||||
print(v)
|
||||
elif not self.config['force_creation']:
|
||||
print("You need to have baseline_model inside models")
|
||||
exit()
|
||||
global_step_path = os.path.join(self.checkpoint_path, "global_step")
|
||||
if os.path.isfile(global_step_path):
|
||||
with open(global_step_path, 'r') as f:
|
||||
self.config['global_step'] = int(f.read())
|
||||
|
||||
if self.config['verbose']:
|
||||
self.print_variables()
|
||||
|
||||
|
||||
def make_move(self, sess, board, roll, player):
|
||||
|
||||
def make_move_0_ply(self, board, roll, player):
|
||||
"""
|
||||
Find the best move given a board, roll and a player, by finding all possible states one can go to
|
||||
and then picking the best, by using the network to evaluate each state. The highest score is picked
|
||||
for the 1-player and the max(1-score) is picked for the -1-player.
|
||||
and then picking the best, by using the network to evaluate each state. This is 0-ply, ie. no look-ahead.
|
||||
The highest score is picked for the 1-player and the max(1-score) is picked for the -1-player.
|
||||
|
||||
:param sess:
|
||||
:param board: Current board
|
||||
|
@ -169,23 +217,37 @@ class Network:
|
|||
:param player: Current player
|
||||
:return: A pair of the best state to go to, together with the score of that state
|
||||
"""
|
||||
legal_moves = Board.calculate_legal_states(board, player, roll)
|
||||
moves_and_scores = [(move, self.eval_state(sess, self.board_trans_func(move, player))) for move in legal_moves]
|
||||
scores = [x[1] if np.sign(player) > 0 else 1-x[1] for x in moves_and_scores]
|
||||
best_score_index = np.array(scores).argmax()
|
||||
best_move_pair = moves_and_scores[best_score_index]
|
||||
return best_move_pair
|
||||
legal_moves = list(Board.calculate_legal_states(board, player, roll))
|
||||
legal_states = np.array([self.board_trans_func(move, player)[0] for move in legal_moves])
|
||||
|
||||
def make_move_n_ply(self, sess, board, roll, player, n = 1):
|
||||
best_pair = self.calc_n_ply(n, sess, board, player, roll)
|
||||
scores = self.model.predict_on_batch(legal_states)
|
||||
transformed_scores = [x if np.sign(player) > 0 else 1 - x for x in scores]
|
||||
|
||||
best_score_idx = np.argmax(np.array(transformed_scores))
|
||||
best_move = legal_moves[best_score_idx]
|
||||
best_score = scores[best_score_idx]
|
||||
|
||||
return [best_move, best_score]
|
||||
|
||||
def make_move_1_ply(self, board, roll, player):
|
||||
"""
|
||||
Return the best board and best score based on a 1-ply look-ahead.
|
||||
:param board:
|
||||
:param roll:
|
||||
:param player:
|
||||
:return:
|
||||
"""
|
||||
# start = time.time()
|
||||
best_pair = self.calculate_1_ply(board, roll, player)
|
||||
# print(time.time() - start)
|
||||
return best_pair
|
||||
|
||||
|
||||
def calculate_1_ply(self, sess, board, roll, player):
|
||||
def calculate_1_ply(self, board, roll, player):
|
||||
"""
|
||||
Find the best move based on a 1-ply look-ahead. First the best move is found for a single ply and then an
|
||||
exhaustive search is performed on the best 15 moves from the single ply.
|
||||
|
||||
Find the best move based on a 1-ply look-ahead. First the x best moves are picked from a 0-ply and then
|
||||
all moves and scores are found for them. The expected score is then calculated for each of the boards from the
|
||||
0-ply.
|
||||
:param sess:
|
||||
:param board:
|
||||
:param roll: The original roll
|
||||
|
@ -197,23 +259,91 @@ class Network:
|
|||
# find all legal states from the given board and the given roll
|
||||
init_legal_states = Board.calculate_legal_states(board, player, roll)
|
||||
|
||||
# find all values for the above boards
|
||||
zero_ply_moves_and_scores = [(move, self.eval_state(sess, self.board_trans_func(move, player))) for move in init_legal_states]
|
||||
legal_states = np.array([self.board_trans_func(state, player)[0] for state in init_legal_states])
|
||||
|
||||
# pythons reverse is in place and I can't call [:15] on it, without applying it to an object like so. Fuck.
|
||||
best_fifteen = sorted(zero_ply_moves_and_scores, key=itemgetter(1), reverse=player==1)
|
||||
scores = self.calc_vals(legal_states)
|
||||
scores = [score.numpy() for score in scores]
|
||||
|
||||
best_fifteen_boards = [x[0] for x in best_fifteen[:10]]
|
||||
moves_and_scores = list(zip(init_legal_states, scores))
|
||||
|
||||
all_rolls_scores = self.do_ply(sess, best_fifteen_boards, player)
|
||||
sorted_moves_and_scores = sorted(moves_and_scores, key=itemgetter(1), reverse=player==1)
|
||||
|
||||
best_boards = [x[0] for x in sorted_moves_and_scores[:10]]
|
||||
|
||||
|
||||
best_score_index = np.array(all_rolls_scores).argmax()
|
||||
best_board = best_fifteen_boards[best_score_index]
|
||||
|
||||
return [best_board, max(all_rolls_scores)]
|
||||
scores, trans_scores = self.do_ply(best_boards, player)
|
||||
|
||||
best_score_idx = np.array(trans_scores).argmax()
|
||||
|
||||
return [best_boards[best_score_idx], scores[best_score_idx]]
|
||||
|
||||
def do_ply(self, boards, player):
|
||||
"""
|
||||
Calculates a single extra ply, resulting in a larger search space for our best move.
|
||||
This is somewhat hardcoded to only do a single ply, seeing that it calls max on all scores, rather than
|
||||
allowing the function to search deeper, which could result in an even larger search space. If we wish
|
||||
to have more than 2-ply, this should be fixed, so we could extend this method to allow for 3-ply.
|
||||
|
||||
:param sess:
|
||||
:param boards: The boards to try all rolls on
|
||||
:param player: The player of the previous ply
|
||||
:return: An array of scores where each index describes one of the boards which was given as param
|
||||
to this function.
|
||||
"""
|
||||
|
||||
all_rolls = [ (1, 1), (1, 2), (1, 3), (1, 4), (1, 5),
|
||||
(1, 6), (2, 2), (2, 3), (2, 4), (2, 5),
|
||||
(2, 6), (3, 3), (3, 4), (3, 5), (3, 6),
|
||||
(4, 4), (4, 5), (4, 6), (5, 5), (5, 6),
|
||||
(6, 6) ]
|
||||
|
||||
|
||||
# start = time.time()
|
||||
|
||||
# print("/"*50)
|
||||
length_list = []
|
||||
test_list = []
|
||||
# Prepping of data
|
||||
start= time.time()
|
||||
for board in boards:
|
||||
length = 0
|
||||
for roll in all_rolls:
|
||||
all_states = list(Board.calculate_legal_states(board, player*-1, roll))
|
||||
for state in all_states:
|
||||
state = np.array(self.board_trans_func(state, player*-1)[0])
|
||||
test_list.append(state)
|
||||
length += 1
|
||||
length_list.append(length)
|
||||
|
||||
# print(time.time() - start)
|
||||
|
||||
start = time.time()
|
||||
|
||||
all_scores_legit = self.model.predict_on_batch(np.array(test_list))
|
||||
|
||||
split_scores = []
|
||||
from_idx = 0
|
||||
for length in length_list:
|
||||
split_scores.append(all_scores_legit[from_idx:from_idx+length])
|
||||
from_idx += length
|
||||
|
||||
means_splits = [tf.reduce_mean(scores) for scores in split_scores]
|
||||
transformed_means_splits = [x if player == 1 else (1-x) for x in means_splits]
|
||||
# print(time.time() - start)
|
||||
|
||||
return ([means_splits, transformed_means_splits])
|
||||
|
||||
|
||||
def calc_n_ply(self, n_init, sess, board, player, roll):
|
||||
"""
|
||||
:param n_init:
|
||||
:param sess:
|
||||
:param board:
|
||||
:param player:
|
||||
:param roll:
|
||||
:return:
|
||||
"""
|
||||
|
||||
# find all legal states from the given board and the given roll
|
||||
init_legal_states = Board.calculate_legal_states(board, player, roll)
|
||||
|
@ -233,6 +363,13 @@ class Network:
|
|||
|
||||
|
||||
def n_ply(self, n_init, sess, boards_init, player_init):
|
||||
"""
|
||||
:param n_init:
|
||||
:param sess:
|
||||
:param boards_init:
|
||||
:param player_init:
|
||||
:return:
|
||||
"""
|
||||
def ply(n, boards, player):
|
||||
def calculate_possible_states(board):
|
||||
possible_rolls = [ (1, 1), (1, 2), (1, 3), (1, 4), (1, 5),
|
||||
|
@ -324,69 +461,8 @@ class Network:
|
|||
best_score_pair = boards_with_scores[np.array(scores).argmax()]
|
||||
return best_score_pair
|
||||
|
||||
def do_ply(self, sess, boards, player):
|
||||
"""
|
||||
Calculates a single extra ply, resulting in a larger search space for our best move.
|
||||
This is somewhat hardcoded to only do a single ply, seeing that it calls max on all scores, rather than
|
||||
allowing the function to search deeper, which could result in an even larger search space. If we wish
|
||||
to have more than 2-ply, this should be fixed, so we could extend this method to allow for 3-ply.
|
||||
|
||||
:param sess:
|
||||
:param boards: The boards to try all rolls on
|
||||
:param player: The player of the previous ply
|
||||
:return: An array of scores where each index describes one of the boards which was given as param
|
||||
to this function.
|
||||
"""
|
||||
|
||||
def gen_21_rolls():
|
||||
"""
|
||||
Calculate all possible rolls, [[1,1], [1,2] ..]
|
||||
:return: All possible rolls
|
||||
"""
|
||||
a = []
|
||||
for x in range(1, 7):
|
||||
for y in range(1, 7):
|
||||
if not [x, y] in a and not [y, x] in a:
|
||||
a.append([x, y])
|
||||
|
||||
return a
|
||||
|
||||
all_rolls = gen_21_rolls()
|
||||
|
||||
all_rolls_scores = []
|
||||
count = 0
|
||||
# loop over boards
|
||||
for a_board in boards:
|
||||
a_board_scores = []
|
||||
|
||||
# loop over all rolls, for each board
|
||||
for roll in all_rolls:
|
||||
|
||||
# find all states we can get to, given the board and roll and the opposite player
|
||||
all_rolls_boards = Board.calculate_legal_states(a_board, player*-1, roll)
|
||||
count += len(all_rolls_boards)
|
||||
# find scores for each board found above
|
||||
spec_roll_scores = [self.eval_state(sess, self.board_trans_func(new_board, player*-1))
|
||||
for new_board in all_rolls_boards]
|
||||
|
||||
# if the original player is the -1 player, then we need to find (1-value)
|
||||
spec_roll_scores = [x if player == 1 else (1-x) for x in spec_roll_scores]
|
||||
|
||||
# find the best score
|
||||
best_score = max(spec_roll_scores)
|
||||
|
||||
# append the best score to a_board_scores, where we keep track of the best score for each board
|
||||
a_board_scores.append(best_score)
|
||||
|
||||
# save the expected average of board scores
|
||||
all_rolls_scores.append(sum(a_board_scores)/len(a_board_scores))
|
||||
|
||||
# return all the average scores
|
||||
print(count)
|
||||
return all_rolls_scores
|
||||
|
||||
|
||||
def eval(self, episode_count, trained_eps = 0, tf_session = None):
|
||||
def eval(self, episode_count, trained_eps = 0):
|
||||
"""
|
||||
Used to evaluate a model. Can either use pubeval, a model playing at an intermediate level, or dumbeval
|
||||
a model which has been given random weights, so it acts deterministically random.
|
||||
|
@ -397,7 +473,7 @@ class Network:
|
|||
:return: outcomes: The outcomes of the evaluation session
|
||||
"""
|
||||
|
||||
def do_eval(sess, method, episodes = 1000, trained_eps = 0):
|
||||
def do_eval(method, episodes = 1000, trained_eps = 0):
|
||||
"""
|
||||
Do the actual evaluation
|
||||
|
||||
|
@ -434,7 +510,7 @@ class Network:
|
|||
while Board.outcome(board) is None:
|
||||
roll = (random.randrange(1, 7), random.randrange(1, 7))
|
||||
|
||||
board = (self.make_move(sess, board, roll, 1))[0]
|
||||
board = (self.make_move(board, roll, 1))[0]
|
||||
|
||||
roll = (random.randrange(1, 7), random.randrange(1, 7))
|
||||
|
||||
|
@ -457,7 +533,7 @@ class Network:
|
|||
while Board.outcome(board) is None:
|
||||
roll = (random.randrange(1, 7), random.randrange(1, 7))
|
||||
|
||||
board = (self.make_move(sess, board, roll, 1))[0]
|
||||
board = (self.make_move(board, roll, 1))[0]
|
||||
|
||||
roll = (random.randrange(1, 7), random.randrange(1, 7))
|
||||
|
||||
|
@ -476,40 +552,53 @@ class Network:
|
|||
sys.stderr.write("[EVAL ] Evaluation method '{}' is not defined\n".format(method))
|
||||
return [0]
|
||||
|
||||
if tf_session == None:
|
||||
with tf.Session() as session:
|
||||
session.run(tf.global_variables_initializer())
|
||||
self.restore_model(session)
|
||||
outcomes = [ (method, do_eval(session,
|
||||
method,
|
||||
episode_count,
|
||||
trained_eps = trained_eps))
|
||||
for method
|
||||
in self.config['eval_methods'] ]
|
||||
return outcomes
|
||||
else:
|
||||
outcomes = [ (method, do_eval(tf_session,
|
||||
method,
|
||||
|
||||
outcomes = [ (method, do_eval(method,
|
||||
episode_count,
|
||||
trained_eps = trained_eps))
|
||||
for method
|
||||
in self.config['eval_methods'] ]
|
||||
return outcomes
|
||||
|
||||
|
||||
def play_against_network(self):
|
||||
"""
|
||||
Allows you to play against a supplied model.
|
||||
:return:
|
||||
"""
|
||||
self.restore_model()
|
||||
human_player = Player(-1)
|
||||
cur_player = 1
|
||||
player = 1
|
||||
board = Board.initial_state
|
||||
i = 0
|
||||
while Board.outcome(board) is None:
|
||||
print(Board.pretty(board))
|
||||
roll = (random.randrange(1, 7), random.randrange(1, 7))
|
||||
print("Bot rolled:", roll)
|
||||
|
||||
board, _ = self.make_move(board, roll, player)
|
||||
print(Board.pretty(board))
|
||||
roll = (random.randrange(1, 7), random.randrange(1, 7))
|
||||
print("You rolled:", roll)
|
||||
board = human_player.make_human_move(board, roll)
|
||||
print("DONE "*10)
|
||||
print(Board.pretty(board))
|
||||
|
||||
|
||||
|
||||
def train_model(self, episodes=1000, save_step_size=100, trained_eps=0):
|
||||
with tf.Session() as sess:
|
||||
"""
|
||||
Train a model to by self-learning.
|
||||
:param episodes:
|
||||
:param save_step_size:
|
||||
:param trained_eps:
|
||||
:return:
|
||||
"""
|
||||
|
||||
difference_in_vals = 0
|
||||
writer = tf.summary.FileWriter("/tmp/log/tf", sess.graph)
|
||||
|
||||
sess.run(tf.global_variables_initializer())
|
||||
self.restore_model(sess)
|
||||
|
||||
variables_names = [v.name for v in tf.trainable_variables()]
|
||||
values = sess.run(variables_names)
|
||||
for k, v in zip(variables_names, values):
|
||||
print("Variable: ", k)
|
||||
print("Shape: ", v.shape)
|
||||
print(v)
|
||||
self.restore_model()
|
||||
|
||||
start_time = time.time()
|
||||
|
||||
|
@ -537,20 +626,24 @@ class Network:
|
|||
i = 0
|
||||
while Board.outcome(prev_board) is None:
|
||||
i += 1
|
||||
self.global_step += 1
|
||||
|
||||
cur_board, cur_board_value = self.make_move(sess,
|
||||
prev_board,
|
||||
|
||||
cur_board, cur_board_value = self.make_move(prev_board,
|
||||
(random.randrange(1, 7), random.randrange(1, 7)),
|
||||
player)
|
||||
|
||||
difference_in_vals += abs((cur_board_value - self.eval_state(sess, self.board_trans_func(prev_board, player))))
|
||||
difference_in_vals += abs((cur_board_value - self.eval_state(self.board_trans_func(prev_board, player))))
|
||||
|
||||
if self.config['verbose']:
|
||||
print("Difference in values:", difference_in_vals)
|
||||
print("Current board value :", cur_board_value)
|
||||
print("Current board is :\n",cur_board)
|
||||
|
||||
|
||||
# adjust weights
|
||||
sess.run(self.training_op,
|
||||
feed_dict={self.x: self.board_trans_func(prev_board, player),
|
||||
self.value_next: cur_board_value})
|
||||
|
||||
if Board.outcome(cur_board) is None:
|
||||
self.do_backprop(self.board_trans_func(prev_board, player), cur_board_value)
|
||||
player *= -1
|
||||
|
||||
prev_board = cur_board
|
||||
|
@ -561,26 +654,19 @@ class Network:
|
|||
final_score = np.array([Board.outcome(final_board)[1]])
|
||||
scaled_final_score = ((final_score + 2) / 4)
|
||||
|
||||
with tf.name_scope("final"):
|
||||
merged = tf.summary.merge_all()
|
||||
global_step, summary, _ = sess.run([self.global_step, merged, self.training_op],
|
||||
feed_dict={self.x: self.board_trans_func(prev_board, player),
|
||||
self.value_next: scaled_final_score.reshape((1, 1))})
|
||||
writer.add_summary(summary, episode + trained_eps)
|
||||
self.do_backprop(self.board_trans_func(prev_board, player), scaled_final_score.reshape(1,1))
|
||||
|
||||
sys.stderr.write("\n")
|
||||
|
||||
if episode % min(save_step_size, episodes) == 0:
|
||||
sys.stderr.write("[TRAIN] Saving model...\n")
|
||||
self.save_model(sess, episode + trained_eps, global_step)
|
||||
self.save_model(episode + trained_eps)
|
||||
|
||||
if episode % 50 == 0:
|
||||
print_time_estimate(episode)
|
||||
|
||||
sys.stderr.write("[TRAIN] Saving model for final episode...\n")
|
||||
self.save_model(sess, episode+trained_eps, global_step)
|
||||
|
||||
writer.close()
|
||||
self.save_model(episode+trained_eps)
|
||||
|
||||
return outcomes, difference_in_vals[0][0]
|
||||
|
||||
|
|
|
@ -9,14 +9,12 @@ from board import Board
|
|||
import main
|
||||
|
||||
config = main.config.copy()
|
||||
config['model'] = "tesauro_blah"
|
||||
config['force_creation'] = True
|
||||
config['model'] = "player_testings"
|
||||
config['ply'] = "1"
|
||||
config['board_representation'] = 'quack-fat'
|
||||
network = Network(config, config['model'])
|
||||
|
||||
session = tf.Session()
|
||||
|
||||
session.run(tf.global_variables_initializer())
|
||||
network.restore_model(session)
|
||||
network.restore_model()
|
||||
initial_state = Board.initial_state
|
||||
|
||||
initial_state_1 = ( 0,
|
||||
|
@ -38,65 +36,25 @@ boards = {initial_state,
|
|||
initial_state_2 }
|
||||
|
||||
|
||||
def gen_21_rolls():
|
||||
"""
|
||||
Calculate all possible rolls, [[1,1], [1,2] ..]
|
||||
:return: All possible rolls
|
||||
"""
|
||||
a = []
|
||||
for x in range(1, 7):
|
||||
for y in range(1, 7):
|
||||
if not [x, y] in a and not [y, x] in a:
|
||||
a.append([x, y])
|
||||
|
||||
return a
|
||||
|
||||
def calc_all_scores(board, player):
|
||||
scores = []
|
||||
trans_board = network.board_trans_func(board, player)
|
||||
rolls = gen_21_rolls()
|
||||
for roll in rolls:
|
||||
score = network.eval_state(session, trans_board)
|
||||
scores.append(score)
|
||||
return scores
|
||||
|
||||
|
||||
def calculate_possible_states(board):
|
||||
possible_rolls = [(1, 1), (1, 2), (1, 3), (1, 4), (1, 5),
|
||||
(1, 6), (2, 2), (2, 3), (2, 4), (2, 5),
|
||||
(2, 6), (3, 3), (3, 4), (3, 5), (3, 6),
|
||||
(4, 4), (4, 5), (4, 6), (5, 5), (5, 6),
|
||||
(6, 6)]
|
||||
|
||||
for roll in possible_rolls:
|
||||
meh = Board.calculate_legal_states(board, -1, roll)
|
||||
print(len(meh))
|
||||
return [Board.calculate_legal_states(board, -1, roll)
|
||||
for roll
|
||||
in possible_rolls]
|
||||
|
||||
|
||||
|
||||
#for board in boards:
|
||||
# calculate_possible_states(board)
|
||||
|
||||
#print("-"*30)
|
||||
#print(network.calculate_1_ply(session, Board.initial_state, [2,4], 1))
|
||||
# board = network.board_trans_func(Board.initial_state, 1)
|
||||
|
||||
#print(" "*10 + "network_test")
|
||||
print(" "*20 + "Depth 1")
|
||||
print(network.calc_n_ply(2, session, Board.initial_state, 1, [2, 4]))
|
||||
|
||||
#print(scores)
|
||||
# pair = network.make_move(Board.initial_state, [3,2], 1)
|
||||
|
||||
#print(" "*20 + "Depth 2")
|
||||
#print(network.n_ply(2, session, boards, 1))
|
||||
# print(pair[1])
|
||||
|
||||
# #print(x.shape)
|
||||
# with graph_lol.as_default():
|
||||
# session_2 = tf.Session(graph = graph_lol)
|
||||
# network_2 = Network(session_2)
|
||||
# network_2.restore_model()
|
||||
# print(network_2.eval_state(initial_state))
|
||||
# network.do_backprop(board, 0.9)
|
||||
|
||||
# print(network.eval_state(initial_state))
|
||||
|
||||
# network.print_variables()
|
||||
|
||||
|
||||
# network.save_model(2)
|
||||
|
||||
# print(network.calculate_1_ply(Board.initial_state, [3,2], 1))
|
||||
|
||||
network.play_against_network()
|
60
player.py
60
player.py
|
@ -11,19 +11,55 @@ class Player:
|
|||
def get_sym(self):
|
||||
return self.sym
|
||||
|
||||
def make_move(self, board, sym, roll):
|
||||
print(Board.pretty(board))
|
||||
legal_moves = Board.calculate_legal_states(board, sym, roll)
|
||||
if roll[0] == roll[1]:
|
||||
print("Example of move: 4/6,6/8,12/14,13/15")
|
||||
def calc_move_sets(self, from_board, roll, player):
|
||||
board = from_board
|
||||
sets = []
|
||||
total = 0
|
||||
for r in roll:
|
||||
# print("Value of r:",r)
|
||||
sets.append([Board.calculate_legal_states(board, player, [r,0]), r])
|
||||
total += r
|
||||
sets.append([Board.calculate_legal_states(board, player, [total,0]), total])
|
||||
return sets
|
||||
|
||||
|
||||
def tmp_name(self, from_board, to_board, roll, player, total_moves):
|
||||
sets = self.calc_move_sets(from_board, roll, player)
|
||||
return_board = from_board
|
||||
for idx, board_set in enumerate(sets):
|
||||
|
||||
board_set[0] = list(board_set[0])
|
||||
print(to_board)
|
||||
print(board_set)
|
||||
if to_board in board_set[0]:
|
||||
total_moves -= board_set[1]
|
||||
# if it's not the sum of the moves
|
||||
if idx < 2:
|
||||
roll[idx] = 0
|
||||
else:
|
||||
print("Example of move: 4/6,13/17")
|
||||
roll = [0,0]
|
||||
return_board = to_board
|
||||
break
|
||||
return total_moves, roll, return_board
|
||||
|
||||
user_moves = input("Enter your move: ").strip().split(",")
|
||||
board = Board.apply_moves_to_board(board, sym, user_moves)
|
||||
while board not in legal_moves:
|
||||
print("Move is invalid, please enter a new move")
|
||||
user_moves = input("Enter your move: ").strip().split(",")
|
||||
board = Board.apply_moves_to_board(board, sym, user_moves)
|
||||
def make_human_move(self, board, roll):
|
||||
total_moves = roll[0] + roll[1] if roll[0] != roll[1] else int(roll[0])*4
|
||||
move = ""
|
||||
while total_moves != 0:
|
||||
while True:
|
||||
print("You have {roll} left!".format(roll=total_moves))
|
||||
move = input("Pick a move!\n")
|
||||
pot_move = move.split("/")
|
||||
if len(pot_move) == 2:
|
||||
try:
|
||||
pot_move[0] = int(pot_move[0])
|
||||
pot_move[1] = int(pot_move[1])
|
||||
move = pot_move
|
||||
break;
|
||||
except TypeError:
|
||||
print("The correct syntax is: 2/5 for a move from index 2 to 5.")
|
||||
|
||||
to_board = Board.apply_moves_to_board(board, self.get_sym(), move)
|
||||
total_moves, roll, board = self.tmp_name(board, to_board, list(roll), self.get_sym(), total_moves)
|
||||
print(Board.pretty(board))
|
||||
return board
|
484
quack/quack.c
Normal file
484
quack/quack.c
Normal file
|
@ -0,0 +1,484 @@
|
|||
#include <Python.h>
|
||||
|
||||
static PyObject* QuackError;
|
||||
|
||||
typedef struct board_list board_list;
|
||||
struct board_list {
|
||||
int size;
|
||||
PyObject* list[16];
|
||||
};
|
||||
|
||||
/* Utility functions */
|
||||
int sign(int x) {
|
||||
return (x > 0) - (x < 0);
|
||||
}
|
||||
|
||||
int abs(int x) {
|
||||
if (x >= 0) return x;
|
||||
else return -x;
|
||||
}
|
||||
/* end utility functions */
|
||||
|
||||
/* Helper functions */
|
||||
|
||||
int *idxs_with_checkers_of_player(int board[], int player) {
|
||||
int idxs_tmp[26];
|
||||
int ctr = 0;
|
||||
|
||||
for (int i = 0; i < 26; i++) {
|
||||
if (board[i] * player >= 1) {
|
||||
idxs_tmp[ctr] = i;
|
||||
ctr++;
|
||||
}
|
||||
}
|
||||
|
||||
int *idxs = malloc((1 + ctr) * sizeof(int));
|
||||
if (idxs == NULL) {
|
||||
PyErr_NoMemory();
|
||||
abort();
|
||||
}
|
||||
|
||||
idxs[0] = ctr;
|
||||
for (int i = 0; i < ctr; i++) {
|
||||
idxs[i+1] = idxs_tmp[i];
|
||||
}
|
||||
|
||||
return idxs;
|
||||
}
|
||||
|
||||
int is_forward_move(int direction, int player) {
|
||||
return direction == player;
|
||||
}
|
||||
|
||||
int face_value_match_move_length(int delta, int face_value) {
|
||||
return abs(delta) == face_value;
|
||||
}
|
||||
|
||||
int bear_in_if_checker_on_bar(int board[], int player, int from_idx) {
|
||||
int bar;
|
||||
|
||||
if (player == 1) bar = 0;
|
||||
else bar = 25;
|
||||
|
||||
if (board[bar] != 0) return from_idx == bar;
|
||||
else return 1;
|
||||
}
|
||||
|
||||
int checkers_at_from_idx(int from_state, int player) {
|
||||
return sign(from_state) == player;
|
||||
}
|
||||
|
||||
int no_block_at_to_idx(int to_state, int player) {
|
||||
if (-sign(to_state) == player) return abs(to_state) == 1;
|
||||
else return 1;
|
||||
}
|
||||
|
||||
|
||||
int can_bear_off(int board[], int player, int from_idx, int to_idx) {
|
||||
int* checker_idxs = idxs_with_checkers_of_player(board, player);
|
||||
|
||||
int moving_backmost_checker = 1;
|
||||
int bearing_directly_off = 0;
|
||||
int all_checkers_in_last_quadrant = 1;
|
||||
|
||||
/* Check if bearing directly off */
|
||||
if (player == 1 && to_idx == 25) bearing_directly_off = 1;
|
||||
else if (player == -1 && to_idx == 0) bearing_directly_off = 1;
|
||||
|
||||
for (int i = 1; i <= checker_idxs[0]; i++) {
|
||||
if (player == 1 ) {
|
||||
/* Check if all checkers are in last quardrant */
|
||||
if (checker_idxs[i] < 19) {
|
||||
all_checkers_in_last_quadrant = 0;
|
||||
break;
|
||||
}
|
||||
|
||||
/* Check if moving backmost checker */
|
||||
if (checker_idxs[i] < from_idx) {
|
||||
moving_backmost_checker = 0;
|
||||
if (!bearing_directly_off) break;
|
||||
}
|
||||
} else {
|
||||
if (checker_idxs[i] > 6) {
|
||||
all_checkers_in_last_quadrant = 0;
|
||||
break;
|
||||
}
|
||||
|
||||
if (checker_idxs[i] > from_idx) {
|
||||
moving_backmost_checker = 0;
|
||||
if (!bearing_directly_off) break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
free(checker_idxs);
|
||||
|
||||
if (all_checkers_in_last_quadrant &&
|
||||
(bearing_directly_off || moving_backmost_checker)) return 1;
|
||||
else return 0;
|
||||
}
|
||||
|
||||
|
||||
|
||||
/* end helper functions */
|
||||
|
||||
int is_move_valid(int board[], int player, int face_value, int move[]) {
|
||||
int from_idx = move[0];
|
||||
int to_idx = move[1];
|
||||
int to_state;
|
||||
int from_state = board[from_idx];
|
||||
int delta = to_idx - from_idx;
|
||||
int direction = sign(delta);
|
||||
int bearing_off;
|
||||
|
||||
if (to_idx >= 1 && to_idx <= 24) {
|
||||
to_state = board[to_idx];
|
||||
bearing_off = 0;
|
||||
} else {
|
||||
to_state = 0;
|
||||
bearing_off = 1;
|
||||
}
|
||||
|
||||
return is_forward_move(direction, player)
|
||||
&& face_value_match_move_length(delta, face_value)
|
||||
&& bear_in_if_checker_on_bar(board, player, from_idx)
|
||||
&& checkers_at_from_idx(from_state, player)
|
||||
&& no_block_at_to_idx(to_state, player)
|
||||
&& (!bearing_off || can_bear_off(board, player, from_idx, to_idx))
|
||||
;
|
||||
}
|
||||
|
||||
void do_move(int board[], int player, int move[]) {
|
||||
int from_idx = move[0];
|
||||
int to_idx = move[1];
|
||||
|
||||
/* "lift" checker */
|
||||
board[from_idx] -= player;
|
||||
|
||||
/* Return early if bearing off */
|
||||
if (to_idx < 1 || to_idx > 24) return;
|
||||
|
||||
/* Hit opponent checker */
|
||||
if (board[to_idx] * player == -1) {
|
||||
/* Move checker to bar */
|
||||
if (player == 1) board[25] -= player;
|
||||
else board[0] -= player;
|
||||
|
||||
board[to_idx] = 0;
|
||||
}
|
||||
|
||||
/* Put down checker */
|
||||
board[to_idx] += player;
|
||||
|
||||
return;
|
||||
}
|
||||
|
||||
int* do_move_clone(int board[], int player, int move[]) {
|
||||
int* new_board = malloc(sizeof(int) * 26);
|
||||
if (new_board == NULL) {
|
||||
PyErr_NoMemory();
|
||||
abort();
|
||||
}
|
||||
|
||||
for (int i = 0; i < 26; i++) {
|
||||
new_board[i] = board[i];
|
||||
}
|
||||
|
||||
do_move(new_board, player, move);
|
||||
return new_board;
|
||||
}
|
||||
|
||||
PyObject* store_board_to_pytuple(int board[], int size) {
|
||||
PyObject* board_tuple = PyTuple_New(size);
|
||||
for (int i = 0; i < size; i++) {
|
||||
PyTuple_SetItem(board_tuple, i, Py_BuildValue("i", board[i]));
|
||||
}
|
||||
return board_tuple;
|
||||
}
|
||||
|
||||
board_list calc_moves(int board[], int player, int face_value) {
|
||||
int* checker_idxs = idxs_with_checkers_of_player(board, player);
|
||||
board_list boards = { .size = 0 };
|
||||
|
||||
if (checker_idxs[0] == 0) {
|
||||
boards.size = 1;
|
||||
PyObject* board_tuple = store_board_to_pytuple(board, 26);
|
||||
boards.list[0] = board_tuple;
|
||||
free(checker_idxs);
|
||||
return boards;
|
||||
}
|
||||
|
||||
int ctr = 0;
|
||||
for (int i = 1; i <= checker_idxs[0]; i++) {
|
||||
int move[2];
|
||||
move[0] = checker_idxs[i];
|
||||
move[1] = checker_idxs[i] + (face_value * player);
|
||||
|
||||
if (is_move_valid(board, player, face_value, move)) {
|
||||
int* new_board = do_move_clone(board, player, move);
|
||||
PyObject* board_tuple = store_board_to_pytuple(new_board, 26);
|
||||
|
||||
// segfault maybe :'(
|
||||
free(new_board);
|
||||
|
||||
boards.list[ctr] = board_tuple;
|
||||
ctr++;
|
||||
}
|
||||
}
|
||||
|
||||
free(checker_idxs);
|
||||
|
||||
boards.size = ctr;
|
||||
return boards;
|
||||
}
|
||||
|
||||
int* board_features_quack_fat(int board[], int player) {
|
||||
int* new_board = malloc(sizeof(int) * 30);
|
||||
if (new_board == NULL) {
|
||||
PyErr_NoMemory();
|
||||
abort();
|
||||
}
|
||||
|
||||
int pos_sum = 0;
|
||||
int neg_sum = 0;
|
||||
for (int i = 0; i < 26; i++) {
|
||||
new_board[i] = board[i];
|
||||
if (sign(new_board[i] > 0)) pos_sum += new_board[i];
|
||||
else neg_sum += new_board[i];
|
||||
}
|
||||
|
||||
new_board[26] = 15 - pos_sum;
|
||||
new_board[27] = -15 - neg_sum;
|
||||
if (player == 1) {
|
||||
new_board[28] = 1;
|
||||
new_board[29] = 0;
|
||||
} else {
|
||||
new_board[28] = 0;
|
||||
new_board[29] = 1;
|
||||
}
|
||||
|
||||
return new_board;
|
||||
}
|
||||
|
||||
/* Meta definitions */
|
||||
int extract_board(int *board, PyObject* board_tuple_obj) {
|
||||
long numValuesBoard;
|
||||
numValuesBoard = PyTuple_Size(board_tuple_obj);
|
||||
if (numValuesBoard != 26) {
|
||||
PyErr_SetString(QuackError, "Board tuple must have 26 entries");
|
||||
return 1;
|
||||
}
|
||||
|
||||
PyObject* board_val_obj;
|
||||
// Iterate over tuple to retreive positions
|
||||
for (int i=0; i<numValuesBoard; i++) {
|
||||
board_val_obj = PyTuple_GetItem(board_tuple_obj, i);
|
||||
board[i] = PyLong_AsLong(board_val_obj);
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
int extract_move(int *move, PyObject* move_tuple_obj) {
|
||||
long numValuesMove;
|
||||
numValuesMove = PyTuple_Size(move_tuple_obj);
|
||||
if (numValuesMove != 2) {
|
||||
PyErr_SetString(QuackError, "Move tuple must have exactly 2 entries");
|
||||
return 1;
|
||||
}
|
||||
PyObject* move_val_obj;
|
||||
for (int i=0; i<numValuesMove; i++) {
|
||||
move_val_obj = PyTuple_GetItem(move_tuple_obj, i);
|
||||
move[i] = PyLong_AsLong(move_val_obj);
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
static PyObject*
|
||||
quack_is_move_valid(PyObject *self, PyObject *args) {
|
||||
int board[26];
|
||||
int player;
|
||||
int face_value;
|
||||
int move[2];
|
||||
|
||||
PyObject* board_tuple_obj;
|
||||
PyObject* move_tuple_obj;
|
||||
|
||||
if (! PyArg_ParseTuple(args, "O!iiO!",
|
||||
&PyTuple_Type, &board_tuple_obj,
|
||||
&player,
|
||||
&face_value,
|
||||
&PyTuple_Type, &move_tuple_obj))
|
||||
return NULL;
|
||||
|
||||
if (extract_board(board, board_tuple_obj)) return NULL;
|
||||
if (extract_move(move, move_tuple_obj)) return NULL;
|
||||
|
||||
if (is_move_valid(board, player, face_value, move)) Py_RETURN_TRUE;
|
||||
else Py_RETURN_FALSE;
|
||||
}
|
||||
|
||||
static PyObject*
|
||||
quack_idxs_with_checkers_of_player(PyObject *self, PyObject *args) {
|
||||
|
||||
int board[26];
|
||||
int player;
|
||||
|
||||
int* idxs;
|
||||
|
||||
PyObject* board_tuple_obj;
|
||||
|
||||
if (! PyArg_ParseTuple(args, "O!i",
|
||||
&PyTuple_Type, &board_tuple_obj,
|
||||
&player))
|
||||
return NULL;
|
||||
|
||||
if (extract_board(board, board_tuple_obj)) return NULL;
|
||||
|
||||
idxs = idxs_with_checkers_of_player(board, player);
|
||||
PyObject* idxs_list = PyList_New(idxs[0]);
|
||||
|
||||
for (int i = 0; i < idxs[0]; i++) {
|
||||
PyList_SetItem(idxs_list, i, Py_BuildValue("i", idxs[i+1]));
|
||||
}
|
||||
free(idxs);
|
||||
|
||||
PyObject *result = Py_BuildValue("O", idxs_list);
|
||||
Py_DECREF(idxs_list);
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
static PyObject*
|
||||
quack_do_move(PyObject *self, PyObject *args) {
|
||||
int board[26];
|
||||
int player;
|
||||
int move[2];
|
||||
|
||||
PyObject* board_tuple_obj;
|
||||
PyObject* move_tuple_obj;
|
||||
|
||||
if (! PyArg_ParseTuple(args, "O!iO!",
|
||||
&PyTuple_Type, &board_tuple_obj,
|
||||
&player,
|
||||
&PyTuple_Type, &move_tuple_obj))
|
||||
return NULL;
|
||||
|
||||
if (extract_board(board, board_tuple_obj)) return NULL;
|
||||
if (extract_move(move, move_tuple_obj)) return NULL;
|
||||
|
||||
do_move(board, player, move);
|
||||
PyObject* board_tuple = store_board_to_pytuple(board, 26);
|
||||
|
||||
// This is shaky
|
||||
Py_DECREF(board);
|
||||
|
||||
PyObject *result = Py_BuildValue("O", board_tuple);
|
||||
Py_DECREF(board_tuple);
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
static PyObject*
|
||||
quack_calc_moves(PyObject *self, PyObject *args) {
|
||||
int board[26];
|
||||
int player;
|
||||
int face_value;
|
||||
|
||||
PyObject* board_tuple_obj;
|
||||
|
||||
if (! PyArg_ParseTuple(args, "O!ii",
|
||||
&PyTuple_Type, &board_tuple_obj,
|
||||
&player,
|
||||
&face_value))
|
||||
return NULL;
|
||||
|
||||
if (extract_board(board, board_tuple_obj)) return NULL;
|
||||
|
||||
board_list boards = calc_moves(board, player, face_value);
|
||||
PyObject* boards_list = PyList_New(boards.size);
|
||||
|
||||
for (int i = 0; i < boards.size; i++) {
|
||||
if (PyList_SetItem(boards_list, i, boards.list[i])) {
|
||||
printf("list insertion failed at index %i\n",i);
|
||||
abort();
|
||||
}
|
||||
}
|
||||
|
||||
PyObject *result = Py_BuildValue("O", boards_list);
|
||||
Py_DECREF(boards_list);
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
static PyObject*
|
||||
quack_board_features_quack_fat(PyObject *self, PyObject *args) {
|
||||
int board[26];
|
||||
int player;
|
||||
|
||||
PyObject* board_tuple_obj;
|
||||
|
||||
if (! PyArg_ParseTuple(args, "O!i",
|
||||
&PyTuple_Type, &board_tuple_obj,
|
||||
&player))
|
||||
return NULL;
|
||||
|
||||
if (extract_board(board, board_tuple_obj)) return NULL;
|
||||
|
||||
int* new_board = board_features_quack_fat(board, player);
|
||||
PyObject* board_tuple = store_board_to_pytuple(new_board, 30);
|
||||
free(new_board);
|
||||
|
||||
PyObject *result = Py_BuildValue("O", board_tuple);
|
||||
Py_DECREF(board_tuple);
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
|
||||
static PyMethodDef quack_methods[] = {
|
||||
{
|
||||
"is_move_valid", quack_is_move_valid, METH_VARARGS,
|
||||
"Evaluates the validity of the proposed move."
|
||||
},
|
||||
{
|
||||
"idxs_with_checkers_of_player", quack_idxs_with_checkers_of_player, METH_VARARGS,
|
||||
"Returns a list of indexes with checkers of the specified player"
|
||||
},
|
||||
{
|
||||
"do_move", quack_do_move, METH_VARARGS,
|
||||
"Returns the board after doing the specified move"
|
||||
},
|
||||
{
|
||||
"calc_moves", quack_calc_moves, METH_VARARGS,
|
||||
"Calculates all legal moves from board with specified face value"
|
||||
},
|
||||
{
|
||||
"board_features_quack_fat", quack_board_features_quack_fat, METH_VARARGS,
|
||||
"Transforms a board to the quack-fat board representation"
|
||||
},
|
||||
{NULL, NULL, 0, NULL}
|
||||
};
|
||||
|
||||
static struct PyModuleDef quack_definition = {
|
||||
PyModuleDef_HEAD_INIT,
|
||||
"quack",
|
||||
"A Python module that provides various useful Backgammon-related functions.",
|
||||
-1,
|
||||
quack_methods
|
||||
};
|
||||
|
||||
PyMODINIT_FUNC PyInit_quack(void) {
|
||||
PyObject* module;
|
||||
|
||||
module = PyModule_Create(&quack_definition);
|
||||
if (module == NULL)
|
||||
return NULL;
|
||||
|
||||
QuackError = PyErr_NewException("quack.error", NULL, NULL);
|
||||
Py_INCREF(QuackError);
|
||||
PyModule_AddObject(module, "error", QuackError);
|
||||
|
||||
return module;
|
||||
}
|
9
quack/setup.py
Normal file
9
quack/setup.py
Normal file
|
@ -0,0 +1,9 @@
|
|||
from distutils.core import setup, Extension
|
||||
|
||||
quack = Extension('quack',
|
||||
sources = ['quack.c'])
|
||||
|
||||
setup (name = 'quack',
|
||||
version = '0.1',
|
||||
description = 'Quack Backgammon Tools',
|
||||
ext_modules = [quack])
|
28
report_docs.txt
Normal file
28
report_docs.txt
Normal file
|
@ -0,0 +1,28 @@
|
|||
<christoffer> Alexander og jeg skrev noget af vores bachelorprojekt om til C her i fredags.
|
||||
<christoffer> Man skal virkelig passe på sine hukommelsesallokeringer.
|
||||
<Jmaa> Ja, helt klart.
|
||||
<christoffer> Jeg fandt et memory leak, der lækkede 100 MiB hukommelse i sekundet.
|
||||
<Jmaa> Hvilken del blev C-ificeret?
|
||||
<Jmaa> Damned
|
||||
<christoffer> Årsagen var at vi gav et objekt med tilbage til Python uden at dekrementere dets ref-count, så fortolkeren stadig troede at nogen havde brug for det.
|
||||
<christoffer> Den del af spillogikken, der tjekker om træk er gyldige.
|
||||
<christoffer> Det bliver kaldt ret mange tusinde gange pr. spil, så vi tænkte at der måske kunne være lidt optimering at hente i at omskrive det til C.
|
||||
<Jmaa> Ok, så I har ikke selv brugt alloc og free. Det er alligevel noget.
|
||||
<christoffer> Metoden selv blev 7 gange hurtigere!
|
||||
<Jmaa> Wow!
|
||||
<christoffer> Jo. Det endte vi også med at gøre.
|
||||
<christoffer> Vi havde brug for lister af variabel størrelse. Det endte med en struct med et "size" felt og et "list" felt.
|
||||
<Jmaa> Inkluderer det speedup, frem og tilbagen mellem C og python?
|
||||
<christoffer> Det burde det gøre, ja!
|
||||
<Jmaa> Gjorde det nogen stor effekt for hvor hurtigt I kan evaluere?
|
||||
<christoffer> Jeg tror ikke at der er særligt meget "frem og tilbage"-stads. Det ser ud til at det kode man skriver bliver kastet ret direkte ind i fortolkeren.
|
||||
<christoffer> Det gjorde en stor forskel for når vi laver 1-ply.
|
||||
<christoffer> "ply" er hvor mange træk man kigger fremad.
|
||||
<christoffer> Så kun at kigge på det umiddelbart næste træk er 0-ply, hvilket er det vi har gjort indtil nu
|
||||
<christoffer> 1-ply var for langsomt. Det tog ca. 6-7 sekunder at evaluere ét træk.
|
||||
<christoffer> Alexander lavede lidt omskrivninger, så TensorFlow udregnede det hurtigere og fik det ned på ca. 3-4 sekunder *pr. spil*.
|
||||
<christoffer> Så skrev vi noget af det om til C, og nu er vi så på ca. 2 sekunder pr. spil med 1-ply, hvilket er ret vildt.
|
||||
<christoffer> Det er så godt at Python-fortolkeren kan udvides med C!
|
||||
<christoffer> caspervk, kan I optimere jeres bachelorprojekt med et par C-moduler?
|
||||
<Jmaa> Det er en hel lille sektion til rapporten det der.
|
||||
<christoffer> Yeah. Kopierer bare det her verbatim ind.
|
|
@ -16,8 +16,8 @@ pyparsing==2.2.0
|
|||
python-dateutil==2.7.2
|
||||
pytz==2018.3
|
||||
six==1.11.0
|
||||
tensorboard==1.6.0
|
||||
tensorflow==1.6.0
|
||||
tensorboard==1.8.0
|
||||
tensorflow==1.8.0
|
||||
termcolor==1.1.0
|
||||
Werkzeug==0.14.1
|
||||
pygame==1.9.3
|
||||
|
|
|
@ -1,41 +1,94 @@
|
|||
import time
|
||||
import numpy as np
|
||||
import tensorflow as tf
|
||||
from board import Board
|
||||
import tensorflow.contrib.eager as tfe
|
||||
|
||||
|
||||
tf.enable_eager_execution()
|
||||
xavier_init = tf.contrib.layers.xavier_initializer()
|
||||
|
||||
|
||||
|
||||
opt = tf.train.MomentumOptimizer(learning_rate=0.1, momentum=1)
|
||||
|
||||
output_size = 1
|
||||
hidden_size = 40
|
||||
input_size = 30
|
||||
|
||||
|
||||
|
||||
model = tf.keras.Sequential([
|
||||
tf.keras.layers.Dense(40, activation="sigmoid", input_shape=(1,30)),
|
||||
tf.keras.layers.Dense(1, activation="sigmoid")
|
||||
tf.keras.layers.Dense(40, activation="sigmoid", kernel_initializer=tf.constant_initializer(-2), input_shape=(1,input_size)),
|
||||
tf.keras.layers.Dense(1, activation="sigmoid", kernel_initializer=tf.constant_initializer(0.2))
|
||||
])
|
||||
|
||||
input = [0, 2, 0, 0, 0, 0, -5, 0, -3, 0, 0, 0, 5, -5, 0, 0, 0, 3, 0, 5, 0, 0, 0, 0, -2, 0, 0, 0, 1, 0]
|
||||
|
||||
all_input = np.array([input for _ in range(8500)])
|
||||
# tfe.Saver(model.variables).restore(tf.train.latest_checkpoint("./"))
|
||||
|
||||
single_in = np.array(input).reshape(1,-1)
|
||||
input = [0, 2, 0, 0, 0, 0, -5, 0, -3, 0, 0, 0, 5, -5, 0, 0, 0, 3, 0, 5, 0, 0, 0, 0, -2, 0]
|
||||
|
||||
|
||||
|
||||
all_input = np.array([Board.board_features_quack_fat(input, 1) for _ in range(20)])
|
||||
|
||||
|
||||
single_in = Board.board_features_quack_fat(input, 1)
|
||||
|
||||
|
||||
start = time.time()
|
||||
|
||||
all_predictions = model.predict_on_batch(all_input)
|
||||
|
||||
print(all_predictions)
|
||||
print(time.time() - start)
|
||||
|
||||
learning_rate = 0.1
|
||||
|
||||
with tf.GradientTape() as tape:
|
||||
value = model(single_in)
|
||||
|
||||
|
||||
print("Before:", value)
|
||||
|
||||
start = time.time()
|
||||
all_predictions = [model(single_in) for _ in range(8500)]
|
||||
grads = tape.gradient(value, model.variables)
|
||||
print("/"*40,"model_variables","/"*40)
|
||||
print(model.variables)
|
||||
print("/"*40,"grads","/"*40)
|
||||
print(grads)
|
||||
|
||||
print(all_predictions[:10])
|
||||
print(time.time() - start)
|
||||
difference_in_values = tf.reshape(tf.subtract(0.9, value, name='difference_in_values'), [])
|
||||
|
||||
for grad, train_var in zip(grads, model.variables):
|
||||
backprop_calc = 0.1 * difference_in_values * grad
|
||||
train_var.assign_add(backprop_calc)
|
||||
|
||||
value = model(single_in)
|
||||
print("/"*40,"model_variables","/"*40)
|
||||
print(model.variables)
|
||||
print("After:", value)
|
||||
|
||||
|
||||
# # grads = [0.1*val-np.random.uniform(-1,1)+grad for grad, trainable_var in zip(grads, model.variables)]
|
||||
#
|
||||
# # print(model.variables[0][0])
|
||||
# weights_before = model.weights[0]
|
||||
#
|
||||
# start = time.time()
|
||||
# #[trainable_var.assign_add(0.1*val-0.3+grad) for grad, trainable_var in zip(grads, model.variables)]
|
||||
#
|
||||
# start = time.time()
|
||||
# for gradient, trainable_var in zip(grads, model.variables):
|
||||
# backprop_calc = 0.1 * (0.9 - val) * gradient
|
||||
# trainable_var.assign_add(backprop_calc)
|
||||
#
|
||||
# # opt.apply_gradients(zip(grads, model.variables))
|
||||
#
|
||||
# print(time.time() - start)
|
||||
#
|
||||
# print(model(single_in))
|
||||
#
|
||||
# vals = model.predict_on_batch(all_input)
|
||||
# vals = list(vals)
|
||||
# vals[3] = 4
|
||||
# print(vals)
|
||||
# print(np.argmax(np.array(vals)))
|
||||
|
||||
# tfe.Saver(model.variables).save("./tmp_ckpt")
|
||||
|
|
|
@ -16,9 +16,9 @@ class Everything:
|
|||
|
||||
|
||||
W_1 = tf.get_variable("w_1", (self.input_size, self.hidden_size),
|
||||
initializer=xavier_init)
|
||||
initializer=tf.constant_initializer(-2))
|
||||
W_2 = tf.get_variable("w_2", (self.hidden_size, self.output_size),
|
||||
initializer=xavier_init)
|
||||
initializer=tf.constant_initializer(0.2))
|
||||
|
||||
b_1 = tf.get_variable("b_1", (self.hidden_size,),
|
||||
initializer=tf.zeros_initializer)
|
||||
|
@ -29,16 +29,37 @@ class Everything:
|
|||
|
||||
self.value = tf.sigmoid(tf.matmul(value_after_input, W_2) + b_2, name='output_layer')
|
||||
|
||||
apply_gradients = []
|
||||
|
||||
|
||||
trainable_vars = tf.trainable_variables()
|
||||
gradients = tf.gradients(self.value, trainable_vars)
|
||||
|
||||
difference_in_values = tf.reshape(tf.subtract(0.9, self.value, name='difference_in_values'), [])
|
||||
|
||||
with tf.variable_scope('apply_gradients'):
|
||||
for gradient, trainable_var in zip(gradients, trainable_vars):
|
||||
backprop_calc = 0.1 * difference_in_values * gradient
|
||||
grad_apply = trainable_var.assign_add(backprop_calc)
|
||||
apply_gradients.append(grad_apply)
|
||||
|
||||
|
||||
self.training_op = tf.group(*apply_gradients, name='training_op')
|
||||
|
||||
|
||||
|
||||
def eval(self):
|
||||
input = np.array([0, 2, 0, 0, 0, 0, -5, 0, -3, 0, 0, 0, 5, -5, 0, 0, 0, 3, 0, 5, 0, 0, 0, 0, -2, 0, 0, 0, 1, 0])
|
||||
start = time.time()
|
||||
sess = tf.Session()
|
||||
sess.run(tf.global_variables_initializer())
|
||||
for i in range(8500):
|
||||
for i in range(20):
|
||||
val = sess.run(self.value, feed_dict={self.input: input.reshape(1,-1)})
|
||||
print(time.time() - start)
|
||||
print(val)
|
||||
|
||||
sess.run(self.training_op, feed_dict={self.input: input.reshape(1,-1)})
|
||||
val = sess.run(self.value, feed_dict={self.input: input.reshape(1, -1)})
|
||||
print(val)
|
||||
|
||||
everything = Everything()
|
||||
everything.eval()
|
||||
|
|
50
test.py
50
test.py
|
@ -141,6 +141,56 @@ class TestIsMoveValid(unittest.TestCase):
|
|||
# TODO: More tests for bearing off are needed
|
||||
|
||||
|
||||
def test_bear_off_non_backmost(self):
|
||||
board = ( 0,
|
||||
0, 0, 0, 0, 0, 0,
|
||||
0, 0, 0, 0, 0, 0,
|
||||
0, 0, 0, 0, 0, 0,
|
||||
0, 0, 0, 0, 1, 1,
|
||||
0 )
|
||||
self.assertEqual(Board.is_move_valid(board, 1, 2, (23, 25)), True)
|
||||
self.assertEqual(Board.is_move_valid(board, 1, 1, (24, 25)), True)
|
||||
self.assertEqual(Board.is_move_valid(board, 1, 2, (24, 26)), False)
|
||||
|
||||
def test_bear_off_quadrant_limits_white(self):
|
||||
board = ( 0,
|
||||
0, 0, 0, 0, 0, 0,
|
||||
0, 0, 0, 0, 0, 0,
|
||||
0, 0, 0, 0, 0, 1,
|
||||
1, 1, 1, 1, 1, 1,
|
||||
0 )
|
||||
self.assertEqual(Board.is_move_valid(board, 1, 2, (23, 25)), False)
|
||||
self.assertEqual(Board.is_move_valid(board, 1, 1, (24, 25)), False)
|
||||
|
||||
def test_bear_off_quadrant_limits_black(self):
|
||||
board = ( 0,
|
||||
-1, -1, -1, -1, -1, -1,
|
||||
-1, 0, 0, 0, 0, 0,
|
||||
0, 0, 0, 0, 0, 0,
|
||||
0, 0, 0, 0, 0, 0,
|
||||
0 )
|
||||
self.assertEqual(Board.is_move_valid(board, -1, 2, (2, 0)), False)
|
||||
self.assertEqual(Board.is_move_valid(board, -1, 1, (1, 0)), False)
|
||||
|
||||
def test_bear_off_quadrant_limits_white_2(self):
|
||||
board = ( 0,
|
||||
0, 0, 0, 0, 0, 0,
|
||||
0, 0, 0, 0, 0, 0,
|
||||
0, 0, 0, 0, 0, 0,
|
||||
1, 0, 0, 0, 0, 1,
|
||||
0 )
|
||||
self.assertEqual(Board.is_move_valid(board, 1, 1, (24, 25)), True)
|
||||
|
||||
def test_bear_off_quadrant_limits_black_2(self):
|
||||
board = ( 0,
|
||||
-1, 0, 0, 0, 0, -1,
|
||||
0, 0, 0, 0, 0, 0,
|
||||
0, 0, 0, 0, 0, 0,
|
||||
0, 0, 0, 0, 0, 0,
|
||||
0 )
|
||||
self.assertEqual(Board.is_move_valid(board, -1, 1, (1, 0)), True)
|
||||
|
||||
|
||||
class TestNumOfChecker(unittest.TestCase):
|
||||
def test_simple_1(self):
|
||||
board = ( 0,
|
||||
|
|
Loading…
Reference in New Issue
Block a user