Merge branch 'fuck_git' into 'rework-1'

# Conflicts:
#   network.py
This commit is contained in:
Christoffer Müller Madsen 2018-03-27 10:15:51 +00:00
commit c248ca0452
6 changed files with 481 additions and 156 deletions

View File

@ -35,6 +35,42 @@ class Board:
board.append(-15 - sum(negatives)) board.append(-15 - sum(negatives))
return tuple(board) return tuple(board)
@staticmethod
def board_features_to_own(board, player):
board = list(board)
positives = [x if x > 0 else 0 for x in board]
negatives = [x if x < 0 else 0 for x in board]
board.append(15 - sum(positives))
board.append(-15 - sum(negatives))
board += ([1, 0] if np.sign(player) > 0 else [1, 0])
return np.array(board).reshape(1,-1)
@staticmethod
def board_features_to_tesauro(board, cur_player):
features = []
for player in [-1,1]:
sum = 0.0
for board_range in range(1,25):
pin = board[board_range]
#print("PIIIN:",pin)
feature = [0.0]*4
if np.sign(pin) == np.sign(player):
sum += abs(pin)
for i in range(min(abs(pin), 3)):
feature[i] = 1
if (abs(pin) > 3):
feature[3] = (abs(pin)-3)/2
features += feature
#print("SUUUM:",sum)
# Append the amount of men on the bar of the current player divided by 2
features.append((board[0] if np.sign(player) < 0 else board[25]) / 2.0)
# Calculate how many pieces there must be in the home state and divide it by 15
features.append((15 - sum) / 15)
features += ([1,0] if np.sign(cur_player) > 0 else [1,0])
test = np.array(features).reshape(1,-1)
#print("TEST:",test)
return test

13
eval.py
View File

@ -2,6 +2,7 @@ from board import Board
import numpy as np import numpy as np
import pubeval import pubeval
import dumbeval
class Eval: class Eval:
@ -24,4 +25,16 @@ class Eval:
return best_move_pair return best_move_pair
@staticmethod
def make_dumbeval_move(board, sym, roll):
legal_moves = Board.calculate_legal_states(board, sym, roll)
moves_and_scores = [ ( board,
dumbeval.eval(False, Board.board_features_to_pubeval(board, sym)))
for board
in legal_moves ]
scores = [ x[1] for x in moves_and_scores ]
best_move_pair = moves_and_scores[np.array(scores).argmax()]
return best_move_pair

View File

@ -23,18 +23,21 @@ class Game:
def roll(self): def roll(self):
return self.cup.roll() return self.cup.roll()
'''
def best_move_and_score(self): def best_move_and_score(self):
roll = self.roll() roll = self.roll()
move_and_val = self.p1.make_move(self.board, self.p1.get_sym(), roll) move_and_val = self.p1.make_move(self.board, self.p1.get_sym(), roll)
self.board = move_and_val[0] self.board = move_and_val[0]
return move_and_val return move_and_val
'''
'''
def next_round(self): def next_round(self):
roll = self.roll() roll = self.roll()
#print(roll) #print(roll)
self.board = Board.flip(self.p2.make_move(Board.flip(self.board), self.p2.get_sym(), roll)[0]) self.board = Board.flip(self.p2.make_move(Board.flip(self.board), self.p2.get_sym(), roll)[0])
return self.board return self.board
'''
def board_state(self): def board_state(self):
return self.board return self.board

View File

@ -8,15 +8,14 @@ import sys
import random import random
from eval import Eval from eval import Eval
class Network: class Network:
hidden_size = 40 hidden_size = 40
input_size = 26 input_size = 30
output_size = 1 output_size = 1
# Can't remember the best learning_rate, look this up # Can't remember the best learning_rate, look this up
learning_rate = 0.01 learning_rate = 0.01
board_rep = Board.board_features_to_own
# TODO: Actually compile tensorflow properly
#os.environ["TF_CPP_MIN_LOG_LEVEL"]="2"
def custom_tanh(self, x, name=None): def custom_tanh(self, x, name=None):
return tf.scalar_mul(tf.constant(2.00), tf.tanh(x, name)) return tf.scalar_mul(tf.constant(2.00), tf.tanh(x, name))
@ -51,8 +50,8 @@ class Network:
b_2 = tf.get_variable("b_2", (Network.output_size,), b_2 = tf.get_variable("b_2", (Network.output_size,),
initializer=tf.zeros_initializer) initializer=tf.zeros_initializer)
normalized_input = tf.nn.l2_normalize(self.x)
value_after_input = tf.sigmoid(tf.matmul(normalized_input, W_1) + b_1, name='hidden_layer') value_after_input = tf.sigmoid(tf.matmul(self.x, W_1) + b_1, name='hidden_layer')
self.value = tf.sigmoid(tf.matmul(value_after_input, W_2) + b_2, name='output_layer') self.value = tf.sigmoid(tf.matmul(value_after_input, W_2) + b_2, name='output_layer')
@ -112,23 +111,22 @@ class Network:
# implement learning_rate * (difference_in_values) * gradients (the # implement learning_rate * (difference_in_values) * gradients (the
# before-mentioned calculation. # before-mentioned calculation.
# print("Network is evaluating") # print("Network is evaluating")
#print("eval ({})".format(self.name), state, val, sep="\n") # print("eval ({})".format(self.name), state, val, sep="\n")
return sess.run(self.value, feed_dict={self.x: state})
return sess.run(self.value, feed_dict={self.x: state})
def save_model(self, sess, episode_count): def save_model(self, sess, episode_count):
self.saver.save(sess, os.path.join(self.checkpoint_path, 'model.ckpt')) self.saver.save(sess, os.path.join(self.checkpoint_path, 'model.ckpt'))
with open(os.path.join(self.checkpoint_path, "episodes_trained"), 'w+') as f: with open(os.path.join(self.checkpoint_path, "episodes_trained"), 'w+') as f:
print("[NETWK] ({name}) Saving model to:".format(name = self.name), print("[NETWK] ({name}) Saving model to:".format(name=self.name),
os.path.join(self.checkpoint_path, 'model.ckpt')) os.path.join(self.checkpoint_path, 'model.ckpt'))
f.write(str(episode_count) + "\n") f.write(str(episode_count) + "\n")
def restore_model(self, sess): def restore_model(self, sess):
if os.path.isfile(os.path.join(self.checkpoint_path, 'model.ckpt.index')): if os.path.isfile(os.path.join(self.checkpoint_path, 'model.ckpt.index')):
latest_checkpoint = tf.train.latest_checkpoint(self.checkpoint_path) latest_checkpoint = tf.train.latest_checkpoint(self.checkpoint_path)
print("[NETWK] ({name}) Restoring model from:".format(name = self.name), print("[NETWK] ({name}) Restoring model from:".format(name=self.name),
str(latest_checkpoint)) str(latest_checkpoint))
self.saver.restore(sess, latest_checkpoint) self.saver.restore(sess, latest_checkpoint)
variables_names = [v.name for v in tf.trainable_variables()] variables_names = [v.name for v in tf.trainable_variables()]
@ -144,18 +142,167 @@ class Network:
with open(episode_count_path, 'r') as f: with open(episode_count_path, 'r') as f:
self.config['start_episode'] = int(f.read()) self.config['start_episode'] = int(f.read())
def make_move(self, sess, board, roll): def make_move(self, sess, board, roll, player):
# print(Board.pretty(board)) # print(Board.pretty(board))
legal_moves = Board.calculate_legal_states(board, 1, roll) legal_moves = Board.calculate_legal_states(board, player, roll)
moves_and_scores = [ (move, self.eval_state(sess, np.array(move).reshape(1,26))) for move in legal_moves ] moves_and_scores = [(move, self.eval_state(sess, Network.board_rep(move, player))) for move in legal_moves]
scores = [ x[1] for x in moves_and_scores ] scores = [x[1] if np.sign(player) > 0 else 1-x[1] for x in moves_and_scores]
best_score_index = np.array(scores).argmax() best_score_index = np.array(scores).argmax()
best_move_pair = moves_and_scores[best_score_index] best_move_pair = moves_and_scores[best_score_index]
#print("Found the best state, being:", np.array(move_scores).argmax()) # print("Found the best state, being:", np.array(move_scores).argmax())
return best_move_pair return best_move_pair
def eval(self, trained_eps=0):
def do_eval(sess, method, episodes=1000, trained_eps=trained_eps):
start_time = time.time()
def train_model(self, episodes=1000, save_step_size = 100, trained_eps = 0): def print_time_estimate(eps_completed):
cur_time = time.time()
time_diff = cur_time - start_time
eps_per_sec = eps_completed / time_diff
secs_per_ep = time_diff / eps_completed
eps_remaining = (episodes - eps_completed)
sys.stderr.write(
"[EVAL ] Averaging {per_sec} episodes per second\n".format(per_sec=round(eps_per_sec, 2)))
sys.stderr.write(
"[EVAL ] {eps_remaining} episodes remaining; approx. {time_remaining} seconds remaining\n".format(
eps_remaining=eps_remaining, time_remaining=int(eps_remaining * secs_per_ep)))
sys.stderr.write(
"[EVAL ] Evaluating {eps} episode(s) with method '{method}'\n".format(eps=episodes, method=method))
if method == 'random':
outcomes = []
"""for i in range(1, episodes + 1):
sys.stderr.write("[EVAL ] Episode {}".format(i))
board = Board.initial_state
while Board.outcome(board) is None:
roll = (random.randrange(1, 7), random.randrange(1, 7))
board = (self.p1.make_move(sess, board, self.p1.get_sym(), roll))[0]
roll = (random.randrange(1, 7), random.randrange(1, 7))
board = Board.flip(Eval.make_random_move(Board.flip(board), 1, roll))
sys.stderr.write("\t outcome {}".format(Board.outcome(board)[1]))
outcomes.append(Board.outcome(board)[1])
sys.stderr.write("\n")
if i % 50 == 0:
print_time_estimate(i)"""
return outcomes
elif method == 'pubeval':
outcomes = []
# Add the evaluation code for pubeval, the bot has a method make_pubeval_move(board, sym, roll),
# which can be used to get the best move according to pubeval
for i in range(1, episodes + 1):
sys.stderr.write("[EVAL ] Episode {}".format(i))
board = Board.initial_state
# print("init:", board, sep="\n")
while Board.outcome(board) is None:
# print("-"*30)
roll = (random.randrange(1, 7), random.randrange(1, 7))
# print(roll)
# prev_board = tuple(board)
board = (self.make_move(sess, board, roll, 1))[0]
# print("post p1:", board, sep="\n")
# print("."*30)
roll = (random.randrange(1, 7), random.randrange(1, 7))
# print(roll)
# prev_board = tuple(board)
board = Eval.make_pubeval_move(board, -1, roll)[0][0:26]
# print("post pubeval:", board, sep="\n")
# print("*"*30)
# print(board)
# print("+"*30)
sys.stderr.write("\t outcome {}".format(Board.outcome(board)[1]))
outcomes.append(Board.outcome(board)[1])
sys.stderr.write("\n")
if i % 10 == 0:
print_time_estimate(i)
return outcomes
elif method == 'dumbeval':
outcomes = []
# Add the evaluation code for pubeval, the bot has a method make_pubeval_move(board, sym, roll),
# which can be used to get the best move according to pubeval
for i in range(1, episodes + 1):
sys.stderr.write("[EVAL ] Episode {}".format(i))
board = Board.initial_state
# print("init:", board, sep="\n")
while Board.outcome(board) is None:
# print("-"*30)
roll = (random.randrange(1, 7), random.randrange(1, 7))
# print(roll)
# prev_board = tuple(board)
board = (self.make_move(sess, board, roll, 1))[0]
# print("post p1:", board, sep="\n")
# print("."*30)
roll = (random.randrange(1, 7), random.randrange(1, 7))
# print(roll)
# prev_board = tuple(board)
board = Eval.make_dumbeval_move(board, -1, roll)[0][0:26]
# print("post pubeval:", board, sep="\n")
# print("*"*30)
# print(board)
# print("+"*30)
sys.stderr.write("\t outcome {}".format(Board.outcome(board)[1]))
outcomes.append(Board.outcome(board)[1])
sys.stderr.write("\n")
if i % 10 == 0:
print_time_estimate(i)
return outcomes
elif method == 'dumbmodel':
outcomes = []
"""
config_prime = self.config.copy()
config_prime['model_path'] = os.path.join(config_prime['model_storage_path'], 'dumbmodel')
eval_bot = Bot(1, config = config_prime, name = "dumbmodel")
#print(self.config, "\n", config_prime)
outcomes = []
for i in range(1, episodes + 1):
sys.stderr.write("[EVAL ] Episode {}".format(i))
board = Board.initial_state
while Board.outcome(board) is None:
roll = (random.randrange(1,7), random.randrange(1,7))
board = (self.make_move(board, self.p1.get_sym(), roll))[0]
roll = (random.randrange(1,7), random.randrange(1,7))
board = Board.flip(eval_bot.make_move(Board.flip(board), self.p1.get_sym(), roll)[0])
sys.stderr.write("\t outcome {}".format(Board.outcome(board)[1]))
outcomes.append(Board.outcome(board)[1])
sys.stderr.write("\n")
if i % 50 == 0:
print_time_estimate(i)
"""
return outcomes
else:
sys.stderr.write("[EVAL ] Evaluation method '{}' is not defined\n".format(method))
return [0]
with tf.Session() as session:
session.run(tf.global_variables_initializer())
self.restore_model(session)
outcomes = [(method, do_eval(session,
method,
self.config['episode_count'],
trained_eps=trained_eps))
for method
in self.config['eval_methods']]
return outcomes
def train_model(self, episodes=1000, save_step_size=100, trained_eps=0):
with tf.Session() as sess: with tf.Session() as sess:
writer = tf.summary.FileWriter("/tmp/log/tf", sess.graph) writer = tf.summary.FileWriter("/tmp/log/tf", sess.graph)
@ -177,70 +324,65 @@ class Network:
eps_per_sec = eps_completed / time_diff eps_per_sec = eps_completed / time_diff
secs_per_ep = time_diff / eps_completed secs_per_ep = time_diff / eps_completed
eps_remaining = (episodes - eps_completed) eps_remaining = (episodes - eps_completed)
sys.stderr.write("[TRAIN] Averaging {per_sec} episodes per second\n".format(per_sec = round(eps_per_sec, 2))) sys.stderr.write(
sys.stderr.write("[TRAIN] {eps_remaining} episodes remaining; approx. {time_remaining} seconds remaining\n".format(eps_remaining = eps_remaining, time_remaining = int(eps_remaining * secs_per_ep))) "[TRAIN] Averaging {per_sec} episodes per second\n".format(per_sec=round(eps_per_sec, 2)))
sys.stderr.write(
"[TRAIN] {eps_remaining} episodes remaining; approx. {time_remaining} seconds remaining\n".format(
eps_remaining=eps_remaining, time_remaining=int(eps_remaining * secs_per_ep)))
sys.stderr.write("[TRAIN] Training {} episodes and save_step_size {}\n".format(episodes, save_step_size)) sys.stderr.write("[TRAIN] Training {} episodes and save_step_size {}\n".format(episodes, save_step_size))
outcomes = [] outcomes = []
for episode in range(1, episodes + 1): for episode in range(1, episodes + 1):
sys.stderr.write("[TRAIN] Episode {}".format(episode + trained_eps)) sys.stderr.write("[TRAIN] Episode {}".format(episode + trained_eps))
# TODO decide which player should be here # TODO decide which player should be here
player = 1 player = 1
roll = (random.randrange(1,7), random.randrange(1,7)) prev_board = Board.initial_state
prev_board, _ = self.make_move(sess, Board.flip(Board.initial_state) if player == -1 else Board.initial_state, roll)
if player == -1:
prev_board = Board.flip(prev_board)
# find the best move here, make this move, then change turn as the # find the best move here, make this move, then change turn as the
# first thing inside of the while loop and then call # first thing inside of the while loop and then call
# best_move_and_score to get V_t+1 # best_move_and_score to get V_t+1
# i = 0
while Board.outcome(prev_board) is None: while Board.outcome(prev_board) is None:
# print("-"*30)
# print(i)
# print(roll)
# print(Board.pretty(prev_board))
# print("/"*30)
# i += 1
player *= -1 #print("PREEEV_BOOOOAAARD:",prev_board)
roll = (random.randrange(1,7), random.randrange(1,7)) cur_board, cur_board_value = self.make_move(sess,
prev_board,
(random.randrange(1, 7), random.randrange(1, 7)), player)
cur_board, cur_board_value = self.make_move(sess, Board.flip(prev_board) if player == -1 else prev_board, roll) #print("The current value:",cur_board_value)
if player == -1:
cur_board = Board.flip(cur_board)
# print("cur_board_value:", cur_board_value)
# adjust weights # adjust weights
sess.run(self.training_op, sess.run(self.training_op,
feed_dict = { self.x: np.array(prev_board).reshape((1,26)), feed_dict={self.x: Network.board_rep(prev_board, player),
self.value_next: cur_board_value }) self.value_next: cur_board_value})
player *= -1
prev_board = cur_board prev_board = cur_board
final_board = prev_board final_board = prev_board
sys.stderr.write("\t outcome {}".format(Board.outcome(final_board)[1])) sys.stderr.write("\t outcome {}".format(Board.outcome(final_board)[1]))
outcomes.append(Board.outcome(final_board)[1]) outcomes.append(Board.outcome(final_board)[1])
final_score = np.array([ Board.outcome(final_board)[1] ]) final_score = np.array([Board.outcome(final_board)[1]])
scaled_final_score = ((final_score + 2) / 4) scaled_final_score = ((final_score + 2) / 4)
#print("The difference in values:", scaled_final_score - cur_board_value)
# print("scaled_final_score",scaled_final_score) # print("scaled_final_score",scaled_final_score)
with tf.name_scope("final"): with tf.name_scope("final"):
merged = tf.summary.merge_all() merged = tf.summary.merge_all()
summary, _ = sess.run([merged, self.training_op], summary, _ = sess.run([merged, self.training_op],
feed_dict = { self.x: np.array(prev_board).reshape((1,26)), feed_dict={self.x: Network.board_rep(prev_board, player),
self.value_next: scaled_final_score.reshape((1, 1)) }) self.value_next: scaled_final_score.reshape((1, 1))})
writer.add_summary(summary, episode + trained_eps) writer.add_summary(summary, episode + trained_eps)
sys.stderr.write("\n") sys.stderr.write("\n")
if episode % min(save_step_size, episodes) == 0: if episode % min(save_step_size, episodes) == 0:
sys.stderr.write("[TRAIN] Saving model...\n") sys.stderr.write("[TRAIN] Saving model...\n")
self.save_model(sess, episode+trained_eps) self.save_model(sess, episode + trained_eps)
if episode % 50 == 0: if episode % 50 == 0:
print_time_estimate(episode) print_time_estimate(episode)
@ -266,95 +408,18 @@ class Network:
def do_eval(sess, method, episodes = 1000, trained_eps = 0): def do_eval(sess, method, episodes = 1000, trained_eps = 0):
start_time = time.time() start_time = time.time()
def print_time_estimate(eps_completed): writer.close()
cur_time = time.time()
time_diff = cur_time - start_time
eps_per_sec = eps_completed / time_diff
secs_per_ep = time_diff / eps_completed
eps_remaining = (episodes - eps_completed)
sys.stderr.write("[EVAL ] Averaging {per_sec} episodes per second\n".format(per_sec = round(eps_per_sec, 2)))
sys.stderr.write("[EVAL ] {eps_remaining} episodes remaining; approx. {time_remaining} seconds remaining\n".format(eps_remaining = eps_remaining, time_remaining = int(eps_remaining * secs_per_ep)))
sys.stderr.write("[EVAL ] Evaluating {eps} episode(s) with method '{method}'\n".format(eps=episodes, method=method))
if method == 'random':
outcomes = []
for i in range(1, episodes + 1):
sys.stderr.write("[EVAL ] Episode {}".format(i))
board = Board.initial_state
while Board.outcome(board) is None:
roll = (random.randrange(1,7), random.randrange(1,7))
board = (self.p1.make_move(sess, board, self.p1.get_sym(), roll))[0]
roll = (random.randrange(1,7), random.randrange(1,7))
board = Board.flip(Eval.make_random_move(Board.flip(board), 1, roll))
sys.stderr.write("\t outcome {}".format(Board.outcome(board)[1]))
outcomes.append(Board.outcome(board)[1])
sys.stderr.write("\n")
if i % 50 == 0:
print_time_estimate(i)
return outcomes
elif method == 'pubeval':
outcomes = []
# Add the evaluation code for pubeval, the bot has a method make_pubeval_move(board, sym, roll), which can be used to get the best move according to pubeval
for i in range(1, episodes + 1):
sys.stderr.write("[EVAL ] Episode {}".format(i))
board = Board.initial_state
#print("init:", board, sep="\n")
while Board.outcome(board) is None:
#print("-"*30)
roll = (random.randrange(1,7), random.randrange(1,7))
#print(roll)
prev_board = tuple(board)
board = (self.make_move(sess, board, roll))[0]
#print("post p1:", board, sep="\n")
#print("."*30)
roll = (random.randrange(1,7), random.randrange(1,7))
#print(roll)
prev_board = tuple(board)
board = Eval.make_pubeval_move(board, -1, roll)[0][0:26]
#print("post pubeval:", board, sep="\n")
#print("*"*30)
#print(board)
#print("+"*30)
sys.stderr.write("\t outcome {}".format(Board.outcome(board)[1]))
outcomes.append(Board.outcome(board)[1])
sys.stderr.write("\n")
if i % 10 == 0:
print_time_estimate(i)
return outcomes return outcomes
# elif method == 'dumbmodel':
# config_prime = self.config.copy()
# config_prime['model_path'] = os.path.join(config_prime['model_storage_path'], 'dumbmodel')
# eval_bot = Bot(1, config = config_prime, name = "dumbmodel")
# #print(self.config, "\n", config_prime)
# outcomes = []
# for i in range(1, episodes + 1):
# sys.stderr.write("[EVAL ] Episode {}".format(i))
# board = Board.initial_state
# while Board.outcome(board) is None:
# roll = (random.randrange(1,7), random.randrange(1,7))
# board = (self.make_move(board, self.p1.get_sym(), roll))[0]
# roll = (random.randrange(1,7), random.randrange(1,7)) # take turn, which finds the best state and picks it, based on the current network
# board = Board.flip(eval_bot.make_move(Board.flip(board), self.p1.get_sym(), roll)[0]) # save current state
# sys.stderr.write("\t outcome {}".format(Board.outcome(board)[1])) # run training operation (session.run(self.training_op, {x:x, value_next, value_next})),
# outcomes.append(Board.outcome(board)[1]) # (something which does the backprop, based on the state after having taken a turn,
# sys.stderr.write("\n") # found before, and the state we saved in the beginning and from now we'll
# save it at the end of the turn
# if i % 50 == 0: # save the current state again, so we can continue running backprop based on the "previous" turn.
# print_time_estimate(i)
# return outcomes
else:
sys.stderr.write("[EVAL ] Evaluation method '{}' is not defined\n".format(method))
return [0]
if tf_session == None: if tf_session == None:

199
pubeval/dumbeval.c Normal file
View File

@ -0,0 +1,199 @@
#include <Python.h>
static PyObject* DumbevalError;
static float x[122];
static const float wc[122] = {
5.6477, 6.316649999999999, 7.05515, 6.65315, 9.3171, 17.9777, 2.0235499999999993, 5.1129500000000005, 7.599200000000001, 9.68525, 3.1762, 8.05335, 16.153499999999998, 8.02445, 10.55345, 15.489600000000001, 10.525199999999998, 16.438850000000002, 12.27405, 9.6362, 12.7152, 13.2859, 1.6932499999999995, 26.79045, 10.521899999999999, 6.79635, 5.28135, 6.2059, 10.2306, 10.5485, 3.6000500000000004, 4.07825, 6.951700000000001, 4.413749999999999, 11.271450000000002, 12.9361, 11.087299999999999, 13.10085, 10.411999999999999, 8.084050000000001, 12.4893, 5.96055, 4.69195, 18.9482, 9.0946, 9.1954, 6.2592, 16.180300000000003, 8.3376, 23.24915, 14.32525, -2.6699000000000006, 19.156, 5.81445, 4.7214, 7.63055, 7.039, 5.88075, 2.00765, 14.596800000000002, 11.5208, -3.79, -3.8541000000000003, 5.358499999999999, 14.4516, 2.49015, 11.284799999999999, 14.1066, 16.2306, 5.82875, 9.34505, 16.13685, 8.1893, 2.93145, 7.83185, 12.86765, 6.90115, 20.07255, 8.93355, -0.12434999999999974, 12.0587, 11.83985, 6.34155, 7.1963, 10.571200000000001, 22.38365, 6.50745, 8.94595, 12.0434, 10.79885, 14.055800000000001, 0.022100000000000453, 10.39255, 4.088850000000001, 3.6421499999999996, 38.1298, 6.8957, 0.9804999999999997, 5.9599, 13.16055, 11.55305, 10.65015, 4.6673, 15.770999999999999, 27.700050000000005, 4.4329, 12.6349, 7.037800000000001, 3.4897, 18.91945, 10.239899999999999, 5.4625, 10.29705, 10.492799999999999, 8.850900000000001, -10.575999999999999, 10.6893, 15.30845, 17.8083, 31.88275, 11.225000000000001, 4.4806};
/*
1.5790816238841092, 1.6374860177130541, -1.7131823639980923, -0.9286186784962336, -1.0732080528763888,
-0.33851674519289876, 1.5798155080270462, 2.3161915581553414, 1.5625330782392322, 0.9397141260075461,
0.8386342522957442, 1.2380864901133144, -2.803703105809909, -1.6033863837759044, -1.9297462408169208,
2.804924084193149, 0.9270839975087402, 0.9877927467766145, -1.0075116465703597, -0.9456578829797895,
-2.592017567014881, 0.6309857231907587, 2.04590249003744, -0.7982917574924828, -1.4539868823698936,
1.0841407450630234, 0.45211788236898887, -1.2713606178159307, 0.8688872440724307, -0.6732738151904405,
2.2362742485632294, -0.6581729637609781, -1.7948051663967473, 2.1883788452643564, 2.1598171424723214,
0.40802272166662146, -0.9708789129385202, -0.28407011999124165, 1.132858480655588, 0.35009713673111253,
2.396877030228498, -2.9621397724422653, 1.607067798976531, 1.0644990486021744, 0.31954763526104113,
1.3044736141405133, -2.7454899725805606, -2.7379143210889545, -1.803990720175892, 0.46979843403681576,
-1.7142750941084806, -0.8151527229519924, -2.009462889335147, -0.3918389579023729, -1.2877598286852634,
2.555703689627613, 0.9185193346378826, -2.4440956502956404, -1.5557875467629176, 1.6171292628313898,
-0.7350519162308693, 2.9185129503030653, -0.02369662637182124, 0.9957404325370858, -0.6504711593915609,
2.6190546093943468, -0.36103491516117003, -0.5988376927918715, 0.16399156134136383, 0.3254074568551131,
-1.5638349190057885, 0.8561543642997189, -0.0880209333042492, 1.323918411026094, -0.9498883976797834,
2.3050169940592458, -2.859322940360703, 2.1798224505428836, 0.03769734441005257, 2.806706515762855,
-0.514728418369482, -2.7130236727731454, 1.343193402901159, -1.542350700154035, 1.1197565339573625,
-1.4498511795864624, 1.3472224178544003, 0.7044576479382245, -2.284211306571646, -1.7289596273930532,
-1.7276292685923906, -0.1945401442950634, 2.0338744133468643, 2.001064062247366, 1.9649901287717713,
1.5235253273336475, 0.40016636047698606, -1.3276206938801058, 0.8496121993449899, 1.054662320349336,
-1.1897996492934584, 0.49610727347392025, -1.8539475848522708, 0.4713599305742626, -2.8424352653158573,
-2.526691049928613, 2.1369664337786274, 1.0616438676464632, 1.9487914860665452, 2.822108017102477,
-0.3393405083020449, 2.787144781914554, -2.401723402781605, -1.1675562811241997, -1.1542961327714207,
0.18253192955355502, -2.418436664206371, 0.7423935287565309, 2.9903418274144666, -1.3503112004693552,
-2.649146174480099, -0.5447080156947952
};*/
static const float wr[122] = {
-0.7856, -0.50352, 0.12392, -1.00316, -2.46556, -0.1627, 0.18966, 0.0043, 0.0,
0.13681, 1.11245, 0.0, 0.0, -0.02781, -2.77982, 0.0, -0.91035, 0.60015,
-1.27266, 0.0, 0.0, 0.0, 0.0, -7.26713, -0.19412, -1.05121, 0.27448, -4.94251,
-0.06844, 0.37183, -3.66465, -0.8305, 0.09266, 0.07217, 0.0, 0.29906, -1.26062,
0.17405, 0.48302, 2.00366, 0.92321, -0.10839, 1.06349, 0.39521, 3.4204,
0.00576, 5.35, 3.8539, -0.09308, 0.17253, 0.13978, 0.2701, -0.52728, 0.88296,
0.2252, 0.0, 0.0, -0.12707, 3.05454, 0.31202, -0.88035, -0.01351, 0.0,
-3.40177, -0.22082, -0.13022, -0.09795, -2.29847, -12.32252, 0.0, -0.13597,
0.12039, 0.85631, 0.0, 0.0, -0.3424, 0.24855, 0.20178, 2.30052, 1.5068,
0.0, -0.07456, 5.16874, 0.01418, -1.3464, -1.29506, 0.0, 0.0, -1.40375,
0.0, -0.11696, 0.05281, -9.67677, 0.05685, -1.09167, 0.0, 0.0, -2.56906,
2.19605, 0.0, 0.68178, -0.08471, 0.0, -2.34631, 1.49549, -2.16183, 0.0,
1.16242, 1.08744, -0.1716, 0.25236, 0.13246, -0.37646, 0.0, -2.87401,
0.74427, 1.07274, -0.01591, -0.14818, -0.06285, 0.08302, -1.03508
};
void setx(int pos[])
{
/* sets input vector x[] given board position pos[] */
extern float x[];
int j, jm1, n;
/* initialize */
for(j=0;j<122;++j) x[j] = 0.0;
/* first encode board locations 24-1 */
for(j=1;j<=24;++j) {
jm1 = j - 1;
n = pos[25-j];
if(n!=0) {
if(n==-1) x[5*jm1+0] = 1.0;
if(n==1) x[5*jm1+1] = 1.0;
if(n>=2) x[5*jm1+2] = 1.0;
if(n==3) x[5*jm1+3] = 1.0;
if(n>=4) x[5*jm1+4] = (float)(n-3)/2.0;
}
}
/* encode opponent barmen */
x[120] = -(float)(pos[0])/2.0;
/* encode computer's menoff */
x[121] = (float)(pos[26])/15.0;
}
float dumbeval(int race, int pos[])
{
/* Backgammon move-selection evaluation function
for benchmark comparisons. Computes a linear
evaluation function: Score = W * X, where X is
an input vector encoding the board state (using
a raw encoding of the number of men at each location),
and W is a weight vector. Separate weight vectors
are used for racing positions and contact positions.
Makes lots of obvious mistakes, but provides a
decent level of play for benchmarking purposes. */
/* Provided as a public service to the backgammon
programming community by Gerry Tesauro, IBM Research.
(e-mail: tesauro@watson.ibm.com) */
/* The following inputs are needed for this routine:
race is an integer variable which should be set
based on the INITIAL position BEFORE the move.
Set race=1 if the position is a race (i.e. no contact)
and 0 if the position is a contact position.
pos[] is an integer array of dimension 28 which
should represent a legal final board state after
the move. Elements 1-24 correspond to board locations
1-24 from computer's point of view, i.e. computer's
men move in the negative direction from 24 to 1, and
opponent's men move in the positive direction from
1 to 24. Computer's men are represented by positive
integers, and opponent's men are represented by negative
integers. Element 25 represents computer's men on the
bar (positive integer), and element 0 represents opponent's
men on the bar (negative integer). Element 26 represents
computer's men off the board (positive integer), and
element 27 represents opponent's men off the board
(negative integer). */
/* Also, be sure to call rdwts() at the start of your
program to read in the weight values. Happy hacking] */
int i;
float score;
if(pos[26]==15) return(99999999.);
/* all men off, best possible move */
setx(pos); /* sets input array x[] */
score = 0.0;
if(race) { /* use race weights */
for(i=0;i<122;++i) score += wr[i]*x[i];
}
else { /* use contact weights */
for(i=0;i<122;++i) score += wc[i]*x[i];
}
return(score);
}
static PyObject*
dumbeval_eval(PyObject *self, PyObject *args) {
int race;
long numValues;
int board[28];
float eval_score;
PyObject* tuple_obj;
PyObject* val_obj;
if (! PyArg_ParseTuple(args, "pO!", &race, &PyTuple_Type, &tuple_obj))
return NULL;
numValues = PyTuple_Size(tuple_obj);
if (numValues < 0) return NULL;
if (numValues != 28) {
PyErr_SetString(DumbevalError, "Tuple must have 28 entries");
return NULL;
}
// Iterate over tuple to retreive positions
for (int i=0; i<numValues; i++) {
val_obj = PyTuple_GetItem(tuple_obj, i);
board[i] = PyLong_AsLong(val_obj);
}
eval_score = dumbeval(race, board);
return Py_BuildValue("f", eval_score);
}
static PyMethodDef dumbeval_methods[] = {
{
"eval", dumbeval_eval, METH_VARARGS,
"Returns evaluation results for the given board position."
},
{NULL, NULL, 0, NULL}
};
static struct PyModuleDef dumbeval_definition = {
PyModuleDef_HEAD_INIT,
"dumbeval",
"A Python module that implements Gerald Tesauro's dumbeval function for evaluation backgammon positions.",
-1,
dumbeval_methods
};
PyMODINIT_FUNC PyInit_dumbeval(void) {
PyObject* module;
module = PyModule_Create(&dumbeval_definition);
if (module == NULL)
return NULL;
DumbevalError = PyErr_NewException("dumbeval.error", NULL, NULL);
Py_INCREF(DumbevalError);
PyModule_AddObject(module, "error", DumbevalError);
return module;
}

9
pubeval/setup_dumb.py Normal file
View File

@ -0,0 +1,9 @@
from distutils.core import setup, Extension
dumbeval = Extension('dumbeval',
sources = ['dumbeval.c'])
setup (name = 'dumbeval',
version = '0.1',
description = 'Dumbeval for Python',
ext_modules = [dumbeval])